/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //#define SPAM using System; using System.Collections.Generic; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenMetaverse; using OpenMetaverse.StructuredData; using System.Drawing; using System.Drawing.Imaging; using System.IO.Compression; using PrimMesher; using log4net; using Nini.Config; using System.Reflection; using System.IO; using ComponentAce.Compression.Libs.zlib; using OpenSim.Region.Physics.ConvexDecompositionDotNet; namespace OpenSim.Region.Physics.Meshing { public class MeshmerizerPlugin : IMeshingPlugin { public MeshmerizerPlugin() { } public string GetName() { return "UbitMeshmerizer"; } public IMesher GetMesher(IConfigSource config) { return new Meshmerizer(config); } } public class Meshmerizer : IMesher { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); // Setting baseDir to a path will enable the dumping of raw files // raw files can be imported by blender so a visual inspection of the results can be done #if SPAM const string baseDir = "rawFiles"; #else private const string baseDir = null; //"rawFiles"; #endif private bool cacheSculptMaps = true; private bool cacheSculptAlphaMaps = true; private string decodedSculptMapPath = null; private bool useMeshiesPhysicsMesh = false; private float minSizeForComplexMesh = 0.2f; // prims with all dimensions smaller than this will have a bounding box mesh private Dictionary m_uniqueMeshes = new Dictionary(); private Dictionary m_uniqueReleasedMeshes = new Dictionary(); public Meshmerizer(IConfigSource config) { IConfig start_config = config.Configs["Startup"]; IConfig mesh_config = config.Configs["Mesh"]; decodedSculptMapPath = start_config.GetString("DecodedSculptMapPath","j2kDecodeCache"); cacheSculptMaps = start_config.GetBoolean("CacheSculptMaps", cacheSculptMaps); if (Environment.OSVersion.Platform == PlatformID.Unix) { cacheSculptAlphaMaps = false; } else cacheSculptAlphaMaps = cacheSculptMaps; if(mesh_config != null) useMeshiesPhysicsMesh = mesh_config.GetBoolean("UseMeshiesPhysicsMesh", useMeshiesPhysicsMesh); try { if (!Directory.Exists(decodedSculptMapPath)) Directory.CreateDirectory(decodedSculptMapPath); } catch (Exception e) { m_log.WarnFormat("[SCULPT]: Unable to create {0} directory: ", decodedSculptMapPath, e.Message); } } /// /// creates a simple box mesh of the specified size. This mesh is of very low vertex count and may /// be useful as a backup proxy when level of detail is not needed or when more complex meshes fail /// for some reason /// /// /// /// /// /// /// /// private static Mesh CreateSimpleBoxMesh(float minX, float maxX, float minY, float maxY, float minZ, float maxZ) { Mesh box = new Mesh(); List vertices = new List(); // bottom vertices.Add(new Vertex(minX, maxY, minZ)); vertices.Add(new Vertex(maxX, maxY, minZ)); vertices.Add(new Vertex(maxX, minY, minZ)); vertices.Add(new Vertex(minX, minY, minZ)); box.Add(new Triangle(vertices[0], vertices[1], vertices[2])); box.Add(new Triangle(vertices[0], vertices[2], vertices[3])); // top vertices.Add(new Vertex(maxX, maxY, maxZ)); vertices.Add(new Vertex(minX, maxY, maxZ)); vertices.Add(new Vertex(minX, minY, maxZ)); vertices.Add(new Vertex(maxX, minY, maxZ)); box.Add(new Triangle(vertices[4], vertices[5], vertices[6])); box.Add(new Triangle(vertices[4], vertices[6], vertices[7])); // sides box.Add(new Triangle(vertices[5], vertices[0], vertices[3])); box.Add(new Triangle(vertices[5], vertices[3], vertices[6])); box.Add(new Triangle(vertices[1], vertices[0], vertices[5])); box.Add(new Triangle(vertices[1], vertices[5], vertices[4])); box.Add(new Triangle(vertices[7], vertices[1], vertices[4])); box.Add(new Triangle(vertices[7], vertices[2], vertices[1])); box.Add(new Triangle(vertices[3], vertices[2], vertices[7])); box.Add(new Triangle(vertices[3], vertices[7], vertices[6])); return box; } /// /// Creates a simple bounding box mesh for a complex input mesh /// /// /// private static Mesh CreateBoundingBoxMesh(Mesh meshIn) { float minX = float.MaxValue; float maxX = float.MinValue; float minY = float.MaxValue; float maxY = float.MinValue; float minZ = float.MaxValue; float maxZ = float.MinValue; foreach (Vector3 v in meshIn.getVertexList()) { if (v.X < minX) minX = v.X; if (v.Y < minY) minY = v.Y; if (v.Z < minZ) minZ = v.Z; if (v.X > maxX) maxX = v.X; if (v.Y > maxY) maxY = v.Y; if (v.Z > maxZ) maxZ = v.Z; } return CreateSimpleBoxMesh(minX, maxX, minY, maxY, minZ, maxZ); } private void ReportPrimError(string message, string primName, PrimMesh primMesh) { m_log.Error(message); m_log.Error("\nPrim Name: " + primName); m_log.Error("****** PrimMesh Parameters ******\n" + primMesh.ParamsToDisplayString()); } /// /// Add a submesh to an existing list of coords and faces. /// /// /// Size of entire object /// /// private void AddSubMesh(OSDMap subMeshData, Vector3 size, List coords, List faces) { // Console.WriteLine("subMeshMap for {0} - {1}", primName, Util.GetFormattedXml((OSD)subMeshMap)); // As per http://wiki.secondlife.com/wiki/Mesh/Mesh_Asset_Format, some Mesh Level // of Detail Blocks (maps) contain just a NoGeometry key to signal there is no // geometry for this submesh. if (subMeshData.ContainsKey("NoGeometry") && ((OSDBoolean)subMeshData["NoGeometry"])) return; OpenMetaverse.Vector3 posMax; OpenMetaverse.Vector3 posMin; if (subMeshData.ContainsKey("PositionDomain")) { posMax = ((OSDMap)subMeshData["PositionDomain"])["Max"].AsVector3(); posMin = ((OSDMap)subMeshData["PositionDomain"])["Min"].AsVector3(); } else { posMax = new Vector3(0.5f, 0.5f, 0.5f); posMin = new Vector3(-0.5f, -0.5f, -0.5f); } ushort faceIndexOffset = (ushort)coords.Count; byte[] posBytes = subMeshData["Position"].AsBinary(); for (int i = 0; i < posBytes.Length; i += 6) { ushort uX = Utils.BytesToUInt16(posBytes, i); ushort uY = Utils.BytesToUInt16(posBytes, i + 2); ushort uZ = Utils.BytesToUInt16(posBytes, i + 4); Coord c = new Coord( Utils.UInt16ToFloat(uX, posMin.X, posMax.X) * size.X, Utils.UInt16ToFloat(uY, posMin.Y, posMax.Y) * size.Y, Utils.UInt16ToFloat(uZ, posMin.Z, posMax.Z) * size.Z); coords.Add(c); } byte[] triangleBytes = subMeshData["TriangleList"].AsBinary(); for (int i = 0; i < triangleBytes.Length; i += 6) { ushort v1 = (ushort)(Utils.BytesToUInt16(triangleBytes, i) + faceIndexOffset); ushort v2 = (ushort)(Utils.BytesToUInt16(triangleBytes, i + 2) + faceIndexOffset); ushort v3 = (ushort)(Utils.BytesToUInt16(triangleBytes, i + 4) + faceIndexOffset); Face f = new Face(v1, v2, v3); faces.Add(f); } } /// /// Create a physics mesh from data that comes with the prim. The actual data used depends on the prim type. /// /// /// /// /// /// private Mesh CreateMeshFromPrimMesher(string primName, PrimitiveBaseShape primShape, Vector3 size, float lod, bool convex) { // m_log.DebugFormat( // "[MESH]: Creating physics proxy for {0}, shape {1}", // primName, (OpenMetaverse.SculptType)primShape.SculptType); List coords; List faces; if (primShape.SculptEntry) { if (((OpenMetaverse.SculptType)primShape.SculptType) == SculptType.Mesh) { if (!useMeshiesPhysicsMesh) return null; if (!GenerateCoordsAndFacesFromPrimMeshData(primName, primShape, size, out coords, out faces, convex)) return null; } else { if (!GenerateCoordsAndFacesFromPrimSculptData(primName, primShape, size, lod, out coords, out faces)) return null; } } else { if (!GenerateCoordsAndFacesFromPrimShapeData(primName, primShape, size, lod, out coords, out faces)) return null; } primShape.SculptData = Utils.EmptyBytes; int numCoords = coords.Count; int numFaces = faces.Count; Mesh mesh = new Mesh(); // Add the corresponding triangles to the mesh for (int i = 0; i < numFaces; i++) { Face f = faces[i]; mesh.Add(new Triangle(coords[f.v1].X, coords[f.v1].Y, coords[f.v1].Z, coords[f.v2].X, coords[f.v2].Y, coords[f.v2].Z, coords[f.v3].X, coords[f.v3].Y, coords[f.v3].Z)); } coords.Clear(); faces.Clear(); return mesh; } /// /// Generate the co-ords and faces necessary to construct a mesh from the mesh data the accompanies a prim. /// /// /// /// /// Coords are added to this list by the method. /// Faces are added to this list by the method. /// true if coords and faces were successfully generated, false if not private bool GenerateCoordsAndFacesFromPrimMeshData( string primName, PrimitiveBaseShape primShape, Vector3 size, out List coords, out List faces, bool convex) { // m_log.DebugFormat("[MESH]: experimental mesh proxy generation for {0}", primName); bool usemesh = false; coords = new List(); faces = new List(); OSD meshOsd = null; if (primShape.SculptData.Length <= 0) { m_log.InfoFormat("[MESH]: asset data for {0} is zero length", primName); return false; } long start = 0; using (MemoryStream data = new MemoryStream(primShape.SculptData)) { try { OSD osd = OSDParser.DeserializeLLSDBinary(data); if (osd is OSDMap) meshOsd = (OSDMap)osd; else { m_log.Warn("[Mesh}: unable to cast mesh asset to OSDMap"); return false; } } catch (Exception e) { m_log.Error("[MESH]: Exception deserializing mesh asset header:" + e.ToString()); } start = data.Position; } if (meshOsd is OSDMap) { OSDMap physicsParms = null; OSDMap map = (OSDMap)meshOsd; if (!convex) { if (map.ContainsKey("physics_shape")) physicsParms = (OSDMap)map["physics_shape"]; // old asset format else if (map.ContainsKey("physics_mesh")) physicsParms = (OSDMap)map["physics_mesh"]; // new asset format if (physicsParms != null) usemesh = true; } if(!usemesh && (map.ContainsKey("physics_convex"))) physicsParms = (OSDMap)map["physics_convex"]; if (physicsParms == null) { m_log.Warn("[MESH]: unknown mesh type"); return false; } int physOffset = physicsParms["offset"].AsInteger() + (int)start; int physSize = physicsParms["size"].AsInteger(); if (physOffset < 0 || physSize == 0) return false; // no mesh data in asset OSD decodedMeshOsd = new OSD(); byte[] meshBytes = new byte[physSize]; System.Buffer.BlockCopy(primShape.SculptData, physOffset, meshBytes, 0, physSize); // byte[] decompressed = new byte[physSize * 5]; try { using (MemoryStream inMs = new MemoryStream(meshBytes)) { using (MemoryStream outMs = new MemoryStream()) { using (ZOutputStream zOut = new ZOutputStream(outMs)) { byte[] readBuffer = new byte[2048]; int readLen = 0; while ((readLen = inMs.Read(readBuffer, 0, readBuffer.Length)) > 0) { zOut.Write(readBuffer, 0, readLen); } zOut.Flush(); outMs.Seek(0, SeekOrigin.Begin); byte[] decompressedBuf = outMs.GetBuffer(); decodedMeshOsd = OSDParser.DeserializeLLSDBinary(decompressedBuf); } } } } catch (Exception e) { m_log.Error("[MESH]: exception decoding physical mesh: " + e.ToString()); return false; } if (usemesh) { OSDArray decodedMeshOsdArray = null; // physics_shape is an array of OSDMaps, one for each submesh if (decodedMeshOsd is OSDArray) { // Console.WriteLine("decodedMeshOsd for {0} - {1}", primName, Util.GetFormattedXml(decodedMeshOsd)); decodedMeshOsdArray = (OSDArray)decodedMeshOsd; foreach (OSD subMeshOsd in decodedMeshOsdArray) { if (subMeshOsd is OSDMap) AddSubMesh(subMeshOsd as OSDMap, size, coords, faces); } } } else { OSDMap cmap = (OSDMap)decodedMeshOsd; if (cmap == null) return false; byte[] data; List vs = new List(); PHullResult hullr = new PHullResult(); float3 f3; Coord c; Face f; Vector3 range; Vector3 min; const float invMaxU16 = 1.0f / 65535f; int t1; int t2; int t3; int i; int nverts; int nindexs; if (cmap.ContainsKey("Max")) range = cmap["Max"].AsVector3(); else range = new Vector3(0.5f, 0.5f, 0.5f); if (cmap.ContainsKey("Min")) min = cmap["Min"].AsVector3(); else min = new Vector3(-0.5f, -0.5f, -0.5f); range = range - min; range *= invMaxU16; if (!convex && cmap.ContainsKey("HullList") && cmap.ContainsKey("Positions")) { List hsizes = new List(); int totalpoints = 0; data = cmap["HullList"].AsBinary(); for (i = 0; i < data.Length; i++) { t1 = data[i]; if (t1 == 0) t1 = 256; totalpoints += t1; hsizes.Add(t1); } data = cmap["Positions"].AsBinary(); int ptr = 0; int vertsoffset = 0; if (totalpoints == data.Length / 6) // 2 bytes per coord, 3 coords per point { foreach (int hullsize in hsizes) { for (i = 0; i < hullsize; i++ ) { t1 = data[ptr++]; t1 += data[ptr++] << 8; t2 = data[ptr++]; t2 += data[ptr++] << 8; t3 = data[ptr++]; t3 += data[ptr++] << 8; f3 = new float3((t1 * range.X + min.X) * size.X, (t2 * range.Y + min.Y) * size.Y, (t3 * range.Z + min.Z) * size.Z); vs.Add(f3); } if(hullsize <3) { vs.Clear(); continue; } if (hullsize <5) { foreach (float3 point in vs) { c.X = point.x; c.Y = point.y; c.Z = point.z; coords.Add(c); } f = new Face(vertsoffset, vertsoffset + 1, vertsoffset + 2); faces.Add(f); if (hullsize == 4) { // not sure about orientation.. f = new Face(vertsoffset, vertsoffset + 2, vertsoffset + 3); faces.Add(f); f = new Face(vertsoffset, vertsoffset + 3, vertsoffset + 1); faces.Add(f); f = new Face(vertsoffset + 3, vertsoffset + 2, vertsoffset + 1); faces.Add(f); } vertsoffset += vs.Count; vs.Clear(); continue; } if (!HullUtils.ComputeHull(vs, ref hullr, 0, 0.0f)) { vs.Clear(); continue; } nverts = hullr.Vertices.Count; nindexs = hullr.Indices.Count; if (nindexs % 3 != 0) { vs.Clear(); continue; } for (i = 0; i < nverts; i++) { c.X = hullr.Vertices[i].x; c.Y = hullr.Vertices[i].y; c.Z = hullr.Vertices[i].z; coords.Add(c); } for (i = 0; i < nindexs; i += 3) { t1 = hullr.Indices[i]; if (t1 > nverts) break; t2 = hullr.Indices[i + 1]; if (t2 > nverts) break; t3 = hullr.Indices[i + 2]; if (t3 > nverts) break; f = new Face(vertsoffset + t1, vertsoffset + t2, vertsoffset + t3); faces.Add(f); } vertsoffset += nverts; vs.Clear(); } } if (coords.Count > 0 && faces.Count > 0) return true; } vs.Clear(); if (cmap.ContainsKey("BoundingVerts")) { data = cmap["BoundingVerts"].AsBinary(); for (i = 0; i < data.Length; ) { t1 = data[i++]; t1 += data[i++] << 8; t2 = data[i++]; t2 += data[i++] << 8; t3 = data[i++]; t3 += data[i++] << 8; f3 = new float3((t1 * range.X + min.X) * size.X, (t2 * range.Y + min.Y) * size.Y, (t3 * range.Z + min.Z) * size.Z); vs.Add(f3); } if (vs.Count < 3) { vs.Clear(); return false; } if (vs.Count < 5) { foreach (float3 point in vs) { c.X = point.x; c.Y = point.y; c.Z = point.z; coords.Add(c); } f = new Face(0, 1, 2); faces.Add(f); if (vs.Count == 4) { f = new Face(0, 2, 3); faces.Add(f); f = new Face(0, 3, 1); faces.Add(f); f = new Face( 3, 2, 1); faces.Add(f); } vs.Clear(); return true; } if (!HullUtils.ComputeHull(vs, ref hullr, 0, 0.0f)) return false; nverts = hullr.Vertices.Count; nindexs = hullr.Indices.Count; if (nindexs % 3 != 0) return false; for (i = 0; i < nverts; i++) { c.X = hullr.Vertices[i].x; c.Y = hullr.Vertices[i].y; c.Z = hullr.Vertices[i].z; coords.Add(c); } for (i = 0; i < nindexs; i += 3) { t1 = hullr.Indices[i]; if (t1 > nverts) break; t2 = hullr.Indices[i + 1]; if (t2 > nverts) break; t3 = hullr.Indices[i + 2]; if (t3 > nverts) break; f = new Face(t1, t2, t3); faces.Add(f); } if (coords.Count > 0 && faces.Count > 0) return true; } else return false; } } return true; } /// /// Generate the co-ords and faces necessary to construct a mesh from the sculpt data the accompanies a prim. /// /// /// /// /// /// Coords are added to this list by the method. /// Faces are added to this list by the method. /// true if coords and faces were successfully generated, false if not private bool GenerateCoordsAndFacesFromPrimSculptData( string primName, PrimitiveBaseShape primShape, Vector3 size, float lod, out List coords, out List faces) { coords = new List(); faces = new List(); PrimMesher.SculptMesh sculptMesh; Image idata = null; string decodedSculptFileName = ""; if (cacheSculptMaps && primShape.SculptTexture != UUID.Zero) { decodedSculptFileName = System.IO.Path.Combine(decodedSculptMapPath, "smap_" + primShape.SculptTexture.ToString()); try { if (File.Exists(decodedSculptFileName)) { idata = Image.FromFile(decodedSculptFileName); } } catch (Exception e) { m_log.Error("[SCULPT]: unable to load cached sculpt map " + decodedSculptFileName + " " + e.Message); } //if (idata != null) // m_log.Debug("[SCULPT]: loaded cached map asset for map ID: " + primShape.SculptTexture.ToString()); } if (idata == null) { if (primShape.SculptData == null || primShape.SculptData.Length == 0) return false; try { OpenMetaverse.Imaging.ManagedImage unusedData; OpenMetaverse.Imaging.OpenJPEG.DecodeToImage(primShape.SculptData, out unusedData, out idata); if (idata == null) { // In some cases it seems that the decode can return a null bitmap without throwing // an exception m_log.WarnFormat("[PHYSICS]: OpenJPEG decoded sculpt data for {0} to a null bitmap. Ignoring.", primName); return false; } unusedData = null; //idata = CSJ2K.J2kImage.FromBytes(primShape.SculptData); if (cacheSculptMaps && (cacheSculptAlphaMaps || (((ImageFlags)(idata.Flags) & ImageFlags.HasAlpha) ==0))) // don't cache images with alpha channel in linux since mono can't load them correctly) { try { idata.Save(decodedSculptFileName, ImageFormat.MemoryBmp); } catch (Exception e) { m_log.Error("[SCULPT]: unable to cache sculpt map " + decodedSculptFileName + " " + e.Message); } } } catch (DllNotFoundException) { m_log.Error("[PHYSICS]: OpenJpeg is not installed correctly on this system. Physics Proxy generation failed. Often times this is because of an old version of GLIBC. You must have version 2.4 or above!"); return false; } catch (IndexOutOfRangeException) { m_log.Error("[PHYSICS]: OpenJpeg was unable to decode this. Physics Proxy generation failed"); return false; } catch (Exception ex) { m_log.Error("[PHYSICS]: Unable to generate a Sculpty physics proxy. Sculpty texture decode failed: " + ex.Message); return false; } } PrimMesher.SculptMesh.SculptType sculptType; // remove mirror and invert bits OpenMetaverse.SculptType pbsSculptType = ((OpenMetaverse.SculptType)(primShape.SculptType & 0x3f)); switch (pbsSculptType) { case OpenMetaverse.SculptType.Cylinder: sculptType = PrimMesher.SculptMesh.SculptType.cylinder; break; case OpenMetaverse.SculptType.Plane: sculptType = PrimMesher.SculptMesh.SculptType.plane; break; case OpenMetaverse.SculptType.Torus: sculptType = PrimMesher.SculptMesh.SculptType.torus; break; case OpenMetaverse.SculptType.Sphere: sculptType = PrimMesher.SculptMesh.SculptType.sphere; break; default: sculptType = PrimMesher.SculptMesh.SculptType.plane; break; } bool mirror = ((primShape.SculptType & 128) != 0); bool invert = ((primShape.SculptType & 64) != 0); sculptMesh = new PrimMesher.SculptMesh((Bitmap)idata, sculptType, (int)lod, mirror, invert); idata.Dispose(); sculptMesh.DumpRaw(baseDir, primName, "primMesh"); sculptMesh.Scale(size.X, size.Y, size.Z); coords = sculptMesh.coords; faces = sculptMesh.faces; return true; } /// /// Generate the co-ords and faces necessary to construct a mesh from the shape data the accompanies a prim. /// /// /// /// /// Coords are added to this list by the method. /// Faces are added to this list by the method. /// true if coords and faces were successfully generated, false if not private bool GenerateCoordsAndFacesFromPrimShapeData( string primName, PrimitiveBaseShape primShape, Vector3 size, float lod, out List coords, out List faces) { PrimMesh primMesh; coords = new List(); faces = new List(); float pathShearX = primShape.PathShearX < 128 ? (float)primShape.PathShearX * 0.01f : (float)(primShape.PathShearX - 256) * 0.01f; float pathShearY = primShape.PathShearY < 128 ? (float)primShape.PathShearY * 0.01f : (float)(primShape.PathShearY - 256) * 0.01f; float pathBegin = (float)primShape.PathBegin * 2.0e-5f; float pathEnd = 1.0f - (float)primShape.PathEnd * 2.0e-5f; float pathScaleX = (float)(primShape.PathScaleX - 100) * 0.01f; float pathScaleY = (float)(primShape.PathScaleY - 100) * 0.01f; float profileBegin = (float)primShape.ProfileBegin * 2.0e-5f; float profileEnd = 1.0f - (float)primShape.ProfileEnd * 2.0e-5f; float profileHollow = (float)primShape.ProfileHollow * 2.0e-5f; if (profileHollow > 0.95f) profileHollow = 0.95f; int sides = 4; LevelOfDetail iLOD = (LevelOfDetail)lod; if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle) sides = 3; else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle) { switch (iLOD) { case LevelOfDetail.High: sides = 24; break; case LevelOfDetail.Medium: sides = 12; break; case LevelOfDetail.Low: sides = 6; break; case LevelOfDetail.VeryLow: sides = 3; break; default: sides = 24; break; } } else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle) { // half circle, prim is a sphere switch (iLOD) { case LevelOfDetail.High: sides = 24; break; case LevelOfDetail.Medium: sides = 12; break; case LevelOfDetail.Low: sides = 6; break; case LevelOfDetail.VeryLow: sides = 3; break; default: sides = 24; break; } profileBegin = 0.5f * profileBegin + 0.5f; profileEnd = 0.5f * profileEnd + 0.5f; } int hollowSides = sides; if (primShape.HollowShape == HollowShape.Circle) { switch (iLOD) { case LevelOfDetail.High: hollowSides = 24; break; case LevelOfDetail.Medium: hollowSides = 12; break; case LevelOfDetail.Low: hollowSides = 6; break; case LevelOfDetail.VeryLow: hollowSides = 3; break; default: hollowSides = 24; break; } } else if (primShape.HollowShape == HollowShape.Square) hollowSides = 4; else if (primShape.HollowShape == HollowShape.Triangle) hollowSides = 3; primMesh = new PrimMesh(sides, profileBegin, profileEnd, profileHollow, hollowSides); if (primMesh.errorMessage != null) if (primMesh.errorMessage.Length > 0) m_log.Error("[ERROR] " + primMesh.errorMessage); primMesh.topShearX = pathShearX; primMesh.topShearY = pathShearY; primMesh.pathCutBegin = pathBegin; primMesh.pathCutEnd = pathEnd; if (primShape.PathCurve == (byte)Extrusion.Straight || primShape.PathCurve == (byte) Extrusion.Flexible) { primMesh.twistBegin = primShape.PathTwistBegin * 18 / 10; primMesh.twistEnd = primShape.PathTwist * 18 / 10; primMesh.taperX = pathScaleX; primMesh.taperY = pathScaleY; if (profileBegin < 0.0f || profileBegin >= profileEnd || profileEnd > 1.0f) { ReportPrimError("*** CORRUPT PRIM!! ***", primName, primMesh); if (profileBegin < 0.0f) profileBegin = 0.0f; if (profileEnd > 1.0f) profileEnd = 1.0f; } #if SPAM m_log.Debug("****** PrimMesh Parameters (Linear) ******\n" + primMesh.ParamsToDisplayString()); #endif try { primMesh.ExtrudeLinear(); } catch (Exception ex) { ReportPrimError("Extrusion failure: exception: " + ex.ToString(), primName, primMesh); return false; } } else { primMesh.holeSizeX = (200 - primShape.PathScaleX) * 0.01f; primMesh.holeSizeY = (200 - primShape.PathScaleY) * 0.01f; primMesh.radius = 0.01f * primShape.PathRadiusOffset; primMesh.revolutions = 1.0f + 0.015f * primShape.PathRevolutions; primMesh.skew = 0.01f * primShape.PathSkew; primMesh.twistBegin = primShape.PathTwistBegin * 36 / 10; primMesh.twistEnd = primShape.PathTwist * 36 / 10; primMesh.taperX = primShape.PathTaperX * 0.01f; primMesh.taperY = primShape.PathTaperY * 0.01f; if (profileBegin < 0.0f || profileBegin >= profileEnd || profileEnd > 1.0f) { ReportPrimError("*** CORRUPT PRIM!! ***", primName, primMesh); if (profileBegin < 0.0f) profileBegin = 0.0f; if (profileEnd > 1.0f) profileEnd = 1.0f; } #if SPAM m_log.Debug("****** PrimMesh Parameters (Circular) ******\n" + primMesh.ParamsToDisplayString()); #endif try { primMesh.ExtrudeCircular(); } catch (Exception ex) { ReportPrimError("Extrusion failure: exception: " + ex.ToString(), primName, primMesh); return false; } } primMesh.DumpRaw(baseDir, primName, "primMesh"); primMesh.Scale(size.X, size.Y, size.Z); coords = primMesh.coords; faces = primMesh.faces; return true; } public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod) { return CreateMesh(primName, primShape, size, lod, false,false); } public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod, bool isPhysical) { return CreateMesh(primName, primShape, size, lod, false,false); } private static Vector3 m_MeshUnitSize = new Vector3(0.5f, 0.5f, 0.5f); public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod, bool isPhysical, bool convex) { #if SPAM m_log.DebugFormat("[MESH]: Creating mesh for {0}", primName); #endif Mesh mesh = null; ulong key = 0; if (size.X < 0.01f) size.X = 0.01f; if (size.Y < 0.01f) size.Y = 0.01f; if (size.Z < 0.01f) size.Z = 0.01f; // try to find a identical mesh on meshs in use key = primShape.GetMeshKey(size, lod, convex); lock (m_uniqueMeshes) { m_uniqueMeshes.TryGetValue(key, out mesh); if (mesh != null) { mesh.RefCount++; return mesh; } } // try to find a identical mesh on meshs recently released lock (m_uniqueReleasedMeshes) { m_uniqueReleasedMeshes.TryGetValue(key, out mesh); if (mesh != null) { m_uniqueReleasedMeshes.Remove(key); lock (m_uniqueMeshes) m_uniqueMeshes.Add(key, mesh); mesh.RefCount = 1; return mesh; } } /* Mesh UnitSizeMesh = null; ulong unitsizekey = 0; unitsizekey = primShape.GetMeshKey(m_MeshUnitSize, lod, convex); lock(m_uniqueMeshes) m_uniqueMeshes.TryGetValue(unitsizekey, out UnitSizeMesh); if (UnitSizeMesh !=null) { UnitSizeMesh.RefCount++; mesh = UnitSizeMesh.Clone(); mesh.Key = key; mesh.Scale(size); mesh.RefCount++; lock(m_uniqueMeshes) m_uniqueMeshes.Add(key, mesh); return mesh; } */ mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod,convex); // mesh.Key = unitsizekey; if (mesh != null) { if ((!isPhysical) && size.X < minSizeForComplexMesh && size.Y < minSizeForComplexMesh && size.Z < minSizeForComplexMesh) { #if SPAM m_log.Debug("Meshmerizer: prim " + primName + " has a size of " + size.ToString() + " which is below threshold of " + minSizeForComplexMesh.ToString() + " - creating simple bounding box"); #endif mesh = CreateBoundingBoxMesh(mesh); mesh.DumpRaw(baseDir, primName, "Z extruded"); } // trim the vertex and triangle lists to free up memory mesh.TrimExcess(); mesh.Key = key; mesh.RefCount++; lock(m_uniqueMeshes) m_uniqueMeshes.Add(key, mesh); } return mesh; } public void ReleaseMesh(IMesh imesh) { if (imesh == null) return; Mesh mesh = (Mesh)imesh; int curRefCount = mesh.RefCount; curRefCount--; if (curRefCount > 0) { mesh.RefCount = curRefCount; return; } lock (m_uniqueMeshes) { mesh.RefCount = 0; m_uniqueMeshes.Remove(mesh.Key); lock (m_uniqueReleasedMeshes) m_uniqueReleasedMeshes.Add(mesh.Key, mesh); } } public void ExpireReleaseMeshs() { if (m_uniqueMeshes.Count == 0) return; List meshstodelete = new List(); int refcntr; lock (m_uniqueReleasedMeshes) { foreach (Mesh m in m_uniqueReleasedMeshes.Values) { refcntr = m.RefCount; refcntr--; if (refcntr > -6) m.RefCount = refcntr; else meshstodelete.Add(m); } foreach (Mesh m in meshstodelete) { m_uniqueReleasedMeshes.Remove(m.Key); m.releaseSourceMeshData(); m.releasePinned(); } } } } }