/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using Axiom.Math;
using log4net;
using Nini.Config;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
//using OpenSim.Region.Physics.OdePlugin.Meshing;
namespace OpenSim.Region.Physics.OdePlugin
{
///
/// ODE plugin
///
public class OdePlugin : IPhysicsPlugin
{
//private static readonly log4net.ILog m_log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
private CollisionLocker ode;
private OdeScene _mScene;
public OdePlugin()
{
ode = new CollisionLocker();
}
public bool Init()
{
return true;
}
public PhysicsScene GetScene()
{
if (_mScene == null)
{
_mScene = new OdeScene(ode);
}
return (_mScene);
}
public string GetName()
{
return ("OpenDynamicsEngine");
}
public void Dispose()
{
}
}
public enum StatusIndicators : int
{
Generic = 0,
Start = 1,
End = 2
}
public struct sCollisionData
{
public uint ColliderLocalId;
public uint CollidedWithLocalId;
public int NumberOfCollisions;
public int CollisionType;
public int StatusIndicator;
public int lastframe;
}
[Flags]
public enum CollisionCategories : int
{
Disabled = 0,
Geom = 0x00000001,
Body = 0x00000002,
Space = 0x00000004,
Character = 0x00000008,
Land = 0x00000010,
Water = 0x00000020,
Wind = 0x00000040,
Sensor = 0x00000080,
Selected = 0x00000100
}
public class OdeScene : PhysicsScene
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private Dictionary m_storedCollisions = new Dictionary();
CollisionLocker ode;
protected Random fluidRandomizer = new Random(Environment.TickCount);
private const uint m_regionWidth = Constants.RegionSize;
private const uint m_regionHeight = Constants.RegionSize;
private static float ODE_STEPSIZE = 0.020f;
private static float metersInSpace = 29.9f;
private float waterlevel = 0f;
private int framecount = 0;
//private int m_returncollisions = 10;
private IntPtr contactgroup;
private IntPtr LandGeom = (IntPtr) 0;
private IntPtr WaterGeom = (IntPtr)0;
private float[] _heightmap;
private float[] _watermap;
private float[] _origheightmap;
private d.NearCallback nearCallback;
public d.TriCallback triCallback;
public d.TriArrayCallback triArrayCallback;
private List _characters = new List();
private List _prims = new List();
private List _activeprims = new List();
private List _taintedPrim = new List();
private List _collisionEventPrim = new List();
public Dictionary geom_name_map = new Dictionary();
public Dictionary actor_name_map = new Dictionary();
private d.ContactGeom[] contacts = new d.ContactGeom[80];
private d.Contact contact;
private d.Contact TerrainContact;
private d.Contact AvatarMovementprimContact;
private d.Contact AvatarMovementTerrainContact;
private d.Contact WaterContact;
//Ckrinke: Comment out until used. We declare it, initialize it, but do not use it
//Ckrinke private int m_randomizeWater = 200;
private int m_physicsiterations = 10;
private float m_SkipFramesAtms = 0.40f; // Drop frames gracefully at a 400 ms lag
private PhysicsActor PANull = new NullPhysicsActor();
private float step_time = 0.0f;
//Ckrinke: Comment out until used. We declare it, initialize it, but do not use it
//Ckrinke private int ms = 0;
public IntPtr world;
//private bool returncollisions = false;
private uint obj1LocalID = 0;
private uint obj2LocalID = 0;
//private int ctype = 0;
private OdeCharacter cc1;
private OdePrim cp1;
private OdeCharacter cc2;
private OdePrim cp2;
//private int cStartStop = 0;
//private string cDictKey = "";
public IntPtr space;
//private IntPtr tmpSpace;
// split static geometry collision handling into spaces of 30 meters
public IntPtr[,] staticPrimspace = new IntPtr[(int) (300/metersInSpace),(int) (300/metersInSpace)];
public static Object OdeLock = new Object();
public IMesher mesher;
private IConfigSource m_config;
///
/// Initiailizes the scene
/// Sets many properties that ODE requires to be stable
/// These settings need to be tweaked 'exactly' right or weird stuff happens.
///
public OdeScene(CollisionLocker dode)
{
ode = dode;
nearCallback = near;
triCallback = TriCallback;
triArrayCallback = TriArrayCallback;
/*
contact.surface.mode |= d.ContactFlags.Approx1 | d.ContactFlags.SoftCFM | d.ContactFlags.SoftERP;
contact.surface.mu = 10.0f;
contact.surface.bounce = 0.9f;
contact.surface.soft_erp = 0.005f;
contact.surface.soft_cfm = 0.00003f;
*/
// Centeral contact friction and bounce
contact.surface.mu = 250.0f;
contact.surface.bounce = 0.2f;
// Terrain contact friction and Bounce
// This is the *non* moving version. Use this when an avatar
// isn't moving to keep it in place better
TerrainContact.surface.mode |= d.ContactFlags.SoftERP;
TerrainContact.surface.mu = 255.0f;
TerrainContact.surface.bounce = 0.1f;
TerrainContact.surface.soft_erp = 0.1025f;
WaterContact.surface.mode |= (d.ContactFlags.SoftERP | d.ContactFlags.SoftCFM);
WaterContact.surface.mu = 0f; // No friction
WaterContact.surface.bounce = 0.0f; // No bounce
WaterContact.surface.soft_cfm = 0.01f;
WaterContact.surface.soft_erp = 0.010f;
// Prim contact friction and bounce
// THis is the *non* moving version of friction and bounce
// Use this when an avatar comes in contact with a prim
// and is moving
AvatarMovementprimContact.surface.mu = 75.0f;
AvatarMovementprimContact.surface.bounce = 0.1f;
// Terrain contact friction bounce and various error correcting calculations
// Use this when an avatar is in contact with the terrain and moving.
AvatarMovementTerrainContact.surface.mode |= d.ContactFlags.SoftERP;
AvatarMovementTerrainContact.surface.mu = 75.0f;
AvatarMovementTerrainContact.surface.bounce = 0.05f;
AvatarMovementTerrainContact.surface.soft_erp = 0.05025f;
lock (OdeLock)
{
// Creat the world and the first space
world = d.WorldCreate();
space = d.HashSpaceCreate(IntPtr.Zero);
d.HashSpaceSetLevels(space, -4, 128);
contactgroup = d.JointGroupCreate(0);
//contactgroup
// Set the gravity,, don't disable things automatically (we set it explicitly on some things)
d.WorldSetGravity(world, 0.0f, 0.0f, -9.8f);
d.WorldSetAutoDisableFlag(world, false);
d.WorldSetContactSurfaceLayer(world, 0.001f);
// Set how many steps we go without running collision testing
// This is in addition to the step size.
// Essentially Steps * m_physicsiterations
d.WorldSetQuickStepNumIterations(world, m_physicsiterations);
///d.WorldSetContactMaxCorrectingVel(world, 1000.0f);
}
// zero out a heightmap array float array (single dimention [flattened]))
_heightmap = new float[514*514];
_watermap = new float[258 * 258];
// Zero out the prim spaces array (we split our space into smaller spaces so
// we can hit test less.
for (int i = 0; i < staticPrimspace.GetLength(0); i++)
{
for (int j = 0; j < staticPrimspace.GetLength(1); j++)
{
staticPrimspace[i, j] = IntPtr.Zero;
}
}
}
// Initialize the mesh plugin
public override void Initialise(IMesher meshmerizer, IConfigSource config)
{
mesher = meshmerizer;
m_config = config;
}
internal void waitForSpaceUnlock(IntPtr space)
{
//if (space != (IntPtr)0)
//while (d.SpaceLockQuery(space)) { } // Wait and do nothing
}
///
/// Debug space message for printing the space that a prim/avatar is in.
///
///
/// Returns which split up space the given position is in.
public string whichspaceamIin(PhysicsVector pos)
{
return calculateSpaceForGeom(pos).ToString();
}
#region Collision Detection
///
/// This is our near callback. A geometry is near a body
///
/// The space that contains the geoms. Remember, spaces are also geoms
/// a geometry or space
/// another geometry or space
private void near(IntPtr space, IntPtr g1, IntPtr g2)
{
// no lock here! It's invoked from within Simulate(), which is thread-locked
// Test if we're collidng a geom with a space.
// If so we have to drill down into the space recursively
if (d.GeomIsSpace(g1) || d.GeomIsSpace(g2))
{
if (g1 == (IntPtr)0 || g2 == (IntPtr)0)
return;
// Separating static prim geometry spaces.
// We'll be calling near recursivly if one
// of them is a space to find all of the
// contact points in the space
try
{
d.SpaceCollide2(g1, g2, IntPtr.Zero, nearCallback);
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to collide test a space");
return;
}
//Colliding a space or a geom with a space or a geom. so drill down
//Collide all geoms in each space..
//if (d.GeomIsSpace(g1)) d.SpaceCollide(g1, IntPtr.Zero, nearCallback);
//if (d.GeomIsSpace(g2)) d.SpaceCollide(g2, IntPtr.Zero, nearCallback);
return;
}
if (g1 == (IntPtr)0 || g2 == (IntPtr)0)
return;
IntPtr b1 = d.GeomGetBody(g1);
IntPtr b2 = d.GeomGetBody(g2);
d.GeomClassID id = d.GeomGetClass(g1);
String name1 = null;
String name2 = null;
if (!geom_name_map.TryGetValue(g1, out name1))
{
name1 = "null";
}
if (!geom_name_map.TryGetValue(g2, out name2))
{
name2 = "null";
}
//if (id == d.GeomClassId.TriMeshClass)
//{
// m_log.InfoFormat("near: A collision was detected between {1} and {2}", 0, name1, name2);
//System.Console.WriteLine("near: A collision was detected between {1} and {2}", 0, name1, name2);
//}
// Figure out how many contact points we have
int count = 0;
try
{
// Colliding Geom To Geom
// This portion of the function 'was' blatantly ripped off from BoxStack.cs
if (g1 == g2)
return; // Can't collide with yourself
if (b1 != IntPtr.Zero && b2 != IntPtr.Zero && d.AreConnectedExcluding(b1, b2, d.JointType.Contact))
return;
lock (contacts)
{
count = d.Collide(g1, g2, contacts.GetLength(0), contacts, d.ContactGeom.SizeOf);
}
}
catch (SEHException)
{
m_log.Error("[PHYSICS]: The Operating system shut down ODE because of corrupt memory. This could be a result of really irregular terrain. If this repeats continuously, restart using Basic Physics and terrain fill your terrain. Restarting the sim.");
ode.drelease(world);
base.TriggerPhysicsBasedRestart();
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to collide test an object");
return;
}
PhysicsActor p1;
PhysicsActor p2;
if (!actor_name_map.TryGetValue(g1, out p1))
{
p1 = PANull;
}
if (!actor_name_map.TryGetValue(g2, out p2))
{
p2 = PANull;
}
float max_collision_depth = 0f;
for (int i = 0; i < count; i++)
{
max_collision_depth = (contacts[i].depth > max_collision_depth) ? contacts[i].depth : max_collision_depth;
//m_log.Warn("[CCOUNT]: " + count);
IntPtr joint;
// If we're colliding with terrain, use 'TerrainContact' instead of contact.
// allows us to have different settings
// We only need to test p2 for 'jump crouch purposes'
p2.IsColliding = true;
//if ((framecount % m_returncollisions) == 0)
switch (p1.PhysicsActorType)
{
case (int)ActorTypes.Agent:
p2.CollidingObj = true;
break;
case (int)ActorTypes.Prim:
if (p2.Velocity.X > 0 || p2.Velocity.Y > 0 || p2.Velocity.Z > 0)
p2.CollidingObj = true;
break;
case (int)ActorTypes.Unknown:
p2.CollidingGround = true;
break;
default:
p2.CollidingGround = true;
break;
}
// we don't want prim or avatar to explode
#region InterPenetration Handling - Unintended physics explosions
if (contacts[i].depth >= 0.08f)
{
//This is disabled at the moment only because it needs more tweaking
//It will eventually be uncommented
if (contacts[i].depth >= 1.00f)
{
//m_log.Debug("[PHYSICS]: " + contacts[i].depth.ToString());
}
//If you interpenetrate a prim with an agent
if ((p2.PhysicsActorType == (int) ActorTypes.Agent &&
p1.PhysicsActorType == (int) ActorTypes.Prim) ||
(p1.PhysicsActorType == (int) ActorTypes.Agent &&
p2.PhysicsActorType == (int) ActorTypes.Prim))
{
# region disabled code1
//contacts[i].depth = contacts[i].depth * 4.15f;
/*
if (p2.PhysicsActorType == (int) ActorTypes.Agent)
{
p2.CollidingObj = true;
contacts[i].depth = 0.003f;
p2.Velocity = p2.Velocity + new PhysicsVector(0, 0, 2.5f);
OdeCharacter character = (OdeCharacter) p2;
character.SetPidStatus(true);
contacts[i].pos = new d.Vector3(contacts[i].pos.X + (p1.Size.X / 2), contacts[i].pos.Y + (p1.Size.Y / 2), contacts[i].pos.Z + (p1.Size.Z / 2));
}
else
{
//contacts[i].depth = 0.0000000f;
}
if (p1.PhysicsActorType == (int) ActorTypes.Agent)
{
p1.CollidingObj = true;
contacts[i].depth = 0.003f;
p1.Velocity = p1.Velocity + new PhysicsVector(0, 0, 2.5f);
contacts[i].pos = new d.Vector3(contacts[i].pos.X + (p2.Size.X / 2), contacts[i].pos.Y + (p2.Size.Y / 2), contacts[i].pos.Z + (p2.Size.Z / 2));
OdeCharacter character = (OdeCharacter)p1;
character.SetPidStatus(true);
}
else
{
//contacts[i].depth = 0.0000000f;
}
*/
#endregion
}
// If you interpenetrate a prim with another prim
if (p1.PhysicsActorType == (int) ActorTypes.Prim && p2.PhysicsActorType == (int) ActorTypes.Prim)
{
#region disabledcode2
//OdePrim op1 = (OdePrim)p1;
//OdePrim op2 = (OdePrim)p2;
//op1.m_collisionscore++;
//op2.m_collisionscore++;
//if (op1.m_collisionscore > 8000 || op2.m_collisionscore > 8000)
//{
//op1.m_taintdisable = true;
//AddPhysicsActorTaint(p1);
//op2.m_taintdisable = true;
//AddPhysicsActorTaint(p2);
//}
//if (contacts[i].depth >= 0.25f)
//{
// Don't collide, one or both prim will expld.
//op1.m_interpenetrationcount++;
//op2.m_interpenetrationcount++;
//interpenetrations_before_disable = 200;
//if (op1.m_interpenetrationcount >= interpenetrations_before_disable)
//{
//op1.m_taintdisable = true;
//AddPhysicsActorTaint(p1);
//}
//if (op2.m_interpenetrationcount >= interpenetrations_before_disable)
//{
// op2.m_taintdisable = true;
//AddPhysicsActorTaint(p2);
//}
//contacts[i].depth = contacts[i].depth / 8f;
//contacts[i].normal = new d.Vector3(0, 0, 1);
//}
//if (op1.m_disabled || op2.m_disabled)
//{
//Manually disabled objects stay disabled
//contacts[i].depth = 0f;
//}
#endregion
}
if (contacts[i].depth >= 1.00f)
{
//m_log.Info("[P]: " + contacts[i].depth.ToString());
if ((p2.PhysicsActorType == (int) ActorTypes.Agent &&
p1.PhysicsActorType == (int) ActorTypes.Unknown) ||
(p1.PhysicsActorType == (int) ActorTypes.Agent &&
p2.PhysicsActorType == (int) ActorTypes.Unknown))
{
if (p2.PhysicsActorType == (int) ActorTypes.Agent)
{
OdeCharacter character = (OdeCharacter) p2;
//p2.CollidingObj = true;
contacts[i].depth = 0.00000003f;
p2.Velocity = p2.Velocity + new PhysicsVector(0, 0, 0.5f);
contacts[i].pos =
new d.Vector3(contacts[i].pos.X + (p1.Size.X/2),
contacts[i].pos.Y + (p1.Size.Y/2),
contacts[i].pos.Z + (p1.Size.Z/2));
character.SetPidStatus(true);
}
else
{
}
if (p1.PhysicsActorType == (int) ActorTypes.Agent)
{
OdeCharacter character = (OdeCharacter)p1;
//p2.CollidingObj = true;
contacts[i].depth = 0.00000003f;
p1.Velocity = p1.Velocity + new PhysicsVector(0, 0, 0.5f);
contacts[i].pos =
new d.Vector3(contacts[i].pos.X + (p1.Size.X/2),
contacts[i].pos.Y + (p1.Size.Y/2),
contacts[i].pos.Z + (p1.Size.Z/2));
character.SetPidStatus(true);
}
else
{
//contacts[i].depth = 0.0000000f;
}
}
}
}
#endregion
if (contacts[i].depth >= 0f)
{
// If we're collidng against terrain
if (name1 == "Terrain" || name2 == "Terrain")
{
// If we're moving
if ((p2.PhysicsActorType == (int) ActorTypes.Agent) &&
(Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f))
{
// Use the movement terrain contact
AvatarMovementTerrainContact.geom = contacts[i];
joint = d.JointCreateContact(world, contactgroup, ref AvatarMovementTerrainContact);
}
else
{
// Use the non moving terrain contact
TerrainContact.geom = contacts[i];
joint = d.JointCreateContact(world, contactgroup, ref TerrainContact);
}
}
else if (name1 == "Water" || name2 == "Water")
{
if ((p2.PhysicsActorType == (int)ActorTypes.Prim))
{
}
else
{
}
WaterContact.surface.soft_cfm = 0.0000f;
WaterContact.surface.soft_erp = 0.00000f;
if (contacts[i].depth > 0.1f)
{
contacts[i].depth *= 52;
//contacts[i].normal = new d.Vector3(0, 0, 1);
//contacts[i].pos = new d.Vector3(0, 0, contacts[i].pos.Z - 5f);
}
WaterContact.geom = contacts[i];
joint = d.JointCreateContact(world, contactgroup, ref WaterContact);
//m_log.Info("[PHYSICS]: Prim Water Contact" + contacts[i].depth);
}
else
{
// we're colliding with prim or avatar
// check if we're moving
if ((p2.PhysicsActorType == (int)ActorTypes.Agent) &&
(Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f))
{
// Use the Movement prim contact
AvatarMovementprimContact.geom = contacts[i];
joint = d.JointCreateContact(world, contactgroup, ref AvatarMovementprimContact);
}
else
{
// Use the non movement contact
contact.geom = contacts[i];
joint = d.JointCreateContact(world, contactgroup, ref contact);
}
}
d.JointAttach(joint, b1, b2);
}
collision_accounting_events(p1, p2, max_collision_depth);
if (count > 3)
{
// If there are more then 3 contact points, it's likely
// that we've got a pile of objects
//
// We don't want to send out hundreds of terse updates over and over again
// so lets throttle them and send them again after it's somewhat sorted out.
p2.ThrottleUpdates = true;
}
//System.Console.WriteLine(count.ToString());
//System.Console.WriteLine("near: A collision was detected between {1} and {2}", 0, name1, name2);
}
}
private void collision_accounting_events(PhysicsActor p1, PhysicsActor p2, float collisiondepth)
{
obj1LocalID = 0;
//returncollisions = false;
obj2LocalID = 0;
//ctype = 0;
//cStartStop = 0;
if (!p2.SubscribedEvents() && !p1.SubscribedEvents())
return;
switch ((ActorTypes)p2.PhysicsActorType)
{
case ActorTypes.Agent:
cc2 = (OdeCharacter)p2;
obj1LocalID = cc2.m_localID;
switch ((ActorTypes)p1.PhysicsActorType)
{
case ActorTypes.Agent:
cc1 = (OdeCharacter)p1;
obj2LocalID = cc1.m_localID;
cc1.AddCollisionEvent(cc2.m_localID, collisiondepth);
//ctype = (int)CollisionCategories.Character;
//if (cc1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Prim:
cp1 = (OdePrim)p1;
obj2LocalID = cp1.m_localID;
cp1.AddCollisionEvent(cc2.m_localID, collisiondepth);
//ctype = (int)CollisionCategories.Geom;
//if (cp1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Ground:
case ActorTypes.Unknown:
obj2LocalID = 0;
//ctype = (int)CollisionCategories.Land;
//returncollisions = true;
break;
}
cc2.AddCollisionEvent(obj2LocalID, collisiondepth);
break;
case ActorTypes.Prim:
cp2 = (OdePrim)p2;
obj1LocalID = cp2.m_localID;
switch ((ActorTypes)p1.PhysicsActorType)
{
case ActorTypes.Agent:
cc1 = (OdeCharacter)p1;
obj2LocalID = cc1.m_localID;
cc1.AddCollisionEvent(cp2.m_localID, collisiondepth);
//ctype = (int)CollisionCategories.Character;
//if (cc1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Prim:
cp1 = (OdePrim)p1;
obj2LocalID = cp1.m_localID;
cp1.AddCollisionEvent(cp2.m_localID, collisiondepth);
//ctype = (int)CollisionCategories.Geom;
//if (cp1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Ground:
case ActorTypes.Unknown:
obj2LocalID = 0;
//ctype = (int)CollisionCategories.Land;
//returncollisions = true;
break;
}
cp2.AddCollisionEvent(obj2LocalID, collisiondepth);
break;
}
//if (returncollisions)
//{
//lock (m_storedCollisions)
//{
//cDictKey = obj1LocalID.ToString() + obj2LocalID.ToString() + cStartStop.ToString() + ctype.ToString();
//if (m_storedCollisions.ContainsKey(cDictKey))
//{
//sCollisionData objd = m_storedCollisions[cDictKey];
//objd.NumberOfCollisions += 1;
//objd.lastframe = framecount;
//m_storedCollisions[cDictKey] = objd;
//}
//else
//{
//sCollisionData objd = new sCollisionData();
//objd.ColliderLocalId = obj1LocalID;
//objd.CollidedWithLocalId = obj2LocalID;
//objd.CollisionType = ctype;
//objd.NumberOfCollisions = 1;
//objd.lastframe = framecount;
//objd.StatusIndicator = cStartStop;
//m_storedCollisions.Add(cDictKey, objd);
//}
//}
// }
}
public int TriArrayCallback(IntPtr trimesh, IntPtr refObject, int[] triangleIndex, int triCount)
{
/* String name1 = null;
String name2 = null;
if (!geom_name_map.TryGetValue(trimesh, out name1))
{
name1 = "null";
}
if (!geom_name_map.TryGetValue(refObject, out name2))
{
name2 = "null";
}
m_log.InfoFormat("TriArrayCallback: A collision was detected between {1} and {2}", 0, name1, name2);
*/
return 1;
}
public int TriCallback(IntPtr trimesh, IntPtr refObject, int triangleIndex)
{
String name1 = null;
String name2 = null;
if (!geom_name_map.TryGetValue(trimesh, out name1))
{
name1 = "null";
}
if (!geom_name_map.TryGetValue(refObject, out name2))
{
name2 = "null";
}
// m_log.InfoFormat("TriCallback: A collision was detected between {1} and {2}. Index was {3}", 0, name1, name2, triangleIndex);
d.Vector3 v0 = new d.Vector3();
d.Vector3 v1 = new d.Vector3();
d.Vector3 v2 = new d.Vector3();
d.GeomTriMeshGetTriangle(trimesh, 0, ref v0, ref v1, ref v2);
// m_log.DebugFormat("Triangle {0} is <{1},{2},{3}>, <{4},{5},{6}>, <{7},{8},{9}>", triangleIndex, v0.X, v0.Y, v0.Z, v1.X, v1.Y, v1.Z, v2.X, v2.Y, v2.Z);
return 1;
}
///
/// This is our collision testing routine in ODE
///
///
private void collision_optimized(float timeStep)
{
foreach (OdeCharacter chr in _characters)
{
// Reset the collision values to false
// since we don't know if we're colliding yet
chr.IsColliding = false;
chr.CollidingGround = false;
chr.CollidingObj = false;
// test the avatar's geometry for collision with the space
// This will return near and the space that they are the closest to
// And we'll run this again against the avatar and the space segment
// This will return with a bunch of possible objects in the space segment
// and we'll run it again on all of them.
try
{
d.SpaceCollide2(space, chr.Shell, IntPtr.Zero, nearCallback);
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to space collide");
}
//float terrainheight = GetTerrainHeightAtXY(chr.Position.X, chr.Position.Y);
//if (chr.Position.Z + (chr.Velocity.Z * timeStep) < terrainheight + 10)
//{
//chr.Position.Z = terrainheight + 10.0f;
//forcedZ = true;
//}
}
lock (_activeprims)
{
foreach (OdePrim chr in _activeprims)
{
if (d.BodyIsEnabled(chr.Body) && (!chr.m_disabled))
{
try
{
lock (chr)
{
if (space != (IntPtr)0 && chr.prim_geom != (IntPtr)0 && chr.m_taintremove == false)
d.SpaceCollide2(space, chr.prim_geom, IntPtr.Zero, nearCallback);
else
m_log.Debug("[PHYSICS]: unable to collide test active prim against space. The space was zero, the geom was zero or it was in the process of being removed");
}
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to space collide");
}
}
}
}
}
#endregion
// TODO: unused
// private float GetTerrainHeightAtXY(float x, float y)
// {
// return (float)_origheightmap[(int)y * Constants.RegionSize + (int)x];
// }
public void addCollisionEventReporting(PhysicsActor obj)
{
lock (_collisionEventPrim)
{
if (!_collisionEventPrim.Contains(obj))
_collisionEventPrim.Add(obj);
}
}
public void remCollisionEventReporting(PhysicsActor obj)
{
lock (_collisionEventPrim)
{
if (!_collisionEventPrim.Contains(obj))
_collisionEventPrim.Remove(obj);
}
}
#region Add/Remove Entities
public override PhysicsActor AddAvatar(string avName, PhysicsVector position, PhysicsVector size)
{
PhysicsVector pos = new PhysicsVector();
pos.X = position.X;
pos.Y = position.Y;
pos.Z = position.Z;
OdeCharacter newAv = new OdeCharacter(avName, this, pos, ode, size);
_characters.Add(newAv);
return newAv;
}
public override void RemoveAvatar(PhysicsActor actor)
{
lock (OdeLock)
{
//m_log.Debug("[PHYSICS]:ODELOCK");
((OdeCharacter) actor).Destroy();
_characters.Remove((OdeCharacter) actor);
}
}
private PhysicsActor AddPrim(String name, PhysicsVector position, PhysicsVector size, Quaternion rotation,
IMesh mesh, PrimitiveBaseShape pbs, bool isphysical)
{
PhysicsVector pos = new PhysicsVector();
pos.X = position.X;
pos.Y = position.Y;
pos.Z = position.Z;
PhysicsVector siz = new PhysicsVector();
siz.X = size.X;
siz.Y = size.Y;
siz.Z = size.Z;
Quaternion rot = new Quaternion();
rot.w = rotation.w;
rot.x = rotation.x;
rot.y = rotation.y;
rot.z = rotation.z;
OdePrim newPrim;
lock (OdeLock)
{
newPrim = new OdePrim(name, this, pos, siz, rot, mesh, pbs, isphysical, ode);
_prims.Add(newPrim);
}
return newPrim;
}
public void addActivePrim(OdePrim activatePrim)
{
// adds active prim.. (ones that should be iterated over in collisions_optimized
_activeprims.Add(activatePrim);
}
public override PhysicsActor AddPrimShape(string primName, PrimitiveBaseShape pbs, PhysicsVector position,
PhysicsVector size, Quaternion rotation) //To be removed
{
return AddPrimShape(primName, pbs, position, size, rotation, false);
}
public override PhysicsActor AddPrimShape(string primName, PrimitiveBaseShape pbs, PhysicsVector position,
PhysicsVector size, Quaternion rotation, bool isPhysical)
{
PhysicsActor result;
IMesh mesh = null;
switch (pbs.ProfileShape)
{
case ProfileShape.Square:
/// support simple box & hollow box now; later, more shapes
if (needsMeshing(pbs))
{
mesh = mesher.CreateMesh(primName, pbs, size);
}
break;
}
result = AddPrim(primName, position, size, rotation, mesh, pbs, isPhysical);
return result;
}
public void remActivePrim(OdePrim deactivatePrim)
{
lock (_activeprims)
{
_activeprims.Remove(deactivatePrim);
}
}
public override void RemovePrim(PhysicsActor prim)
{
if (prim is OdePrim)
{
lock (OdeLock)
{
OdePrim p = (OdePrim) prim;
p.setPrimForRemoval();
AddPhysicsActorTaint(prim);
//RemovePrimThreadLocked(p);
}
}
}
///
/// This is called from within simulate but outside the locked portion
/// We need to do our own locking here
/// Essentially, we need to remove the prim from our space segment, whatever segment it's in.
///
/// If there are no more prim in the segment, we need to empty (spacedestroy)the segment and reclaim memory
/// that the space was using.
///
///
public void RemovePrimThreadLocked(OdePrim prim)
{
lock (prim)
{
remCollisionEventReporting(prim);
lock (ode)
{
if (prim.prim_geom != (IntPtr)0)
{
prim.ResetTaints();
if (prim.IsPhysical)
{
prim.disableBody();
}
// we don't want to remove the main space
// If the geometry is in the targetspace, remove it from the target space
//m_log.Warn(prim.m_targetSpace);
//if (prim.m_targetSpace != (IntPtr)0)
//{
//if (d.SpaceQuery(prim.m_targetSpace, prim.prim_geom))
//{
//if (d.GeomIsSpace(prim.m_targetSpace))
//{
//waitForSpaceUnlock(prim.m_targetSpace);
//d.SpaceRemove(prim.m_targetSpace, prim.prim_geom);
prim.m_targetSpace = (IntPtr)0;
//}
//else
//{
// m_log.Info("[Physics]: Invalid Scene passed to 'removeprim from scene':" +
//((OdePrim)prim).m_targetSpace.ToString());
//}
//}
//}
//m_log.Warn(prim.prim_geom);
try
{
if (prim.prim_geom != (IntPtr)0)
{
d.GeomDestroy(prim.prim_geom);
prim.prim_geom = (IntPtr)0;
}
else
{
m_log.Warn("[PHYSICS]: Unable to remove prim from physics scene");
}
}
catch (AccessViolationException)
{
m_log.Info("[PHYSICS]: Couldn't remove prim from physics scene, it was already be removed.");
}
_prims.Remove(prim);
//If there are no more geometries in the sub-space, we don't need it in the main space anymore
//if (d.SpaceGetNumGeoms(prim.m_targetSpace) == 0)
//{
//if (!(prim.m_targetSpace.Equals(null)))
//{
//if (d.GeomIsSpace(prim.m_targetSpace))
//{
//waitForSpaceUnlock(prim.m_targetSpace);
//d.SpaceRemove(space, prim.m_targetSpace);
// free up memory used by the space.
//d.SpaceDestroy(prim.m_targetSpace);
//int[] xyspace = calculateSpaceArrayItemFromPos(prim.Position);
//resetSpaceArrayItemToZero(xyspace[0], xyspace[1]);
//}
//else
//{
//m_log.Info("[Physics]: Invalid Scene passed to 'removeprim from scene':" +
//((OdePrim) prim).m_targetSpace.ToString());
//}
//}
//}
}
}
}
}
#endregion
#region Space Separation Calculation
///
/// Takes a space pointer and zeros out the array we're using to hold the spaces
///
///
public void resetSpaceArrayItemToZero(IntPtr space)
{
for (int x = 0; x < staticPrimspace.GetLength(0); x++)
{
for (int y = 0; y < staticPrimspace.GetLength(1); y++)
{
if (staticPrimspace[x, y] == space)
staticPrimspace[x, y] = IntPtr.Zero;
}
}
}
public void resetSpaceArrayItemToZero(int arrayitemX, int arrayitemY)
{
staticPrimspace[arrayitemX, arrayitemY] = IntPtr.Zero;
}
///
/// Called when a static prim moves. Allocates a space for the prim based on it's position
///
/// the pointer to the geom that moved
/// the position that the geom moved to
/// a pointer to the space it was in before it was moved.
/// a pointer to the new space it's in
public IntPtr recalculateSpaceForGeom(IntPtr geom, PhysicsVector pos, IntPtr currentspace)
{
// Called from setting the Position and Size of an ODEPrim so
// it's already in locked space.
// we don't want to remove the main space
// we don't need to test physical here because this function should
// never be called if the prim is physical(active)
// All physical prim end up in the root space
Thread.Sleep(20);
if (currentspace != space)
{
//m_log.Info("[SPACE]: C:" + currentspace.ToString() + " g:" + geom.ToString());
//if (currentspace == (IntPtr) 0)
//{
//int adfadf = 0;
//}
if (d.SpaceQuery(currentspace, geom) && currentspace != (IntPtr) 0)
{
if (d.GeomIsSpace(currentspace))
{
waitForSpaceUnlock(currentspace);
d.SpaceRemove(currentspace, geom);
}
else
{
m_log.Info("[Physics]: Invalid Scene passed to 'recalculatespace':" + currentspace.ToString() +
" Geom:" + geom.ToString());
}
}
else
{
IntPtr sGeomIsIn = d.GeomGetSpace(geom);
if (!(sGeomIsIn.Equals(null)))
{
if (sGeomIsIn != (IntPtr) 0)
{
if (d.GeomIsSpace(currentspace))
{
waitForSpaceUnlock(sGeomIsIn);
d.SpaceRemove(sGeomIsIn, geom);
}
else
{
m_log.Info("[Physics]: Invalid Scene passed to 'recalculatespace':" +
sGeomIsIn.ToString() + " Geom:" + geom.ToString());
}
}
}
}
//If there are no more geometries in the sub-space, we don't need it in the main space anymore
if (d.SpaceGetNumGeoms(currentspace) == 0)
{
if (currentspace != (IntPtr) 0)
{
if (d.GeomIsSpace(currentspace))
{
waitForSpaceUnlock(currentspace);
waitForSpaceUnlock(space);
d.SpaceRemove(space, currentspace);
// free up memory used by the space.
//d.SpaceDestroy(currentspace);
resetSpaceArrayItemToZero(currentspace);
}
else
{
m_log.Info("[Physics]: Invalid Scene passed to 'recalculatespace':" +
currentspace.ToString() + " Geom:" + geom.ToString());
}
}
}
}
else
{
// this is a physical object that got disabled. ;.;
if (currentspace != (IntPtr)0 && geom != (IntPtr)0)
{
if (d.SpaceQuery(currentspace, geom))
{
if (d.GeomIsSpace(currentspace))
{
waitForSpaceUnlock(currentspace);
d.SpaceRemove(currentspace, geom);
}
else
{
m_log.Info("[Physics]: Invalid Scene passed to 'recalculatespace':" +
currentspace.ToString() + " Geom:" + geom.ToString());
}
}
else
{
IntPtr sGeomIsIn = d.GeomGetSpace(geom);
if (!(sGeomIsIn.Equals(null)))
{
if (sGeomIsIn != (IntPtr)0)
{
if (d.GeomIsSpace(sGeomIsIn))
{
waitForSpaceUnlock(sGeomIsIn);
d.SpaceRemove(sGeomIsIn, geom);
}
else
{
m_log.Info("[Physics]: Invalid Scene passed to 'recalculatespace':" +
sGeomIsIn.ToString() + " Geom:" + geom.ToString());
}
}
}
}
}
}
// The routines in the Position and Size sections do the 'inserting' into the space,
// so all we have to do is make sure that the space that we're putting the prim into
// is in the 'main' space.
int[] iprimspaceArrItem = calculateSpaceArrayItemFromPos(pos);
IntPtr newspace = calculateSpaceForGeom(pos);
if (newspace == IntPtr.Zero)
{
newspace = createprimspace(iprimspaceArrItem[0], iprimspaceArrItem[1]);
d.HashSpaceSetLevels(newspace, -4, 66);
}
return newspace;
}
///
/// Creates a new space at X Y
///
///
///
/// A pointer to the created space
public IntPtr createprimspace(int iprimspaceArrItemX, int iprimspaceArrItemY)
{
// creating a new space for prim and inserting it into main space.
staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY] = d.HashSpaceCreate(IntPtr.Zero);
d.GeomSetCategoryBits(staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY], (int)CollisionCategories.Space);
waitForSpaceUnlock(space);
d.SpaceAdd(space, staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY]);
return staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY];
}
///
/// Calculates the space the prim should be in by it's position
///
///
/// a pointer to the space. This could be a new space or reused space.
public IntPtr calculateSpaceForGeom(PhysicsVector pos)
{
IntPtr locationbasedspace =IntPtr.Zero;
int[] xyspace = calculateSpaceArrayItemFromPos(pos);
//m_log.Info("[Physics]: Attempting to use arrayItem: " + xyspace[0].ToString() + "," + xyspace[1].ToString());
locationbasedspace = staticPrimspace[xyspace[0], xyspace[1]];
//locationbasedspace = space;
return locationbasedspace;
}
///
/// Holds the space allocation logic
///
///
/// an array item based on the position
public int[] calculateSpaceArrayItemFromPos(PhysicsVector pos)
{
int[] returnint = new int[2];
returnint[0] = (int) (pos.X/metersInSpace);
if (returnint[0] > ((int) (259f/metersInSpace)))
returnint[0] = ((int) (259f/metersInSpace));
if (returnint[0] < 0)
returnint[0] = 0;
returnint[1] = (int) (pos.Y/metersInSpace);
if (returnint[1] > ((int) (259f/metersInSpace)))
returnint[1] = ((int) (259f/metersInSpace));
if (returnint[1] < 0)
returnint[1] = 0;
return returnint;
}
#endregion
///
/// Routine to figure out if we need to mesh this prim with our mesher
///
///
///
public bool needsMeshing(PrimitiveBaseShape pbs)
{
if (pbs.ProfileHollow != 0)
return true;
if (((Int16)pbs.PathTwistBegin != 0) || ((Int16)pbs.PathTwist != 0))
return true;
if ((pbs.ProfileBegin != 0) || pbs.ProfileEnd != 0)
return true;
if ((pbs.PathScaleX != 100) || (pbs.PathScaleY != 100))
return true;
if ((pbs.PathShearX != 0) || (pbs.PathShearY != 0))
return true;
if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
return true;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1 && (pbs.Scale.X != pbs.Scale.Y || pbs.Scale.Y != pbs.Scale.Z || pbs.Scale.Z != pbs.Scale.X))
return true;
if (pbs.ProfileShape == ProfileShape.EquilateralTriangle)
return true;
return false;
}
///
/// Called after our prim properties are set Scale, position etc.
/// We use this event queue like method to keep changes to the physical scene occuring in the threadlocked mutex
/// This assures us that we have no race conditions
///
///
public override void AddPhysicsActorTaint(PhysicsActor prim)
{
if (prim is OdePrim)
{
OdePrim taintedprim = ((OdePrim) prim);
lock (_taintedPrim)
{
if (!(_taintedPrim.Contains(taintedprim)))
_taintedPrim.Add(taintedprim);
}
}
}
///
/// This is our main simulate loop
/// It's thread locked by a Mutex in the scene.
/// It holds Collisions, it instructs ODE to step through the physical reactions
/// It moves the objects around in memory
/// It calls the methods that report back to the object owners.. (scenepresence, SceneObjectGroup)
///
///
///
public override float Simulate(float timeStep)
{
if (framecount >= int.MaxValue)
framecount = 0;
framecount++;
float fps = 0;
//m_log.Info(timeStep.ToString());
step_time += timeStep;
// If We're loaded down by something else,
// or debugging with the Visual Studio project on pause
// skip a few frames to catch up gracefully.
// without shooting the physicsactors all over the place
if (step_time >= m_SkipFramesAtms)
{
// Instead of trying to catch up, it'll do 5 physics frames only
step_time = ODE_STEPSIZE;
m_physicsiterations = 5;
}
else
{
m_physicsiterations = 10;
}
lock (OdeLock)
{
// Process 10 frames if the sim is running normal..
// process 5 frames if the sim is running slow
//try
//{
//d.WorldSetQuickStepNumIterations(world, m_physicsiterations);
//}
//catch (StackOverflowException)
//{
// m_log.Error("[PHYSICS]: The operating system wasn't able to allocate enough memory for the simulation. Restarting the sim.");
// ode.drelease(world);
//base.TriggerPhysicsBasedRestart();
//}
int i = 0;
// Figure out the Frames Per Second we're going at.
//(step_time == 0.004f, there's 250 of those per second. Times the step time/step size
step_time = 0.09375f;
fps = (step_time/ODE_STEPSIZE) * 1000;
while (step_time > 0.0f)
{
//lock (ode)
//{
//if (!ode.lockquery())
//{
// ode.dlock(world);
try
{
lock (_characters)
{
foreach (OdeCharacter actor in _characters)
{
if (actor != null)
actor.Move(timeStep);
}
}
bool processedtaints = false;
lock (_taintedPrim)
{
foreach (OdePrim prim in _taintedPrim)
{
if (prim.m_taintremove)
{
RemovePrimThreadLocked(prim);
}
else
{
prim.ProcessTaints(timeStep);
}
processedtaints = true;
prim.m_collisionscore = 0;
}
if (processedtaints)
_taintedPrim = new List();
}
lock (_activeprims)
{
foreach (OdePrim prim in _activeprims)
{
prim.m_collisionscore = 0;
prim.Move(timeStep);
}
}
//if ((framecount % m_randomizeWater) == 0)
// randomizeWater(waterlevel);
collision_optimized(timeStep);
lock (_collisionEventPrim)
{
foreach (PhysicsActor obj in _collisionEventPrim)
{
if (obj == null)
continue;
switch ((ActorTypes)obj.PhysicsActorType)
{
case ActorTypes.Agent:
OdeCharacter cobj = (OdeCharacter)obj;
cobj.SendCollisions();
break;
case ActorTypes.Prim:
OdePrim pobj = (OdePrim)obj;
pobj.SendCollisions();
break;
}
}
}
d.WorldQuickStep(world, ODE_STEPSIZE);
d.JointGroupEmpty(contactgroup);
//ode.dunlock(world);
}
catch (Exception e)
{
m_log.Error("[PHYSICS]: " + e.Message.ToString() + e.TargetSite.ToString());
ode.dunlock(world);
}
step_time -= ODE_STEPSIZE;
i++;
//}
//else
//{
//fps = 0;
//}
//}
}
lock (_characters)
{
foreach (OdeCharacter actor in _characters)
{
if (actor != null)
actor.UpdatePositionAndVelocity();
}
}
lock (_activeprims)
{
if (timeStep < 0.2f)
{
foreach (OdePrim actor in _activeprims)
{
if (actor.IsPhysical && (d.BodyIsEnabled(actor.Body) || !actor._zeroFlag))
{
actor.UpdatePositionAndVelocity();
}
}
}
}
}
return fps;
}
public override void GetResults()
{
}
public override bool IsThreaded
{
// for now we won't be multithreaded
get { return (false); }
}
#region ODE Specific Terrain Fixes
public float[] ResizeTerrain512NearestNeighbour(float[] heightMap)
{
float[] returnarr = new float[262144];
float[,] resultarr = new float[m_regionWidth, m_regionHeight];
// Filling out the array into it's multi-dimentional components
for (int y = 0; y < m_regionHeight; y++)
{
for (int x = 0; x < m_regionWidth; x++)
{
resultarr[y, x] = heightMap[y * m_regionWidth + x];
}
}
// Resize using Nearest Neighbour
// This particular way is quick but it only works on a multiple of the original
// The idea behind this method can be described with the following diagrams
// second pass and third pass happen in the same loop really.. just separated
// them to show what this does.
// First Pass
// ResultArr:
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// Second Pass
// ResultArr2:
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// Third pass fills in the blanks
// ResultArr2:
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// X,Y = .
// X+1,y = ^
// X,Y+1 = *
// X+1,Y+1 = #
// Filling in like this;
// .*
// ^#
// 1st .
// 2nd *
// 3rd ^
// 4th #
// on single loop.
float[,] resultarr2 = new float[512, 512];
for (int y = 0; y < m_regionHeight; y++)
{
for (int x = 0; x < m_regionWidth; x++)
{
resultarr2[y * 2, x * 2] = resultarr[y, x];
if (y < m_regionHeight)
{
resultarr2[(y * 2) + 1, x * 2] = resultarr[y, x];
}
if (x < m_regionWidth)
{
resultarr2[y * 2, (x * 2) + 1] = resultarr[y, x];
}
if (x < m_regionWidth && y < m_regionHeight)
{
resultarr2[(y * 2) + 1, (x * 2) + 1] = resultarr[y, x];
}
}
}
//Flatten out the array
int i = 0;
for (int y = 0; y < 512; y++)
{
for (int x = 0; x < 512; x++)
{
if (resultarr2[y, x] <= 0)
returnarr[i] = 0.0000001f;
else
returnarr[i] = resultarr2[y, x];
i++;
}
}
return returnarr;
}
public float[] ResizeTerrain512Interpolation(float[] heightMap)
{
float[] returnarr = new float[262144];
float[,] resultarr = new float[m_regionWidth,m_regionHeight];
// Filling out the array into it's multi-dimentional components
for (int y = 0; y < m_regionHeight; y++)
{
for (int x = 0; x < m_regionWidth; x++)
{
resultarr[y, x] = heightMap[y*m_regionWidth + x];
}
}
// Resize using interpolation
// This particular way is quick but it only works on a multiple of the original
// The idea behind this method can be described with the following diagrams
// second pass and third pass happen in the same loop really.. just separated
// them to show what this does.
// First Pass
// ResultArr:
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// Second Pass
// ResultArr2:
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// Third pass fills in the blanks
// ResultArr2:
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// X,Y = .
// X+1,y = ^
// X,Y+1 = *
// X+1,Y+1 = #
// Filling in like this;
// .*
// ^#
// 1st .
// 2nd *
// 3rd ^
// 4th #
// on single loop.
float[,] resultarr2 = new float[512,512];
for (int y = 0; y < m_regionHeight; y++)
{
for (int x = 0; x < m_regionWidth; x++)
{
resultarr2[y*2, x*2] = resultarr[y, x];
if (y < m_regionHeight)
{
if (y + 1 < m_regionHeight)
{
if (x + 1 < m_regionWidth)
{
resultarr2[(y*2) + 1, x*2] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[(y*2) + 1, x*2] = ((resultarr[y, x] + resultarr[y + 1, x])/2);
}
}
else
{
resultarr2[(y*2) + 1, x*2] = resultarr[y, x];
}
}
if (x < m_regionWidth)
{
if (x + 1 < m_regionWidth)
{
if (y + 1 < m_regionHeight)
{
resultarr2[y*2, (x*2) + 1] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[y*2, (x*2) + 1] = ((resultarr[y, x] + resultarr[y, x + 1])/2);
}
}
else
{
resultarr2[y*2, (x*2) + 1] = resultarr[y, x];
}
}
if (x < m_regionWidth && y < m_regionHeight)
{
if ((x + 1 < m_regionWidth) && (y + 1 < m_regionHeight))
{
resultarr2[(y*2) + 1, (x*2) + 1] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[(y*2) + 1, (x*2) + 1] = resultarr[y, x];
}
}
}
}
//Flatten out the array
int i = 0;
for (int y = 0; y < 512; y++)
{
for (int x = 0; x < 512; x++)
{
if (resultarr2[y, x] <= 0)
returnarr[i] = 0.0000001f;
else
returnarr[i] = resultarr2[y, x];
i++;
}
}
return returnarr;
}
#endregion
public override void SetTerrain(float[] heightMap)
{
// this._heightmap[i] = (double)heightMap[i];
// dbm (danx0r) -- creating a buffer zone of one extra sample all around
_origheightmap = heightMap;
const uint heightmapWidth = m_regionWidth + 2;
const uint heightmapHeight = m_regionHeight + 2;
const uint heightmapWidthSamples = 2*m_regionWidth + 2;
const uint heightmapHeightSamples = 2*m_regionHeight + 2;
const float scale = 1.0f;
const float offset = 0.0f;
const float thickness = 0.2f;
const int wrap = 0;
//Double resolution
heightMap = ResizeTerrain512Interpolation(heightMap);
for (int x = 0; x < heightmapWidthSamples; x++)
{
for (int y = 0; y < heightmapHeightSamples; y++)
{
int xx = Util.Clip(x - 1, 0, 511);
int yy = Util.Clip(y - 1, 0, 511);
float val = heightMap[yy*512 + xx];
_heightmap[x*heightmapHeightSamples + y] = val;
}
}
lock (OdeLock)
{
if (!(LandGeom == (IntPtr) 0))
{
d.SpaceRemove(space, LandGeom);
}
IntPtr HeightmapData = d.GeomHeightfieldDataCreate();
d.GeomHeightfieldDataBuildSingle(HeightmapData, _heightmap, 0, heightmapWidth, heightmapHeight,
(int) heightmapWidthSamples, (int) heightmapHeightSamples, scale,
offset, thickness, wrap);
d.GeomHeightfieldDataSetBounds(HeightmapData, m_regionWidth, m_regionHeight);
LandGeom = d.CreateHeightfield(space, HeightmapData, 1);
if (LandGeom != (IntPtr)0)
{
d.GeomSetCategoryBits(LandGeom, (int)(CollisionCategories.Land));
d.GeomSetCollideBits(LandGeom, (int)(CollisionCategories.Space));
}
geom_name_map[LandGeom] = "Terrain";
d.Matrix3 R = new d.Matrix3();
Quaternion q1 = Quaternion.FromAngleAxis(1.5707f, new Vector3(1, 0, 0));
Quaternion q2 = Quaternion.FromAngleAxis(1.5707f, new Vector3(0, 1, 0));
//Axiom.Math.Quaternion q3 = Axiom.Math.Quaternion.FromAngleAxis(3.14f, new Axiom.Math.Vector3(0, 0, 1));
q1 = q1*q2;
//q1 = q1 * q3;
Vector3 v3 = new Vector3();
float angle = 0;
q1.ToAngleAxis(ref angle, ref v3);
d.RFromAxisAndAngle(out R, v3.x, v3.y, v3.z, angle);
d.GeomSetRotation(LandGeom, ref R);
d.GeomSetPosition(LandGeom, 128, 128, 0);
}
}
public override void DeleteTerrain()
{
}
public override void SetWaterLevel(float baseheight)
{
waterlevel = baseheight;
randomizeWater(waterlevel);
}
public void randomizeWater(float baseheight)
{
const uint heightmapWidth = m_regionWidth + 2;
const uint heightmapHeight = m_regionHeight + 2;
const uint heightmapWidthSamples = m_regionWidth + 2;
const uint heightmapHeightSamples = m_regionHeight + 2;
const float scale = 1.0f;
const float offset = 0.0f;
const float thickness = 2.9f;
const int wrap = 0;
for (int i = 0; i < (258 * 258); i++)
{
_watermap[i] = (baseheight-0.1f) + ((float)fluidRandomizer.Next(1,9) / 10f);
// m_log.Info((baseheight - 0.1f) + ((float)fluidRandomizer.Next(1, 9) / 10f));
}
lock (OdeLock)
{
if (!(WaterGeom == (IntPtr)0))
{
d.SpaceRemove(space, WaterGeom);
}
IntPtr HeightmapData = d.GeomHeightfieldDataCreate();
d.GeomHeightfieldDataBuildSingle(HeightmapData, _watermap, 0, heightmapWidth, heightmapHeight,
(int)heightmapWidthSamples, (int)heightmapHeightSamples, scale,
offset, thickness, wrap);
d.GeomHeightfieldDataSetBounds(HeightmapData, m_regionWidth, m_regionHeight);
WaterGeom = d.CreateHeightfield(space, HeightmapData, 1);
if (WaterGeom != (IntPtr)0)
{
d.GeomSetCategoryBits(WaterGeom, (int)(CollisionCategories.Water));
d.GeomSetCollideBits(WaterGeom, (int)(CollisionCategories.Space));
}
geom_name_map[WaterGeom] = "Water";
d.Matrix3 R = new d.Matrix3();
Quaternion q1 = Quaternion.FromAngleAxis(1.5707f, new Vector3(1, 0, 0));
Quaternion q2 = Quaternion.FromAngleAxis(1.5707f, new Vector3(0, 1, 0));
//Axiom.Math.Quaternion q3 = Axiom.Math.Quaternion.FromAngleAxis(3.14f, new Axiom.Math.Vector3(0, 0, 1));
q1 = q1 * q2;
//q1 = q1 * q3;
Vector3 v3 = new Vector3();
float angle = 0;
q1.ToAngleAxis(ref angle, ref v3);
d.RFromAxisAndAngle(out R, v3.x, v3.y, v3.z, angle);
d.GeomSetRotation(WaterGeom, ref R);
d.GeomSetPosition(WaterGeom, 128, 128, 0);
}
}
public override void Dispose()
{
lock (OdeLock)
{
foreach (OdePrim prm in _prims)
{
RemovePrim(prm);
}
//foreach (OdeCharacter act in _characters)
//{
//RemoveAvatar(act);
//}
d.WorldDestroy(world);
//d.CloseODE();
}
}
}
}