/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using Axiom.Math;
using log4net;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
///
/// Various properties that ODE uses for AMotors but isn't exposed in ODE.NET so we must define them ourselves.
///
public class OdePrim : PhysicsActor
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
public PhysicsVector _position;
private PhysicsVector _velocity;
private PhysicsVector m_lastVelocity = new PhysicsVector(0.0f, 0.0f, 0.0f);
private PhysicsVector m_lastposition = new PhysicsVector(0.0f, 0.0f, 0.0f);
private PhysicsVector m_rotationalVelocity;
private PhysicsVector _size;
private PhysicsVector _acceleration;
private d.Vector3 _zeroPosition = new d.Vector3(0.0f, 0.0f, 0.0f);
private Quaternion _orientation;
private PhysicsVector m_taintposition;
private PhysicsVector m_taintsize;
private PhysicsVector m_taintVelocity = PhysicsVector.Zero;
private Quaternion m_taintrot;
private PhysicsVector m_angularlock = new PhysicsVector(1f, 1f, 1f);
private PhysicsVector m_taintAngularLock = new PhysicsVector(1f, 1f, 1f);
private IntPtr Amotor = IntPtr.Zero;
private PhysicsVector m_PIDTarget = new PhysicsVector(0, 0, 0);
private float m_PIDTau = 0f;
private float PID_D = 35f;
private float PID_G = 25f;
private float m_tensor = 5f;
private int body_autodisable_frames = 20;
private bool m_usePID = false;
private const CollisionCategories m_default_collisionFlags = (CollisionCategories.Geom
| CollisionCategories.Space
| CollisionCategories.Body
| CollisionCategories.Character
);
private bool m_taintshape = false;
private bool m_taintPhysics = false;
private bool m_collidesLand = true;
private bool m_collidesWater = false;
public bool m_returnCollisions = false;
// Default we're a Geometry
private CollisionCategories m_collisionCategories = (CollisionCategories.Geom);
// Default, Collide with Other Geometries, spaces and Bodies
private CollisionCategories m_collisionFlags = m_default_collisionFlags;
public bool m_taintremove = false;
public bool m_taintdisable = false;
public bool m_disabled = false;
public bool m_taintadd = false;
public bool m_taintselected = false;
public bool m_taintCollidesWater = false;
public uint m_localID = 0;
//public GCHandle gc;
private CollisionLocker ode;
private bool m_taintforce = false;
private List m_forcelist = new List();
private IMesh _mesh;
private PrimitiveBaseShape _pbs;
private OdeScene _parent_scene;
public IntPtr m_targetSpace = (IntPtr) 0;
public IntPtr prim_geom;
public IntPtr prev_geom;
public IntPtr _triMeshData;
private IntPtr _linkJointGroup = (IntPtr)0;
private PhysicsActor _parent = null;
private PhysicsActor m_taintparent = null;
private bool iscolliding = false;
private bool m_isphysical = false;
private bool m_isSelected = false;
private bool m_throttleUpdates = false;
private int throttleCounter = 0;
public int m_interpenetrationcount = 0;
public int m_collisionscore = 0;
public int m_roundsUnderMotionThreshold = 0;
private int m_crossingfailures = 0;
public float m_buoyancy = 0f;
public bool outofBounds = false;
private float m_density = 10.000006836f; // Aluminum g/cm3;
public bool _zeroFlag = false;
private bool m_lastUpdateSent = false;
public IntPtr Body = (IntPtr) 0;
private String m_primName;
private PhysicsVector _target_velocity;
public d.Mass pMass;
public int m_eventsubscription = 0;
private CollisionEventUpdate CollisionEventsThisFrame = null;
private IntPtr m_linkJoint = (IntPtr)0;
public OdePrim(String primName, OdeScene parent_scene, PhysicsVector pos, PhysicsVector size,
Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode)
{
_target_velocity = new PhysicsVector(0, 0, 0);
//gc = GCHandle.Alloc(prim_geom, GCHandleType.Pinned);
ode = dode;
_velocity = new PhysicsVector();
_position = pos;
m_taintposition = pos;
PID_D = parent_scene.bodyPIDD;
PID_G = parent_scene.bodyPIDG;
m_density = parent_scene.geomDefaultDensity;
m_tensor = parent_scene.bodyMotorJointMaxforceTensor;
body_autodisable_frames = parent_scene.bodyFramesAutoDisable;
//if (_position.X > 257)
//{
//_position.X = 257;
//}
//if (_position.X < 0)
//{
//_position.X = 0;
//}
//if (_position.Y > 257)
//{
//_position.Y = 257;
//}
//if (_position.Y < 0)
//{
// _position.Y = 0;
//}
prim_geom = (IntPtr)0;
prev_geom = (IntPtr)0;
if (size.X <= 0) size.X = 0.01f;
if (size.Y <= 0) size.Y = 0.01f;
if (size.Z <= 0) size.Z = 0.01f;
_size = size;
m_taintsize = _size;
_acceleration = new PhysicsVector();
m_rotationalVelocity = PhysicsVector.Zero;
_orientation = rotation;
m_taintrot = _orientation;
_mesh = mesh;
_pbs = pbs;
_parent_scene = parent_scene;
m_targetSpace = (IntPtr)0;
if (pos.Z < 0)
m_isphysical = false;
else
{
m_isphysical = pisPhysical;
// If we're physical, we need to be in the master space for now.
// linksets *should* be in a space together.. but are not currently
if (m_isphysical)
m_targetSpace = _parent_scene.space;
}
m_primName = primName;
m_taintadd = true;
_parent_scene.AddPhysicsActorTaint(this);
// don't do .add() here; old geoms get recycled with the same hash
}
public override int PhysicsActorType
{
get { return (int) ActorTypes.Prim; }
set { return; }
}
public override bool SetAlwaysRun
{
get { return false; }
set { return; }
}
public override uint LocalID
{
set {
//m_log.Info("[PHYSICS]: Setting TrackerID: " + value);
m_localID = value; }
}
public override bool Grabbed
{
set { return; }
}
public override bool Selected
{
set {
// This only makes the object not collidable if the object
// is physical or the object is modified somehow *IN THE FUTURE*
// without this, if an avatar selects prim, they can walk right
// through it while it's selected
if ((m_isphysical && !_zeroFlag) || !value)
{
m_taintselected = value;
_parent_scene.AddPhysicsActorTaint(this);
}
else
{
m_taintselected = value;
m_isSelected = value;
}
}
}
public void SetGeom(IntPtr geom)
{
prev_geom = prim_geom;
prim_geom = geom;
if (prim_geom != (IntPtr)0)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
//m_log.Warn("Setting Geom to: " + prim_geom);
}
public void enableBodySoft()
{
if (m_isphysical)
if (Body != (IntPtr)0)
d.BodyEnable(Body);
m_disabled = false;
}
public void disableBodySoft()
{
m_disabled = true;
if (m_isphysical)
if (Body != (IntPtr)0)
d.BodyDisable(Body);
}
public void enableBody()
{
// Sets the geom to a body
Body = d.BodyCreate(_parent_scene.world);
setMass();
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.BodySetQuaternion(Body, ref myrot);
d.GeomSetBody(prim_geom, Body);
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
m_interpenetrationcount = 0;
m_collisionscore = 0;
m_disabled = false;
// The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.IsIdentical(PhysicsVector.Zero, 0)) && _parent == null)
{
createAMotor(m_angularlock);
}
_parent_scene.addActivePrim(this);
}
#region Mass Calculation
private float CalculateMass()
{
float volume = 0;
// No material is passed to the physics engines yet.. soo..
// we're using the m_density constant in the class definition
float returnMass = 0;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// Profile Volume
volume = _size.X*_size.Y*_size.Z;
// If the user has 'hollowed out'
// ProfileHollow is one of those 0 to 50000 values :P
// we like percentages better.. so turning into a percentage
if (((float) _pbs.ProfileHollow/50000f) > 0.0)
{
float hollowAmount = (float) _pbs.ProfileHollow/50000f;
// calculate the hollow volume by it's shape compared to the prim shape
float hollowVolume = 0;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
// Cube Hollow volume calculation
float hollowsizex = _size.X*hollowAmount;
float hollowsizey = _size.Y*hollowAmount;
float hollowsizez = _size.Z*hollowAmount;
hollowVolume = hollowsizex*hollowsizey*hollowsizez;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
float hRadius = _size.X/2;
float hLength = _size.Z;
// pi * r2 * h
hollowVolume = ((float) (Math.PI*Math.Pow(hRadius, 2)*hLength)*hollowAmount);
break;
case HollowShape.Triangle:
// Equilateral Triangular Prism volume hollow calculation
// Triangle is an Equilateral Triangular Prism with aLength = to _size.Y
float aLength = _size.Y;
// 1/2 abh
hollowVolume = (float) ((0.5*aLength*_size.X*_size.Z)*hollowAmount);
break;
default:
hollowVolume = 0;
break;
}
volume = volume - hollowVolume;
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
// Cylinder
float volume1 = (float)(Math.PI * Math.Pow(_size.X/2, 2) * _size.Z);
float volume2 = (float)(Math.PI * Math.Pow(_size.Y/2, 2) * _size.Z);
// Approximating the cylinder's irregularity.
if (volume1 > volume2)
{
volume = (float)volume1 - (volume1 - volume2);
}
else if (volume2 > volume1)
{
volume = (float)volume2 - (volume2 - volume1);
}
else
{
// Regular cylinder
volume = volume1;
}
}
else
{
// We don't know what the shape is yet, so use default
volume = _size.X * _size.Y * _size.Z;
}
// If the user has 'hollowed out'
// ProfileHollow is one of those 0 to 50000 values :P
// we like percentages better.. so turning into a percentage
if (((float)_pbs.ProfileHollow / 50000f) > 0.0)
{
float hollowAmount = (float)_pbs.ProfileHollow / 50000f;
// calculate the hollow volume by it's shape compared to the prim shape
float hollowVolume = 0;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
float hRadius = _size.X / 2;
float hLength = _size.Z;
// pi * r2 * h
hollowVolume = ((float)(Math.PI * Math.Pow(hRadius, 2) * hLength) * hollowAmount);
break;
case HollowShape.Square:
// Cube Hollow volume calculation
float hollowsizex = _size.X * hollowAmount;
float hollowsizey = _size.Y * hollowAmount;
float hollowsizez = _size.Z * hollowAmount;
hollowVolume = hollowsizex * hollowsizey * hollowsizez;
break;
case HollowShape.Triangle:
// Equilateral Triangular Prism volume hollow calculation
// Triangle is an Equilateral Triangular Prism with aLength = to _size.Y
float aLength = _size.Y;
// 1/2 abh
hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount);
break;
default:
hollowVolume = 0;
break;
}
volume = volume - hollowVolume;
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Z && _size.Z == _size.X)
{
// regular sphere
// v = 4/3 * pi * r^3
float sradius3 = (float)Math.Pow((_size.X / 2), 3);
volume = (float)((4 / 3) * Math.PI * sradius3);
}
else
{
// we treat this as a box currently
volume = _size.X * _size.Y * _size.Z;
}
}
else
{
// We don't know what the shape is yet, so use default
volume = _size.X * _size.Y * _size.Z;
}
break;
case ProfileShape.EquilateralTriangle:
/*
v = (abs((xB*yA-xA*yB)+(xC*yB-xB*yC)+(xA*yC-xC*yA))/2) * h
// seed mesh
Vertex MM = new Vertex(-0.25f, -0.45f, 0.0f);
Vertex PM = new Vertex(+0.5f, 0f, 0.0f);
Vertex PP = new Vertex(-0.25f, +0.45f, 0.0f);
*/
float xA = -0.25f * _size.X;
float yA = -0.45f * _size.Y;
float xB = 0.5f * _size.X;
float yB = 0;
float xC = -0.25f * _size.X;
float yC = 0.45f * _size.Y;
volume = (float)((Math.Abs((xB * yA - xA * yB) + (xC * yB - xB * yC) + (xA * yC - xC * yA)) / 2) * _size.Z);
// If the user has 'hollowed out'
// ProfileHollow is one of those 0 to 50000 values :P
// we like percentages better.. so turning into a percentage
float fhollowFactor = ((float)_pbs.ProfileHollow / 1.9f);
if (((float)fhollowFactor / 50000f) > 0.0)
{
float hollowAmount = (float)fhollowFactor / 50000f;
// calculate the hollow volume by it's shape compared to the prim shape
float hollowVolume = 0;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
// Equilateral Triangular Prism volume hollow calculation
// Triangle is an Equilateral Triangular Prism with aLength = to _size.Y
float aLength = _size.Y;
// 1/2 abh
hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount);
break;
case HollowShape.Square:
// Cube Hollow volume calculation
float hollowsizex = _size.X * hollowAmount;
float hollowsizey = _size.Y * hollowAmount;
float hollowsizez = _size.Z * hollowAmount;
hollowVolume = hollowsizex * hollowsizey * hollowsizez;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
float hRadius = _size.X / 2;
float hLength = _size.Z;
// pi * r2 * h
hollowVolume = ((float)((Math.PI * Math.Pow(hRadius, 2) * hLength)/2) * hollowAmount);
break;
default:
hollowVolume = 0;
break;
}
volume = volume - hollowVolume;
}
break;
default:
// we don't have all of the volume formulas yet so
// use the common volume formula for all
volume = _size.X*_size.Y*_size.Z;
break;
}
// Calculate Path cut effect on volume
// Not exact, in the triangle hollow example
// They should never be zero or less then zero..
// we'll ignore it if it's less then zero
// ProfileEnd and ProfileBegin are values
// from 0 to 50000
// Turning them back into percentages so that I can cut that percentage off the volume
float PathCutEndAmount = _pbs.ProfileEnd;
float PathCutStartAmount = _pbs.ProfileBegin;
if (((PathCutStartAmount + PathCutEndAmount)/50000f) > 0.0f)
{
float pathCutAmount = ((PathCutStartAmount + PathCutEndAmount)/50000f);
// Check the return amount for sanity
if (pathCutAmount >= 0.99f)
pathCutAmount = 0.99f;
volume = volume - (volume*pathCutAmount);
}
UInt16 taperX = _pbs.PathScaleX;
UInt16 taperY = _pbs.PathScaleY;
float taperFactorX = 0;
float taperFactorY = 0;
// Mass = density * volume
if (taperX != 100)
{
if (taperX > 100)
{
taperFactorX = 1.0f - ((float)taperX / 200);
//m_log.Warn("taperTopFactorX: " + extr.taperTopFactorX.ToString());
}
else
{
taperFactorX = 1.0f - ((100 - (float)taperX) / 100);
//m_log.Warn("taperBotFactorX: " + extr.taperBotFactorX.ToString());
}
volume = (float)volume * ((taperFactorX / 3f) + 0.001f);
}
if (taperY != 100)
{
if (taperY > 100)
{
taperFactorY = 1.0f - ((float)taperY / 200);
//m_log.Warn("taperTopFactorY: " + extr.taperTopFactorY.ToString());
}
else
{
taperFactorY = 1.0f - ((100 - (float)taperY) / 100);
//m_log.Warn("taperBotFactorY: " + extr.taperBotFactorY.ToString());
}
volume = (float)volume * ((taperFactorY / 3f) + 0.001f);
}
returnMass = m_density*volume;
return returnMass;
}
#endregion
public void setMass()
{
if (Body != (IntPtr) 0)
{
float newmass = CalculateMass();
//m_log.Info("[PHYSICS]: New Mass: " + newmass.ToString());
if (newmass <= 0) newmass = 0.0001f;
d.MassSetBoxTotal(out pMass, newmass, _size.X, _size.Y, _size.Z);
d.BodySetMass(Body, ref pMass);
}
}
public void disableBody()
{
//this kills the body so things like 'mesh' can re-create it.
lock (this)
{
if (Body != (IntPtr)0)
{
m_collisionCategories &= ~CollisionCategories.Body;
m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
if (prim_geom != (IntPtr)0)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
_parent_scene.remActivePrim(this);
d.BodyDestroy(Body);
Body = (IntPtr)0;
}
}
m_disabled = true;
m_collisionscore = 0;
}
public void setMesh(OdeScene parent_scene, IMesh mesh)
{
// This sleeper is there to moderate how long it takes between
// setting up the mesh and pre-processing it when we get rapid fire mesh requests on a single object
Thread.Sleep(10);
//Kill Body so that mesh can re-make the geom
if (IsPhysical && Body != (IntPtr) 0)
{
disableBody();
}
float[] vertexList = mesh.getVertexListAsFloatLocked(); // Note, that vertextList is pinned in memory
int[] indexList = mesh.getIndexListAsIntLocked(); // Also pinned, needs release after usage
int VertexCount = vertexList.GetLength(0)/3;
int IndexCount = indexList.GetLength(0);
_triMeshData = d.GeomTriMeshDataCreate();
d.GeomTriMeshDataBuildSimple(_triMeshData, vertexList, 3*sizeof (float), VertexCount, indexList, IndexCount,
3*sizeof (int));
d.GeomTriMeshDataPreprocess(_triMeshData);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
if (prim_geom == (IntPtr)0)
{
SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, parent_scene.triCallback, null, null));
}
}
catch (AccessViolationException)
{
m_log.Error("[PHYSICS]: MESH LOCKED");
return;
}
if (IsPhysical && Body == (IntPtr) 0)
{
// Recreate the body
m_interpenetrationcount = 0;
m_collisionscore = 0;
enableBody();
}
}
public void ProcessTaints(float timestep)
{
if (m_taintadd)
{
changeadd(timestep);
}
if (prim_geom != (IntPtr)0)
{
if (!_position.IsIdentical(m_taintposition,0f))
changemove(timestep);
if (m_taintrot != _orientation)
rotate(timestep);
//
if (m_taintPhysics != m_isphysical)
changePhysicsStatus(timestep);
//
if (!_size.IsIdentical(m_taintsize,0))
changesize(timestep);
//
if (m_taintshape)
changeshape(timestep);
//
if (m_taintforce)
changeAddForce(timestep);
if (m_taintdisable)
changedisable(timestep);
if (m_taintselected != m_isSelected)
changeSelectedStatus(timestep);
if (!m_taintVelocity.IsIdentical(PhysicsVector.Zero,0))
changevelocity(timestep);
if (m_taintparent != _parent)
changelink(timestep);
if (m_taintCollidesWater != m_collidesWater)
changefloatonwater(timestep);
if (!m_angularlock.IsIdentical(m_taintAngularLock,0))
changeAngularLock(timestep);
}
else
{
m_log.Error("[PHYSICS]: The scene reused a disposed PhysActor! *waves finger*, Don't be evil.");
}
}
private void changeAngularLock(float timestep)
{
// do we have a Physical object?
if (Body != IntPtr.Zero)
{
//Check that we have a Parent
//If we have a parent then we're not authorative here
if (_parent == null)
{
if (!m_taintAngularLock.IsIdentical(new PhysicsVector(1f,1f,1f), 0))
{
//d.BodySetFiniteRotationMode(Body, 0);
//d.BodySetFiniteRotationAxis(Body,m_taintAngularLock.X,m_taintAngularLock.Y,m_taintAngularLock.Z);
createAMotor(m_taintAngularLock);
}
else
{
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = (IntPtr)0;
}
}
}
}
// Store this for later in case we get turned into a separate body
m_angularlock = new PhysicsVector(m_taintAngularLock.X,m_angularlock.Y,m_angularlock.Z);
}
private void changelink(float timestep)
{
if (_parent == null && m_taintparent != null)
{
if (m_taintparent.PhysicsActorType == (int)ActorTypes.Prim)
{
OdePrim obj = (OdePrim)m_taintparent;
if (obj.Body != (IntPtr)0 && Body != (IntPtr)0 && obj.Body != Body)
{
_linkJointGroup = d.JointGroupCreate(0);
m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup);
d.JointAttach(m_linkJoint, obj.Body, Body);
d.JointSetFixed(m_linkJoint);
}
}
}
else if (_parent != null && m_taintparent == null)
{
if (Body != (IntPtr)0 && _linkJointGroup != (IntPtr)0)
d.JointGroupDestroy(_linkJointGroup);
_linkJointGroup = (IntPtr)0;
m_linkJoint = (IntPtr)0;
}
_parent = m_taintparent;
}
private void changeSelectedStatus(float timestep)
{
if (m_taintselected)
{
m_collisionCategories = CollisionCategories.Selected;
m_collisionFlags = (CollisionCategories.Sensor | CollisionCategories.Space);
// We do the body disable soft twice because 'in theory' a collision could have happened
// in between the disabling and the collision properties setting
// which would wake the physical body up from a soft disabling and potentially cause it to fall
// through the ground.
if (m_isphysical)
{
disableBodySoft();
}
if (prim_geom != (IntPtr)0)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
if (m_isphysical)
{
disableBodySoft();
}
}
else
{
m_collisionCategories = CollisionCategories.Geom;
if (m_isphysical)
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags = m_default_collisionFlags;
if (m_collidesLand)
m_collisionFlags |= CollisionCategories.Land;
if (m_collidesWater)
m_collisionFlags |= CollisionCategories.Water;
if (prim_geom != (IntPtr)0)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
if (m_isphysical)
{
d.BodySetLinearVel(Body, 0f, 0f, 0f);
enableBodySoft();
}
}
resetCollisionAccounting();
m_isSelected = m_taintselected;
}
public void ResetTaints()
{
m_taintposition = _position;
m_taintrot = _orientation;
m_taintPhysics = m_isphysical;
m_taintselected = m_isSelected;
m_taintsize = _size;
m_taintshape = false;
m_taintforce = false;
m_taintdisable = false;
m_taintVelocity = PhysicsVector.Zero;
}
public void changeadd(float timestep)
{
int[] iprimspaceArrItem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
IntPtr targetspace = _parent_scene.calculateSpaceForGeom(_position);
if (targetspace == IntPtr.Zero)
targetspace = _parent_scene.createprimspace(iprimspaceArrItem[0], iprimspaceArrItem[1]);
m_targetSpace = targetspace;
if (_mesh != null)
{
}
else
{
if (_parent_scene.needsMeshing(_pbs))
{
// Don't need to re-enable body.. it's done in SetMesh
_mesh = _parent_scene.mesher.CreateMesh(m_primName, _pbs, _size, _parent_scene.meshSculptLOD);
// createmesh returns null when it's a shape that isn't a cube.
}
}
lock (OdeScene.OdeLock)
{
if (_mesh != null)
{
setMesh(_parent_scene, _mesh);
}
else
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
if (((_size.X / 2f) > 0f))
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
//else if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
//{
//Cyllinder
//if (_size.X == _size.Y)
//{
//prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z);
//}
//else
//{
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
//}
//}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
if (prim_geom != (IntPtr) 0)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
if (m_isphysical && Body == (IntPtr)0)
{
enableBody();
}
}
_parent_scene.geom_name_map[prim_geom] = this.m_primName;
_parent_scene.actor_name_map[prim_geom] = (PhysicsActor)this;
changeSelectedStatus(timestep);
m_taintadd = false;
}
public void changemove(float timestep)
{
if (m_isphysical)
{
// This is a fallback.. May no longer be necessary.
if (Body == (IntPtr) 0)
enableBody();
//Prim auto disable after 20 frames,
//if you move it, re-enable the prim manually.
if (_parent != null)
{
if (m_linkJoint != (IntPtr)0)
{
d.JointDestroy(m_linkJoint);
m_linkJoint = (IntPtr)0;
}
}
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
if (_parent != null)
{
OdePrim odParent = (OdePrim)_parent;
if (Body != (IntPtr)0 && odParent.Body != (IntPtr)0 && Body != odParent.Body)
{
m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup);
d.JointAttach(m_linkJoint, Body, odParent.Body);
d.JointSetFixed(m_linkJoint);
}
}
d.BodyEnable(Body);
}
else
{
string primScenAvatarIn = _parent_scene.whichspaceamIin(_position);
int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
IntPtr tempspace = _parent_scene.recalculateSpaceForGeom(prim_geom, _position, m_targetSpace);
m_targetSpace = tempspace;
_parent_scene.waitForSpaceUnlock(m_targetSpace);
if (prim_geom != (IntPtr) 0)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
d.SpaceAdd(m_targetSpace, prim_geom);
}
}
changeSelectedStatus(timestep);
resetCollisionAccounting();
m_taintposition = _position;
}
public void Move(float timestep)
{
float fx = 0;
float fy = 0;
float fz = 0;
if (IsPhysical && Body != (IntPtr)0 && !m_isSelected)
{
//float PID_P = 900.0f;
float m_mass = CalculateMass();
fz = 0f;
//m_log.Info(m_collisionFlags.ToString());
if (m_buoyancy != 0)
{
if (m_buoyancy > 0)
{
fz = (((-1 * _parent_scene.gravityz) * m_buoyancy) * m_mass);
//d.Vector3 l_velocity = d.BodyGetLinearVel(Body);
//m_log.Info("Using Buoyancy: " + buoyancy + " G: " + (_parent_scene.gravityz * m_buoyancy) + "mass:" + m_mass + " Pos: " + Position.ToString());
}
else
{
fz = (-1 * (((-1 * _parent_scene.gravityz) * (-1 * m_buoyancy)) * m_mass));
}
}
if (m_usePID)
{
// If we're using the PID controller, then we have no gravity
fz = (-1 * _parent_scene.gravityz) * this.Mass;
// no lock; for now it's only called from within Simulate()
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
if ((m_PIDTau < 1))
{
PID_G = PID_G / m_PIDTau;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
//PidStatus = true;
PhysicsVector vec = new PhysicsVector();
d.Vector3 vel = d.BodyGetLinearVel(Body);
d.Vector3 pos = d.BodyGetPosition(Body);
_target_velocity =
new PhysicsVector(
(m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep)
);
// if velocity is zero, use position control; otherwise, velocity control
if (_target_velocity.IsIdentical(PhysicsVector.Zero,0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
//fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2);
//fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2);
//fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P;
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// We're flying and colliding with something
fx = ((_target_velocity.X) - vel.X) * (PID_D);
fy = ((_target_velocity.Y) - vel.Y) * (PID_D);
// vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P;
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
}
fx *= m_mass;
fy *= m_mass;
//fz *= m_mass;
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
//m_taintdisable = true;
//base.RaiseOutOfBounds(Position);
//d.BodySetLinearVel(Body, fx, fy, 0f);
enableBodySoft();
d.BodyAddForce(Body, fx, fy, fz);
}
}
else
{
_zeroPosition = d.BodyGetPosition(Body);
return;
}
}
public void rotate(float timestep)
{
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
if (m_isphysical && Body != (IntPtr) 0)
{
d.BodySetQuaternion(Body, ref myrot);
if (!m_angularlock.IsIdentical(new PhysicsVector(1, 1, 1), 0))
createAMotor(m_angularlock);
}
resetCollisionAccounting();
m_taintrot = _orientation;
}
private void resetCollisionAccounting()
{
m_collisionscore = 0;
m_interpenetrationcount = 0;
m_disabled = false;
}
public void changedisable(float timestep)
{
m_disabled = true;
if (Body != (IntPtr)0)
{
d.BodyDisable(Body);
Body = (IntPtr)0;
}
m_taintdisable = false;
}
public void changePhysicsStatus(float timestep)
{
if (m_isphysical == true)
{
if (Body == (IntPtr)0)
{
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
changeshape(2f);
}
else
{
enableBody();
}
}
}
else
{
if (Body != (IntPtr)0)
{
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
if (prim_geom != IntPtr.Zero)
d.GeomDestroy(prim_geom);
changeadd(2f);
}
disableBody();
}
}
changeSelectedStatus(timestep);
resetCollisionAccounting();
m_taintPhysics = m_isphysical;
}
public void changesize(float timestamp)
{
//if (!_parent_scene.geom_name_map.ContainsKey(prim_geom))
//{
// m_taintsize = _size;
//return;
//}
string oldname = _parent_scene.geom_name_map[prim_geom];
if (_size.X <= 0) _size.X = 0.01f;
if (_size.Y <= 0) _size.Y = 0.01f;
if (_size.Z <= 0) _size.Z = 0.01f;
// Cleanup of old prim geometry
if (_mesh != null)
{
// Cleanup meshing here
}
//kill body to rebuild
if (IsPhysical && Body != (IntPtr) 0)
{
disableBody();
}
if (d.SpaceQuery(m_targetSpace, prim_geom))
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
d.SpaceRemove(m_targetSpace, prim_geom);
}
d.GeomDestroy(prim_geom);
prim_geom = (IntPtr)0;
// we don't need to do space calculation because the client sends a position update also.
// Construction of new prim
if (_parent_scene.needsMeshing(_pbs))
{
float meshlod = _parent_scene.meshSculptLOD;
if (IsPhysical)
meshlod = _parent_scene.MeshSculptphysicalLOD;
// Don't need to re-enable body.. it's done in SetMesh
IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod);
// createmesh returns null when it's a shape that isn't a cube.
if (mesh != null)
{
setMesh(_parent_scene, mesh);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == (IntPtr)0)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
d.BodyEnable(Body);
}
}
else
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
if (((_size.X / 2f) > 0f) && ((_size.X / 2f) < 1000))
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
else
{
m_log.Info("[PHYSICS]: Failed to load a sphere bad size");
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
//else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight)
//{
//Cyllinder
//if (_size.X == _size.Y)
//{
// prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z);
//}
//else
//{
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
//}
//}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
}
else
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
//else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight)
//{
//Cyllinder
//if (_size.X == _size.Y)
//{
//prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z);
//}
//else
//{
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
//}
//}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == (IntPtr) 0)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
d.BodyEnable(Body);
}
}
_parent_scene.geom_name_map[prim_geom] = oldname;
changeSelectedStatus(timestamp);
resetCollisionAccounting();
m_taintsize = _size;
}
public void changefloatonwater(float timestep)
{
m_collidesWater = m_taintCollidesWater;
if (prim_geom != (IntPtr)0)
{
if (m_collidesWater)
{
m_collisionFlags |= CollisionCategories.Water;
}
else
{
m_collisionFlags &= ~CollisionCategories.Water;
}
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
}
public void changeshape(float timestamp)
{
string oldname = _parent_scene.geom_name_map[prim_geom];
// Cleanup of old prim geometry and Bodies
if (IsPhysical && Body != (IntPtr) 0)
{
disableBody();
}
d.GeomDestroy(prim_geom);
prim_geom = (IntPtr) 0;
// we don't need to do space calculation because the client sends a position update also.
if (_size.X <= 0) _size.X = 0.01f;
if (_size.Y <= 0) _size.Y = 0.01f;
if (_size.Z <= 0) _size.Z = 0.01f;
// Construction of new prim
if (_parent_scene.needsMeshing(_pbs))
{
// Don't need to re-enable body.. it's done in SetMesh
float meshlod = _parent_scene.meshSculptLOD;
if (IsPhysical)
meshlod = _parent_scene.MeshSculptphysicalLOD;
IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod);
// createmesh returns null when it's a shape that isn't a cube.
if (mesh != null)
{
setMesh(_parent_scene, mesh);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == (IntPtr)0)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
}
}
else
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
if (((_size.X / 2f) > 0f) && ((_size.X / 2f) < 1000))
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
else
{
m_log.Info("[PHYSICS]: Failed to load a sphere bad size");
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
//else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight)
//{
//Cyllinder
//if (_size.X == _size.Y)
//{
// prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z);
//}
//else
//{
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
//}
//}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
}
else
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
}
//else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight)
//{
//Cyllinder
//if (_size.X == _size.Y)
//{
//prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z);
//}
//else
//{
//prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z);
//}
//}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.W = _orientation.w;
myrot.X = _orientation.x;
myrot.Y = _orientation.y;
myrot.Z = _orientation.z;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == (IntPtr)0)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
d.BodyEnable(Body);
}
}
_parent_scene.geom_name_map[prim_geom] = oldname;
changeSelectedStatus(timestamp);
resetCollisionAccounting();
m_taintshape = false;
}
public void changeAddForce(float timestamp)
{
if (!m_isSelected)
{
lock (m_forcelist)
{
//m_log.Info("[PHYSICS]: dequeing forcelist");
if (IsPhysical)
{
PhysicsVector iforce = new PhysicsVector();
for (int i = 0; i < m_forcelist.Count; i++)
{
iforce = iforce + (m_forcelist[i] * 100);
}
d.BodyEnable(Body);
d.BodyAddForce(Body, iforce.X, iforce.Y, iforce.Z);
}
m_forcelist.Clear();
}
m_collisionscore = 0;
m_interpenetrationcount = 0;
}
m_taintforce = false;
}
private void changevelocity(float timestep)
{
if (!m_isSelected)
{
Thread.Sleep(20);
if (IsPhysical)
{
if (Body != (IntPtr)0)
{
d.BodySetLinearVel(Body, m_taintVelocity.X, m_taintVelocity.Y, m_taintVelocity.Z);
}
}
//resetCollisionAccounting();
}
m_taintVelocity = PhysicsVector.Zero;
}
public override bool IsPhysical
{
get { return m_isphysical; }
set { m_isphysical = value; }
}
public void setPrimForRemoval()
{
m_taintremove = true;
}
public override bool Flying
{
// no flying prims for you
get { return false; }
set { }
}
public override bool IsColliding
{
get { return iscolliding; }
set { iscolliding = value; }
}
public override bool CollidingGround
{
get { return false; }
set { return; }
}
public override bool CollidingObj
{
get { return false; }
set { return; }
}
public override bool ThrottleUpdates
{
get { return m_throttleUpdates; }
set { m_throttleUpdates = value; }
}
public override bool Stopped
{
get { return _zeroFlag; }
}
public override PhysicsVector Position
{
get { return _position; }
set { _position = value;
//m_log.Info("[PHYSICS]: " + _position.ToString());
}
}
public override PhysicsVector Size
{
get { return _size; }
set { _size = value; }
}
public override float Mass
{
get { return CalculateMass(); }
}
public override PhysicsVector Force
{
get { return PhysicsVector.Zero; }
}
public override PhysicsVector CenterOfMass
{
get { return PhysicsVector.Zero; }
}
public override PhysicsVector GeometricCenter
{
get { return PhysicsVector.Zero; }
}
public override PrimitiveBaseShape Shape
{
set
{
_pbs = value;
m_taintshape = true;
}
}
public override PhysicsVector Velocity
{
get
{
// Averate previous velocity with the new one so
// client object interpolation works a 'little' better
PhysicsVector returnVelocity = new PhysicsVector();
returnVelocity.X = (m_lastVelocity.X + _velocity.X)/2;
returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y)/2;
returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z)/2;
return returnVelocity;
}
set
{
_velocity = value;
m_taintVelocity = value;
_parent_scene.AddPhysicsActorTaint(this);
}
}
public override float CollisionScore
{
get { return m_collisionscore; }
}
public override bool Kinematic
{
get { return false; }
set { }
}
public override Quaternion Orientation
{
get { return _orientation; }
set { _orientation = value; }
}
public override PhysicsVector Acceleration
{
get { return _acceleration; }
}
public void SetAcceleration(PhysicsVector accel)
{
_acceleration = accel;
}
public override void AddForce(PhysicsVector force, bool pushforce)
{
m_forcelist.Add(force);
m_taintforce = true;
//m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString());
}
public override PhysicsVector RotationalVelocity
{
get
{
PhysicsVector pv = new PhysicsVector(0, 0, 0);
if (_zeroFlag)
return pv;
m_lastUpdateSent = false;
if (m_rotationalVelocity.IsIdentical(pv, 0.2f))
return pv;
return m_rotationalVelocity;
}
set { m_rotationalVelocity = value; }
}
public override void CrossingFailure()
{
m_crossingfailures++;
if (m_crossingfailures > _parent_scene.geomCrossingFailuresBeforeOutofbounds)
{
base.RaiseOutOfBounds(_position);
return;
}
else if (m_crossingfailures == _parent_scene.geomCrossingFailuresBeforeOutofbounds)
{
m_log.Warn("[PHYSICS]: Too many crossing failures for: " + m_primName);
}
}
public override float Buoyancy
{
get { return m_buoyancy; }
set { m_buoyancy = value; }
}
public override void link(PhysicsActor obj)
{
m_taintparent = obj;
}
public override void delink()
{
m_taintparent = null;
}
public override void LockAngularMotion(PhysicsVector axis)
{
// reverse the zero/non zero values for ODE.
axis.X = (axis.X > 0) ? 1f : 0f;
axis.Y = (axis.Y > 0) ? 1f : 0f;
axis.Z = (axis.Z > 0) ? 1f : 0f;
m_taintAngularLock = new PhysicsVector(axis.X, axis.Y, axis.Z); ;
}
public void UpdatePositionAndVelocity()
{
// no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit!
if (_parent != null)
{
}
else
{
PhysicsVector pv = new PhysicsVector(0, 0, 0);
bool lastZeroFlag = _zeroFlag;
if (Body != (IntPtr)0)
{
d.Vector3 vec = d.BodyGetPosition(Body);
d.Quaternion ori = d.BodyGetQuaternion(Body);
d.Vector3 vel = d.BodyGetLinearVel(Body);
d.Vector3 rotvel = d.BodyGetAngularVel(Body);
PhysicsVector l_position = new PhysicsVector();
// kluge to keep things in bounds. ODE lets dead avatars drift away (they should be removed!)
//if (vec.X < 0.0f) { vec.X = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); }
//if (vec.Y < 0.0f) { vec.Y = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); }
//if (vec.X > 255.95f) { vec.X = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); }
//if (vec.Y > 255.95f) { vec.Y = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); }
m_lastposition = _position;
l_position.X = vec.X;
l_position.Y = vec.Y;
l_position.Z = vec.Z;
if (l_position.X > 255.95f || l_position.X < 0f || l_position.Y > 255.95f || l_position.Y < 0f)
{
//base.RaiseOutOfBounds(l_position);
if (m_crossingfailures < _parent_scene.geomCrossingFailuresBeforeOutofbounds)
{
_position = l_position;
//_parent_scene.remActivePrim(this);
if (_parent == null)
base.RequestPhysicsterseUpdate();
return;
}
else
{
if (_parent == null)
base.RaiseOutOfBounds(l_position);
return;
}
}
if (l_position.Z < 0)
{
// This is so prim that get lost underground don't fall forever and suck up
//
// Sim resources and memory.
// Disables the prim's movement physics....
// It's a hack and will generate a console message if it fails.
//IsPhysical = false;
if (_parent == null)
base.RaiseOutOfBounds(_position);
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
if (_parent == null)
base.RequestPhysicsterseUpdate();
m_throttleUpdates = false;
throttleCounter = 0;
_zeroFlag = true;
//outofBounds = true;
}
if ((Math.Abs(m_lastposition.X - l_position.X) < 0.02)
&& (Math.Abs(m_lastposition.Y - l_position.Y) < 0.02)
&& (Math.Abs(m_lastposition.Z - l_position.Z) < 0.02))
{
_zeroFlag = true;
m_throttleUpdates = false;
}
else
{
//System.Console.WriteLine(Math.Abs(m_lastposition.X - l_position.X).ToString());
_zeroFlag = false;
}
if (_zeroFlag)
{
_velocity.X = 0.0f;
_velocity.Y = 0.0f;
_velocity.Z = 0.0f;
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
//_orientation.w = 0f;
//_orientation.x = 0f;
//_orientation.y = 0f;
//_orientation.z = 0f;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
if (!m_lastUpdateSent)
{
m_throttleUpdates = false;
throttleCounter = 0;
m_rotationalVelocity = pv;
if (_parent == null)
base.RequestPhysicsterseUpdate();
m_lastUpdateSent = true;
}
}
else
{
if (lastZeroFlag != _zeroFlag)
{
if (_parent == null)
base.RequestPhysicsterseUpdate();
}
m_lastVelocity = _velocity;
_position = l_position;
_velocity.X = vel.X;
_velocity.Y = vel.Y;
_velocity.Z = vel.Z;
_acceleration = ((_velocity - m_lastVelocity) / 0.1f);
_acceleration = new PhysicsVector(_velocity.X - m_lastVelocity.X / 0.1f, _velocity.Y - m_lastVelocity.Y / 0.1f, _velocity.Z - m_lastVelocity.Z / 0.1f);
//m_log.Info("[PHYSICS]: V1: " + _velocity + " V2: " + m_lastVelocity + " Acceleration: " + _acceleration.ToString());
if (_velocity.IsIdentical(pv, 0.5f))
{
m_rotationalVelocity = pv;
}
else
{
m_rotationalVelocity.setValues(rotvel.X, rotvel.Y, rotvel.Z);
}
//System.Console.WriteLine("ODE: " + m_rotationalVelocity.ToString());
_orientation.w = ori.W;
_orientation.x = ori.X;
_orientation.y = ori.Y;
_orientation.z = ori.Z;
m_lastUpdateSent = false;
if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate)
{
if (_parent == null)
base.RequestPhysicsterseUpdate();
}
else
{
throttleCounter++;
}
}
m_lastposition = l_position;
}
else
{
// Not a body.. so Make sure the client isn't interpolating
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
_zeroFlag = true;
}
}
}
public override bool FloatOnWater
{
set {
m_taintCollidesWater = value;
_parent_scene.AddPhysicsActorTaint(this);
}
}
public override void SetMomentum(PhysicsVector momentum)
{
}
public override PhysicsVector PIDTarget { set { m_PIDTarget = value; ; } }
public override bool PIDActive { set { m_usePID = value; } }
public override float PIDTau { set { m_PIDTau = value; } }
private void createAMotor(PhysicsVector axis)
{
if (Body == IntPtr.Zero)
return;
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
float axisnum = 3;
axisnum = (axisnum - (axis.X + axis.Y + axis.Z));
if (axisnum <= 0)
return;
int dAMotorEuler = 1;
Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero);
d.JointAttach(Amotor, Body, IntPtr.Zero);
d.JointSetAMotorMode(Amotor, dAMotorEuler);
d.JointSetAMotorNumAxes(Amotor,(int)axisnum);
int i = 0;
if (axis.X == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, 1, 0, 0);
i++;
}
if (axis.Y == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, 0, 1, 0);
i++;
}
if (axis.Z == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, 0, 0, 1);
i++;
}
for (int j = 0; j < (int)axisnum; j++)
{
//d.JointSetAMotorAngle(Amotor, j, 0);
}
//
//d.JointSetAMotorAngle(Amotor, 1, 0);
//d.JointSetAMotorAngle(Amotor, 2, 0);
// These lowstops and high stops are effectively (no wiggle room)
d.JointSetAMotorParam(Amotor, (int)dParam.LowStop, -0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.LoStop3, -0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.LoStop2, -0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop, 0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop3, 0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop2, 0.000000000001f);
d.JointSetAMotorParam(Amotor, (int)dParam.FudgeFactor, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.FMax, m_tensor);
}
public override void SubscribeEvents(int ms)
{
m_eventsubscription = ms;
_parent_scene.addCollisionEventReporting(this);
}
public override void UnSubscribeEvents()
{
_parent_scene.remCollisionEventReporting(this);
m_eventsubscription = 0;
}
public void AddCollisionEvent(uint CollidedWith, float depth)
{
if (CollisionEventsThisFrame == null)
CollisionEventsThisFrame = new CollisionEventUpdate();
CollisionEventsThisFrame.addCollider(CollidedWith,depth);
}
public void SendCollisions()
{
if (CollisionEventsThisFrame == null)
return;
//if (CollisionEventsThisFrame.m_objCollisionList == null)
// return;
if (CollisionEventsThisFrame.m_objCollisionList.Count > 0)
{
base.SendCollisionUpdate(CollisionEventsThisFrame);
CollisionEventsThisFrame = new CollisionEventUpdate();
}
}
public override bool SubscribedEvents()
{
if (m_eventsubscription > 0)
return true;
return false;
}
}
}