/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSim Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using System.Threading; using log4net; using OpenMetaverse; using Ode.NET; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.OdePlugin { /// <summary> /// Various properties that ODE uses for AMotors but isn't exposed in ODE.NET so we must define them ourselves. /// </summary> public class OdePrim : PhysicsActor { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); public PhysicsVector _position; private PhysicsVector _velocity; private PhysicsVector m_lastVelocity = new PhysicsVector(0.0f, 0.0f, 0.0f); private PhysicsVector m_lastposition = new PhysicsVector(0.0f, 0.0f, 0.0f); private PhysicsVector m_rotationalVelocity; private PhysicsVector _size; private PhysicsVector _acceleration; // private d.Vector3 _zeroPosition = new d.Vector3(0.0f, 0.0f, 0.0f); private Quaternion _orientation; private PhysicsVector m_taintposition; private PhysicsVector m_taintsize; private PhysicsVector m_taintVelocity = PhysicsVector.Zero; private Quaternion m_taintrot; private PhysicsVector m_angularlock = new PhysicsVector(1f, 1f, 1f); private PhysicsVector m_taintAngularLock = new PhysicsVector(1f, 1f, 1f); private IntPtr Amotor = IntPtr.Zero; private PhysicsVector m_PIDTarget = new PhysicsVector(0, 0, 0); private float m_PIDTau = 0f; private float PID_D = 35f; private float PID_G = 25f; private float m_tensor = 5f; private int body_autodisable_frames = 20; private IMesh primMesh = null; private bool m_usePID = false; private const CollisionCategories m_default_collisionFlags = (CollisionCategories.Geom | CollisionCategories.Space | CollisionCategories.Body | CollisionCategories.Character ); private bool m_taintshape = false; private bool m_taintPhysics = false; private bool m_collidesLand = true; private bool m_collidesWater = false; public bool m_returnCollisions = false; // Default we're a Geometry private CollisionCategories m_collisionCategories = (CollisionCategories.Geom); // Default, Collide with Other Geometries, spaces and Bodies private CollisionCategories m_collisionFlags = m_default_collisionFlags; public bool m_taintremove = false; public bool m_taintdisable = false; public bool m_disabled = false; public bool m_taintadd = false; public bool m_taintselected = false; public bool m_taintCollidesWater = false; public uint m_localID = 0; //public GCHandle gc; private CollisionLocker ode; private bool m_taintforce = false; private PhysicsVector m_force = new PhysicsVector(0.0f, 0.0f, 0.0f); private List<PhysicsVector> m_forcelist = new List<PhysicsVector>(); private IMesh _mesh; private PrimitiveBaseShape _pbs; private OdeScene _parent_scene; public IntPtr m_targetSpace = (IntPtr) 0; public IntPtr prim_geom; public IntPtr prev_geom; public IntPtr _triMeshData; private IntPtr _linkJointGroup = (IntPtr)0; private PhysicsActor _parent = null; private PhysicsActor m_taintparent = null; private List<OdePrim> childrenPrim = new List<OdePrim>(); private bool iscolliding = false; private bool m_isphysical = false; private bool m_isSelected = false; private bool m_throttleUpdates = false; private int throttleCounter = 0; public int m_interpenetrationcount = 0; public float m_collisionscore = 0; public int m_roundsUnderMotionThreshold = 0; private int m_crossingfailures = 0; public float m_buoyancy = 0f; public bool outofBounds = false; private float m_density = 10.000006836f; // Aluminum g/cm3; public bool _zeroFlag = false; private bool m_lastUpdateSent = false; public IntPtr Body = (IntPtr) 0; private String m_primName; private PhysicsVector _target_velocity; public d.Mass pMass; public int m_eventsubscription = 0; private CollisionEventUpdate CollisionEventsThisFrame = null; private IntPtr m_linkJoint = (IntPtr)0; public volatile bool childPrim = false; public OdePrim(String primName, OdeScene parent_scene, PhysicsVector pos, PhysicsVector size, Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode) { _target_velocity = new PhysicsVector(0, 0, 0); //gc = GCHandle.Alloc(prim_geom, GCHandleType.Pinned); ode = dode; _velocity = new PhysicsVector(); _position = pos; m_taintposition = pos; PID_D = parent_scene.bodyPIDD; PID_G = parent_scene.bodyPIDG; m_density = parent_scene.geomDefaultDensity; m_tensor = parent_scene.bodyMotorJointMaxforceTensor; body_autodisable_frames = parent_scene.bodyFramesAutoDisable; prim_geom = IntPtr.Zero; prev_geom = IntPtr.Zero; if (size.X <= 0) size.X = 0.01f; if (size.Y <= 0) size.Y = 0.01f; if (size.Z <= 0) size.Z = 0.01f; _size = size; m_taintsize = _size; _acceleration = new PhysicsVector(); m_rotationalVelocity = PhysicsVector.Zero; _orientation = rotation; m_taintrot = _orientation; _mesh = mesh; _pbs = pbs; _parent_scene = parent_scene; m_targetSpace = (IntPtr)0; if (pos.Z < 0) m_isphysical = false; else { m_isphysical = pisPhysical; // If we're physical, we need to be in the master space for now. // linksets *should* be in a space together.. but are not currently if (m_isphysical) m_targetSpace = _parent_scene.space; } m_primName = primName; m_taintadd = true; _parent_scene.AddPhysicsActorTaint(this); // don't do .add() here; old geoms get recycled with the same hash } public override int PhysicsActorType { get { return (int) ActorTypes.Prim; } set { return; } } public override bool SetAlwaysRun { get { return false; } set { return; } } public override uint LocalID { set { //m_log.Info("[PHYSICS]: Setting TrackerID: " + value); m_localID = value; } } public override bool Grabbed { set { return; } } public override bool Selected { set { // This only makes the object not collidable if the object // is physical or the object is modified somehow *IN THE FUTURE* // without this, if an avatar selects prim, they can walk right // through it while it's selected m_collisionscore = 0; if ((m_isphysical && !_zeroFlag) || !value) { m_taintselected = value; _parent_scene.AddPhysicsActorTaint(this); } else { m_taintselected = value; m_isSelected = value; } } } public void SetGeom(IntPtr geom) { prev_geom = prim_geom; prim_geom = geom; if (prim_geom != IntPtr.Zero) { d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } if (childPrim) { if (_parent != null && _parent is OdePrim) { OdePrim parent = (OdePrim)_parent; parent.ChildSetGeom(this); } } //m_log.Warn("Setting Geom to: " + prim_geom); } public void enableBodySoft() { if (!childPrim) { if (m_isphysical && Body != IntPtr.Zero) d.BodyEnable(Body); m_disabled = false; } } public void disableBodySoft() { m_disabled = true; if (m_isphysical && Body != IntPtr.Zero) d.BodyDisable(Body); } public void enableBody() { // Don't enable this body if we're a child prim // this should be taken care of in the parent function not here if (!childPrim) { // Sets the geom to a body Body = d.BodyCreate(_parent_scene.world); setMass(); d.BodySetPosition(Body, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.BodySetQuaternion(Body, ref myrot); d.GeomSetBody(prim_geom, Body); m_collisionCategories |= CollisionCategories.Body; m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind); d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); d.BodySetAutoDisableFlag(Body, true); d.BodySetAutoDisableSteps(Body, body_autodisable_frames); m_interpenetrationcount = 0; m_collisionscore = 0; m_disabled = false; // The body doesn't already have a finite rotation mode set here if ((!m_angularlock.IsIdentical(PhysicsVector.Zero, 0)) && _parent == null) { createAMotor(m_angularlock); } _parent_scene.addActivePrim(this); } } #region Mass Calculation private float CalculateMass() { float volume = 0; // No material is passed to the physics engines yet.. soo.. // we're using the m_density constant in the class definition float returnMass = 0; switch (_pbs.ProfileShape) { case ProfileShape.Square: // Profile Volume volume = _size.X*_size.Y*_size.Z; // If the user has 'hollowed out' // ProfileHollow is one of those 0 to 50000 values :P // we like percentages better.. so turning into a percentage if (((float) _pbs.ProfileHollow/50000f) > 0.0) { float hollowAmount = (float) _pbs.ProfileHollow/50000f; // calculate the hollow volume by it's shape compared to the prim shape float hollowVolume = 0; switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: // Cube Hollow volume calculation float hollowsizex = _size.X*hollowAmount; float hollowsizey = _size.Y*hollowAmount; float hollowsizez = _size.Z*hollowAmount; hollowVolume = hollowsizex*hollowsizey*hollowsizez; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation float hRadius = _size.X/2; float hLength = _size.Z; // pi * r2 * h hollowVolume = ((float) (Math.PI*Math.Pow(hRadius, 2)*hLength)*hollowAmount); break; case HollowShape.Triangle: // Equilateral Triangular Prism volume hollow calculation // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y float aLength = _size.Y; // 1/2 abh hollowVolume = (float) ((0.5*aLength*_size.X*_size.Z)*hollowAmount); break; default: hollowVolume = 0; break; } volume = volume - hollowVolume; } break; case ProfileShape.Circle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { // Cylinder float volume1 = (float)(Math.PI * Math.Pow(_size.X/2, 2) * _size.Z); float volume2 = (float)(Math.PI * Math.Pow(_size.Y/2, 2) * _size.Z); // Approximating the cylinder's irregularity. if (volume1 > volume2) { volume = (float)volume1 - (volume1 - volume2); } else if (volume2 > volume1) { volume = (float)volume2 - (volume2 - volume1); } else { // Regular cylinder volume = volume1; } } else { // We don't know what the shape is yet, so use default volume = _size.X * _size.Y * _size.Z; } // If the user has 'hollowed out' // ProfileHollow is one of those 0 to 50000 values :P // we like percentages better.. so turning into a percentage if (((float)_pbs.ProfileHollow / 50000f) > 0.0) { float hollowAmount = (float)_pbs.ProfileHollow / 50000f; // calculate the hollow volume by it's shape compared to the prim shape float hollowVolume = 0; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation float hRadius = _size.X / 2; float hLength = _size.Z; // pi * r2 * h hollowVolume = ((float)(Math.PI * Math.Pow(hRadius, 2) * hLength) * hollowAmount); break; case HollowShape.Square: // Cube Hollow volume calculation float hollowsizex = _size.X * hollowAmount; float hollowsizey = _size.Y * hollowAmount; float hollowsizez = _size.Z * hollowAmount; hollowVolume = hollowsizex * hollowsizey * hollowsizez; break; case HollowShape.Triangle: // Equilateral Triangular Prism volume hollow calculation // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y float aLength = _size.Y; // 1/2 abh hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount); break; default: hollowVolume = 0; break; } volume = volume - hollowVolume; } break; case ProfileShape.HalfCircle: if (_pbs.PathCurve == (byte)Extrusion.Curve1) { if (_size.X == _size.Z && _size.Z == _size.X) { // regular sphere // v = 4/3 * pi * r^3 float sradius3 = (float)Math.Pow((_size.X / 2), 3); volume = (float)((4 / 3) * Math.PI * sradius3); } else { // we treat this as a box currently volume = _size.X * _size.Y * _size.Z; } } else { // We don't know what the shape is yet, so use default volume = _size.X * _size.Y * _size.Z; } break; case ProfileShape.EquilateralTriangle: /* v = (abs((xB*yA-xA*yB)+(xC*yB-xB*yC)+(xA*yC-xC*yA))/2) * h // seed mesh Vertex MM = new Vertex(-0.25f, -0.45f, 0.0f); Vertex PM = new Vertex(+0.5f, 0f, 0.0f); Vertex PP = new Vertex(-0.25f, +0.45f, 0.0f); */ float xA = -0.25f * _size.X; float yA = -0.45f * _size.Y; float xB = 0.5f * _size.X; float yB = 0; float xC = -0.25f * _size.X; float yC = 0.45f * _size.Y; volume = (float)((Math.Abs((xB * yA - xA * yB) + (xC * yB - xB * yC) + (xA * yC - xC * yA)) / 2) * _size.Z); // If the user has 'hollowed out' // ProfileHollow is one of those 0 to 50000 values :P // we like percentages better.. so turning into a percentage float fhollowFactor = ((float)_pbs.ProfileHollow / 1.9f); if (((float)fhollowFactor / 50000f) > 0.0) { float hollowAmount = (float)fhollowFactor / 50000f; // calculate the hollow volume by it's shape compared to the prim shape float hollowVolume = 0; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: // Equilateral Triangular Prism volume hollow calculation // Triangle is an Equilateral Triangular Prism with aLength = to _size.Y float aLength = _size.Y; // 1/2 abh hollowVolume = (float)((0.5 * aLength * _size.X * _size.Z) * hollowAmount); break; case HollowShape.Square: // Cube Hollow volume calculation float hollowsizex = _size.X * hollowAmount; float hollowsizey = _size.Y * hollowAmount; float hollowsizez = _size.Z * hollowAmount; hollowVolume = hollowsizex * hollowsizey * hollowsizez; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation float hRadius = _size.X / 2; float hLength = _size.Z; // pi * r2 * h hollowVolume = ((float)((Math.PI * Math.Pow(hRadius, 2) * hLength)/2) * hollowAmount); break; default: hollowVolume = 0; break; } volume = volume - hollowVolume; } break; default: // we don't have all of the volume formulas yet so // use the common volume formula for all volume = _size.X*_size.Y*_size.Z; break; } // Calculate Path cut effect on volume // Not exact, in the triangle hollow example // They should never be zero or less then zero.. // we'll ignore it if it's less then zero // ProfileEnd and ProfileBegin are values // from 0 to 50000 // Turning them back into percentages so that I can cut that percentage off the volume float PathCutEndAmount = _pbs.ProfileEnd; float PathCutStartAmount = _pbs.ProfileBegin; if (((PathCutStartAmount + PathCutEndAmount)/50000f) > 0.0f) { float pathCutAmount = ((PathCutStartAmount + PathCutEndAmount)/50000f); // Check the return amount for sanity if (pathCutAmount >= 0.99f) pathCutAmount = 0.99f; volume = volume - (volume*pathCutAmount); } UInt16 taperX = _pbs.PathScaleX; UInt16 taperY = _pbs.PathScaleY; float taperFactorX = 0; float taperFactorY = 0; // Mass = density * volume if (taperX != 100) { if (taperX > 100) { taperFactorX = 1.0f - ((float)taperX / 200); //m_log.Warn("taperTopFactorX: " + extr.taperTopFactorX.ToString()); } else { taperFactorX = 1.0f - ((100 - (float)taperX) / 100); //m_log.Warn("taperBotFactorX: " + extr.taperBotFactorX.ToString()); } volume = (float)volume * ((taperFactorX / 3f) + 0.001f); } if (taperY != 100) { if (taperY > 100) { taperFactorY = 1.0f - ((float)taperY / 200); //m_log.Warn("taperTopFactorY: " + extr.taperTopFactorY.ToString()); } else { taperFactorY = 1.0f - ((100 - (float)taperY) / 100); //m_log.Warn("taperBotFactorY: " + extr.taperBotFactorY.ToString()); } volume = (float)volume * ((taperFactorY / 3f) + 0.001f); } returnMass = m_density*volume; if (returnMass <= 0) returnMass = 0.0001f;//ckrinke: Mass must be greater then zero. return returnMass; } #endregion public void setMass() { if (Body != (IntPtr) 0) { float newmass = CalculateMass(); //m_log.Info("[PHYSICS]: New Mass: " + newmass.ToString()); d.MassSetBoxTotal(out pMass, newmass, _size.X, _size.Y, _size.Z); d.BodySetMass(Body, ref pMass); } } public void disableBody() { //this kills the body so things like 'mesh' can re-create it. lock (this) { if (!childPrim) { if (Body != IntPtr.Zero) { _parent_scene.remActivePrim(this); m_collisionCategories &= ~CollisionCategories.Body; m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land); if (prim_geom != IntPtr.Zero) { d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } d.BodyDestroy(Body); Body = IntPtr.Zero; } } else { _parent_scene.remActivePrim(this); m_collisionCategories &= ~CollisionCategories.Body; m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land); if (prim_geom != IntPtr.Zero) { d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } Body = IntPtr.Zero; } } m_disabled = true; m_collisionscore = 0; } public void setMesh(OdeScene parent_scene, IMesh mesh) { // This sleeper is there to moderate how long it takes between // setting up the mesh and pre-processing it when we get rapid fire mesh requests on a single object Thread.Sleep(10); //Kill Body so that mesh can re-make the geom if (IsPhysical && Body != IntPtr.Zero) { if (childPrim) { if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildDelink(this); } } else { disableBody(); } } IMesh oldMesh = primMesh; primMesh = mesh; float[] vertexList = primMesh.getVertexListAsFloatLocked(); // Note, that vertextList is pinned in memory int[] indexList = primMesh.getIndexListAsIntLocked(); // Also pinned, needs release after usage primMesh.releaseSourceMeshData(); // free up the original mesh data to save memory int VertexCount = vertexList.GetLength(0)/3; int IndexCount = indexList.GetLength(0); _triMeshData = d.GeomTriMeshDataCreate(); d.GeomTriMeshDataBuildSimple(_triMeshData, vertexList, 3*sizeof (float), VertexCount, indexList, IndexCount, 3*sizeof (int)); d.GeomTriMeshDataPreprocess(_triMeshData); _parent_scene.waitForSpaceUnlock(m_targetSpace); try { if (prim_geom == IntPtr.Zero) { SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, parent_scene.triCallback, null, null)); } } catch (AccessViolationException) { m_log.Error("[PHYSICS]: MESH LOCKED"); return; } if (oldMesh != null) { oldMesh.releasePinned(); oldMesh = null; } // if (IsPhysical && Body == (IntPtr) 0) // { // Recreate the body // m_interpenetrationcount = 0; // m_collisionscore = 0; // enableBody(); // } } public void ProcessTaints(float timestep) { if (m_taintadd) { changeadd(timestep); } if (prim_geom != IntPtr.Zero) { if (!_position.IsIdentical(m_taintposition,0f)) changemove(timestep); if (m_taintrot != _orientation) rotate(timestep); // if (m_taintPhysics != m_isphysical && !(m_taintparent != _parent)) changePhysicsStatus(timestep); // if (!_size.IsIdentical(m_taintsize,0)) changesize(timestep); // if (m_taintshape) changeshape(timestep); // if (m_taintforce) changeAddForce(timestep); if (m_taintdisable) changedisable(timestep); if (m_taintselected != m_isSelected) changeSelectedStatus(timestep); if (!m_taintVelocity.IsIdentical(PhysicsVector.Zero, 0.001f)) changevelocity(timestep); if (m_taintparent != _parent) changelink(timestep); if (m_taintCollidesWater != m_collidesWater) changefloatonwater(timestep); if (!m_angularlock.IsIdentical(m_taintAngularLock,0)) changeAngularLock(timestep); } else { m_log.Error("[PHYSICS]: The scene reused a disposed PhysActor! *waves finger*, Don't be evil. A couple of things can cause this. An improper prim breakdown(be sure to set prim_geom to zero after d.GeomDestroy! An improper buildup (creating the geom failed). Or, the Scene Reused a physics actor after disposing it.)"); } } private void changeAngularLock(float timestep) { // do we have a Physical object? if (Body != IntPtr.Zero) { //Check that we have a Parent //If we have a parent then we're not authorative here if (_parent == null) { if (!m_taintAngularLock.IsIdentical(new PhysicsVector(1f,1f,1f), 0)) { //d.BodySetFiniteRotationMode(Body, 0); //d.BodySetFiniteRotationAxis(Body,m_taintAngularLock.X,m_taintAngularLock.Y,m_taintAngularLock.Z); createAMotor(m_taintAngularLock); } else { if (Amotor != IntPtr.Zero) { d.JointDestroy(Amotor); Amotor = IntPtr.Zero; } } } } // Store this for later in case we get turned into a separate body m_angularlock = new PhysicsVector(m_taintAngularLock.X,m_angularlock.Y,m_angularlock.Z); } private void changelink(float timestep) { // If the newly set parent is not null // create link if (_parent == null && m_taintparent != null) { if (m_taintparent.PhysicsActorType == (int)ActorTypes.Prim) { OdePrim obj = (OdePrim)m_taintparent; //obj.disableBody(); obj.ParentPrim(this); /* if (obj.Body != (IntPtr)0 && Body != (IntPtr)0 && obj.Body != Body) { _linkJointGroup = d.JointGroupCreate(0); m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup); d.JointAttach(m_linkJoint, obj.Body, Body); d.JointSetFixed(m_linkJoint); } */ } } // If the newly set parent is null // destroy link else if (_parent != null && m_taintparent == null) { if (_parent is OdePrim) { OdePrim obj = (OdePrim)_parent; obj.ChildDelink(this); childPrim = false; //_parent = null; } /* if (Body != (IntPtr)0 && _linkJointGroup != (IntPtr)0) d.JointGroupDestroy(_linkJointGroup); _linkJointGroup = (IntPtr)0; m_linkJoint = (IntPtr)0; */ } _parent = m_taintparent; m_taintPhysics = m_isphysical; } // I'm the parent // prim is the child public void ParentPrim(OdePrim prim) { if (this.m_localID != prim.m_localID) { if (Body == IntPtr.Zero) { Body = d.BodyCreate(_parent_scene.world); } if (Body != IntPtr.Zero) { lock (childrenPrim) { if (!childrenPrim.Contains(prim)) { childrenPrim.Add(prim); foreach (OdePrim prm in childrenPrim) { d.Mass m2; d.MassSetZero(out m2); d.MassSetBoxTotal(out m2, prim.CalculateMass(), prm._size.X, prm._size.Y, prm._size.Z); d.Quaternion quat = new d.Quaternion(); quat.W = prm._orientation.W; quat.X = prm._orientation.X; quat.Y = prm._orientation.Y; quat.Z = prm._orientation.Z; d.Matrix3 mat = new d.Matrix3(); d.RfromQ(out mat, ref quat); d.MassRotate(out m2, ref mat); d.MassTranslate(out m2, Position.X - prm.Position.X, Position.Y - prm.Position.Y, Position.Z - prm.Position.Z); d.MassAdd(ref pMass, ref m2); } foreach (OdePrim prm in childrenPrim) { prm.m_collisionCategories |= CollisionCategories.Body; prm.m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind); d.GeomSetCategoryBits(prm.prim_geom, (int)prm.m_collisionCategories); d.GeomSetCollideBits(prm.prim_geom, (int)prm.m_collisionFlags); d.Quaternion quat = new d.Quaternion(); quat.W = prm._orientation.W; quat.X = prm._orientation.X; quat.Y = prm._orientation.Y; quat.Z = prm._orientation.Z; d.Matrix3 mat = new d.Matrix3(); d.RfromQ(out mat, ref quat); if (Body != IntPtr.Zero) { d.GeomSetBody(prm.prim_geom, Body); prm.childPrim = true; d.GeomSetOffsetWorldPosition(prm.prim_geom, prm.Position.X , prm.Position.Y, prm.Position.Z); //d.GeomSetOffsetPosition(prim.prim_geom, // (Position.X - prm.Position.X) - pMass.c.X, // (Position.Y - prm.Position.Y) - pMass.c.Y, // (Position.Z - prm.Position.Z) - pMass.c.Z); d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat); //d.GeomSetOffsetRotation(prm.prim_geom, ref mat); d.MassTranslate(out pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z); d.BodySetMass(Body, ref pMass); } else { m_log.Debug("[PHYSICS]:I ain't got no boooooooooddy, no body"); } prm.m_interpenetrationcount = 0; prm.m_collisionscore = 0; prm.m_disabled = false; // The body doesn't already have a finite rotation mode set here if ((!m_angularlock.IsIdentical(PhysicsVector.Zero, 0)) && _parent == null) { prm.createAMotor(m_angularlock); } prm.Body = Body; _parent_scene.addActivePrim(prm); } m_collisionCategories |= CollisionCategories.Body; m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind); d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); d.Quaternion quat2 = new d.Quaternion(); quat2.W = _orientation.W; quat2.X = _orientation.X; quat2.Y = _orientation.Y; quat2.Z = _orientation.Z; d.Matrix3 mat2 = new d.Matrix3(); d.RfromQ(out mat2, ref quat2); d.GeomSetBody(prim_geom, Body); d.GeomSetOffsetWorldPosition(prim_geom, Position.X - pMass.c.X, Position.Y - pMass.c.Y, Position.Z - pMass.c.Z); //d.GeomSetOffsetPosition(prim.prim_geom, // (Position.X - prm.Position.X) - pMass.c.X, // (Position.Y - prm.Position.Y) - pMass.c.Y, // (Position.Z - prm.Position.Z) - pMass.c.Z); //d.GeomSetOffsetRotation(prim_geom, ref mat2); d.MassTranslate(out pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z); d.BodySetMass(Body, ref pMass); d.BodySetAutoDisableFlag(Body, true); d.BodySetAutoDisableSteps(Body, body_autodisable_frames); m_interpenetrationcount = 0; m_collisionscore = 0; m_disabled = false; // The body doesn't already have a finite rotation mode set here if ((!m_angularlock.IsIdentical(PhysicsVector.Zero, 0)) && _parent == null) { createAMotor(m_angularlock); } d.BodySetPosition(Body, Position.X, Position.Y, Position.Z); _parent_scene.addActivePrim(this); } } } } } private void ChildSetGeom(OdePrim odePrim) { //if (m_isphysical && Body != IntPtr.Zero) lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { //prm.childPrim = true; prm.disableBody(); //prm.m_taintparent = null; //prm._parent = null; //prm.m_taintPhysics = false; //prm.m_disabled = true; //prm.childPrim = false; } } disableBody(); if (Body != IntPtr.Zero) { _parent_scene.remActivePrim(this); } lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { ParentPrim(prm); } } } private void ChildDelink(OdePrim odePrim) { // Okay, we have a delinked child.. need to rebuild the body. lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { prm.childPrim = true; prm.disableBody(); //prm.m_taintparent = null; //prm._parent = null; //prm.m_taintPhysics = false; //prm.m_disabled = true; //prm.childPrim = false; } } disableBody(); lock (childrenPrim) { childrenPrim.Remove(odePrim); } if (Body != IntPtr.Zero) { _parent_scene.remActivePrim(this); } lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { ParentPrim(prm); } } } private void changeSelectedStatus(float timestep) { if (m_taintselected) { m_collisionCategories = CollisionCategories.Selected; m_collisionFlags = (CollisionCategories.Sensor | CollisionCategories.Space); // We do the body disable soft twice because 'in theory' a collision could have happened // in between the disabling and the collision properties setting // which would wake the physical body up from a soft disabling and potentially cause it to fall // through the ground. if (m_isphysical) { disableBodySoft(); } if (prim_geom != IntPtr.Zero) { d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } if (m_isphysical) { disableBodySoft(); } } else { m_collisionCategories = CollisionCategories.Geom; if (m_isphysical) m_collisionCategories |= CollisionCategories.Body; m_collisionFlags = m_default_collisionFlags; if (m_collidesLand) m_collisionFlags |= CollisionCategories.Land; if (m_collidesWater) m_collisionFlags |= CollisionCategories.Water; if (prim_geom != IntPtr.Zero) { d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } if (m_isphysical) { if (Body != IntPtr.Zero) { d.BodySetLinearVel(Body, 0f, 0f, 0f); enableBodySoft(); } } } resetCollisionAccounting(); m_isSelected = m_taintselected; } public void ResetTaints() { m_taintposition = _position; m_taintrot = _orientation; m_taintPhysics = m_isphysical; m_taintselected = m_isSelected; m_taintsize = _size; m_taintshape = false; m_taintforce = false; m_taintdisable = false; m_taintVelocity = PhysicsVector.Zero; } public void CreateGeom(IntPtr m_targetSpace, IMesh _mesh) { if (_mesh != null) { setMesh(_parent_scene, _mesh); } else { if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) { if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z) { if (((_size.X / 2f) > 0f)) { _parent_scene.waitForSpaceUnlock(m_targetSpace); try { SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2)); } catch (AccessViolationException) { m_log.Warn("[PHYSICS]: Unable to create physics proxy for object"); ode.dunlock(_parent_scene.world); return; } } else { _parent_scene.waitForSpaceUnlock(m_targetSpace); try { SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); } catch (AccessViolationException) { m_log.Warn("[PHYSICS]: Unable to create physics proxy for object"); ode.dunlock(_parent_scene.world); return; } } } else { _parent_scene.waitForSpaceUnlock(m_targetSpace); try { SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); } catch (AccessViolationException) { m_log.Warn("[PHYSICS]: Unable to create physics proxy for object"); ode.dunlock(_parent_scene.world); return; } } } else { _parent_scene.waitForSpaceUnlock(m_targetSpace); try { SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); } catch (AccessViolationException) { m_log.Warn("[PHYSICS]: Unable to create physics proxy for object"); ode.dunlock(_parent_scene.world); return; } } } } public void changeadd(float timestep) { int[] iprimspaceArrItem = _parent_scene.calculateSpaceArrayItemFromPos(_position); IntPtr targetspace = _parent_scene.calculateSpaceForGeom(_position); if (targetspace == IntPtr.Zero) targetspace = _parent_scene.createprimspace(iprimspaceArrItem[0], iprimspaceArrItem[1]); m_targetSpace = targetspace; if (_mesh == null) { if (_parent_scene.needsMeshing(_pbs)) { // Don't need to re-enable body.. it's done in SetMesh _mesh = _parent_scene.mesher.CreateMesh(m_primName, _pbs, _size, _parent_scene.meshSculptLOD, IsPhysical); // createmesh returns null when it's a shape that isn't a cube. } } lock (_parent_scene.OdeLock) { CreateGeom(m_targetSpace, _mesh); if (prim_geom != IntPtr.Zero) { d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.GeomSetQuaternion(prim_geom, ref myrot); } if (m_isphysical && Body == IntPtr.Zero) { enableBody(); } } _parent_scene.geom_name_map[prim_geom] = this.m_primName; _parent_scene.actor_name_map[prim_geom] = (PhysicsActor)this; changeSelectedStatus(timestep); m_taintadd = false; } public void changemove(float timestep) { if (m_isphysical) { // This is a fallback.. May no longer be necessary. if (Body == IntPtr.Zero) enableBody(); //Prim auto disable after 20 frames, //if you move it, re-enable the prim manually. if (_parent != null) { if (m_linkJoint != IntPtr.Zero) { d.JointDestroy(m_linkJoint); m_linkJoint = IntPtr.Zero; } } d.BodySetPosition(Body, _position.X, _position.Y, _position.Z); if (_parent != null) { OdePrim odParent = (OdePrim)_parent; if (Body != (IntPtr)0 && odParent.Body != (IntPtr)0 && Body != odParent.Body) { m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup); d.JointAttach(m_linkJoint, Body, odParent.Body); d.JointSetFixed(m_linkJoint); } } d.BodyEnable(Body); } else { // string primScenAvatarIn = _parent_scene.whichspaceamIin(_position); // int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position); _parent_scene.waitForSpaceUnlock(m_targetSpace); IntPtr tempspace = _parent_scene.recalculateSpaceForGeom(prim_geom, _position, m_targetSpace); m_targetSpace = tempspace; _parent_scene.waitForSpaceUnlock(m_targetSpace); if (prim_geom != IntPtr.Zero) { d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); _parent_scene.waitForSpaceUnlock(m_targetSpace); d.SpaceAdd(m_targetSpace, prim_geom); } } changeSelectedStatus(timestep); resetCollisionAccounting(); m_taintposition = _position; } public void Move(float timestep) { float fx = 0; float fy = 0; float fz = 0; if (IsPhysical && Body != IntPtr.Zero && !m_isSelected) { //float PID_P = 900.0f; float m_mass = CalculateMass(); fz = 0f; //m_log.Info(m_collisionFlags.ToString()); if (m_buoyancy != 0) { if (m_buoyancy > 0) { fz = (((-1 * _parent_scene.gravityz) * m_buoyancy) * m_mass); //d.Vector3 l_velocity = d.BodyGetLinearVel(Body); //m_log.Info("Using Buoyancy: " + buoyancy + " G: " + (_parent_scene.gravityz * m_buoyancy) + "mass:" + m_mass + " Pos: " + Position.ToString()); } else { fz = (-1 * (((-1 * _parent_scene.gravityz) * (-1 * m_buoyancy)) * m_mass)); } } if (m_usePID) { // If we're using the PID controller, then we have no gravity fz = (-1 * _parent_scene.gravityz) * this.Mass; // no lock; for now it's only called from within Simulate() // If the PID Controller isn't active then we set our force // calculating base velocity to the current position if ((m_PIDTau < 1)) { PID_G = PID_G / m_PIDTau; } if ((PID_G - m_PIDTau) <= 0) { PID_G = m_PIDTau + 1; } //PidStatus = true; // PhysicsVector vec = new PhysicsVector(); d.Vector3 vel = d.BodyGetLinearVel(Body); d.Vector3 pos = d.BodyGetPosition(Body); _target_velocity = new PhysicsVector( (m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep), (m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep), (m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep) ); // if velocity is zero, use position control; otherwise, velocity control if (_target_velocity.IsIdentical(PhysicsVector.Zero,0.1f)) { // keep track of where we stopped. No more slippin' & slidin' // We only want to deactivate the PID Controller if we think we want to have our surrogate // react to the physics scene by moving it's position. // Avatar to Avatar collisions // Prim to avatar collisions //fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2); //fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2); //fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P; d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z); d.BodySetLinearVel(Body, 0, 0, 0); d.BodyAddForce(Body, 0, 0, fz); return; } else { _zeroFlag = false; // We're flying and colliding with something fx = ((_target_velocity.X) - vel.X) * (PID_D); fy = ((_target_velocity.Y) - vel.Y) * (PID_D); // vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P; fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass); } } fx *= m_mass; fy *= m_mass; //fz *= m_mass; fx += m_force.X; fy += m_force.Y; fz += m_force.Z; //m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString()); if (fx != 0 || fy != 0 || fz != 0) { //m_taintdisable = true; //base.RaiseOutOfBounds(Position); //d.BodySetLinearVel(Body, fx, fy, 0f); enableBodySoft(); d.BodyAddForce(Body, fx, fy, fz); } } else { // _zeroPosition = d.BodyGetPosition(Body); return; } } public void rotate(float timestep) { d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.GeomSetQuaternion(prim_geom, ref myrot); if (m_isphysical && Body != IntPtr.Zero) { d.BodySetQuaternion(Body, ref myrot); if (!m_angularlock.IsIdentical(new PhysicsVector(1, 1, 1), 0)) createAMotor(m_angularlock); } resetCollisionAccounting(); m_taintrot = _orientation; } private void resetCollisionAccounting() { m_collisionscore = 0; m_interpenetrationcount = 0; m_disabled = false; } public void changedisable(float timestep) { m_disabled = true; if (Body != IntPtr.Zero) { d.BodyDisable(Body); Body = IntPtr.Zero; } m_taintdisable = false; } public void changePhysicsStatus(float timestep) { if (m_isphysical == true) { if (Body == IntPtr.Zero) { if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim) { changeshape(2f); } else { enableBody(); } } } else { if (Body != IntPtr.Zero) { if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim) { if (prim_geom != IntPtr.Zero) { try { d.GeomDestroy(prim_geom); prim_geom = IntPtr.Zero; _mesh = null; } catch (System.AccessViolationException) { prim_geom = IntPtr.Zero; m_log.Error("[PHYSICS]: PrimGeom dead"); } } changeadd(2f); } if (childPrim) { if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildDelink(this); } } else { disableBody(); } } } changeSelectedStatus(timestep); resetCollisionAccounting(); m_taintPhysics = m_isphysical; } public void changesize(float timestamp) { //if (!_parent_scene.geom_name_map.ContainsKey(prim_geom)) //{ // m_taintsize = _size; //return; //} string oldname = _parent_scene.geom_name_map[prim_geom]; if (_size.X <= 0) _size.X = 0.01f; if (_size.Y <= 0) _size.Y = 0.01f; if (_size.Z <= 0) _size.Z = 0.01f; // Cleanup of old prim geometry if (_mesh != null) { // Cleanup meshing here } //kill body to rebuild if (IsPhysical && Body != IntPtr.Zero) { if (childPrim) { if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildDelink(this); } } else { disableBody(); } } if (d.SpaceQuery(m_targetSpace, prim_geom)) { _parent_scene.waitForSpaceUnlock(m_targetSpace); d.SpaceRemove(m_targetSpace, prim_geom); } d.GeomDestroy(prim_geom); prim_geom = IntPtr.Zero; // we don't need to do space calculation because the client sends a position update also. // Construction of new prim if (_parent_scene.needsMeshing(_pbs)) { float meshlod = _parent_scene.meshSculptLOD; if (IsPhysical) meshlod = _parent_scene.MeshSculptphysicalLOD; // Don't need to re-enable body.. it's done in SetMesh IMesh mesh = null; if (_parent_scene.needsMeshing(_pbs)) mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical); //IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical); CreateGeom(m_targetSpace, mesh); } else { _mesh = null; CreateGeom(m_targetSpace, _mesh); } d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.GeomSetQuaternion(prim_geom, ref myrot); //d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z); if (IsPhysical && Body == IntPtr.Zero && !childPrim) { // Re creates body on size. // EnableBody also does setMass() enableBody(); d.BodyEnable(Body); } _parent_scene.geom_name_map[prim_geom] = oldname; changeSelectedStatus(timestamp); if (childPrim) { if (_parent is OdePrim) { OdePrim parent = (OdePrim)_parent; parent.ChildSetGeom(this); } } resetCollisionAccounting(); m_taintsize = _size; } //public void changesize(float timestamp) //{ // //if (!_parent_scene.geom_name_map.ContainsKey(prim_geom)) // //{ // // m_taintsize = _size; // //return; // //} // string oldname = _parent_scene.geom_name_map[prim_geom]; // if (_size.X <= 0) _size.X = 0.01f; // if (_size.Y <= 0) _size.Y = 0.01f; // if (_size.Z <= 0) _size.Z = 0.01f; // // Cleanup of old prim geometry // if (_mesh != null) // { // // Cleanup meshing here // } // //kill body to rebuild // if (IsPhysical && Body != (IntPtr) 0) // { // disableBody(); // } // if (d.SpaceQuery(m_targetSpace, prim_geom)) // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // d.SpaceRemove(m_targetSpace, prim_geom); // } // d.GeomDestroy(prim_geom); // prim_geom = (IntPtr)0; // // we don't need to do space calculation because the client sends a position update also. // // Construction of new prim // if (_parent_scene.needsMeshing(_pbs)) // { // float meshlod = _parent_scene.meshSculptLOD; // if (IsPhysical) // meshlod = _parent_scene.MeshSculptphysicalLOD; // // Don't need to re-enable body.. it's done in SetMesh // IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical); // // createmesh returns null when it's a shape that isn't a cube. // if (mesh != null) // { // setMesh(_parent_scene, mesh); // d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); // d.Quaternion myrot = new d.Quaternion(); // myrot.W = _orientation.w; // myrot.X = _orientation.X; // myrot.Y = _orientation.Y; // myrot.Z = _orientation.Z; // d.GeomSetQuaternion(prim_geom, ref myrot); // //d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z); // if (IsPhysical && Body == (IntPtr)0) // { // // Re creates body on size. // // EnableBody also does setMass() // enableBody(); // d.BodyEnable(Body); // } // } // else // { // if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) // { // if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z) // { // if (((_size.X / 2f) > 0f) && ((_size.X / 2f) < 1000)) // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2)); // } // else // { // m_log.Info("[PHYSICS]: Failed to load a sphere bad size"); // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); // } // } // else // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); // } // } // //else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight) // //{ // //Cyllinder // //if (_size.X == _size.Y) // //{ // // prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z); // //} // //else // //{ // //prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z); // //} // //} // else // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); // } // //prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z); // d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); // d.Quaternion myrot = new d.Quaternion(); // myrot.W = _orientation.w; // myrot.X = _orientation.X; // myrot.Y = _orientation.Y; // myrot.Z = _orientation.Z; // d.GeomSetQuaternion(prim_geom, ref myrot); // } // } // else // { // if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) // { // if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z) // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2)); // } // else // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); // } // } // //else if (_pbs.ProfileShape == ProfileShape.Circle && _pbs.PathCurve == (byte)Extrusion.Straight) // //{ // //Cyllinder // //if (_size.X == _size.Y) // //{ // //prim_geom = d.CreateCylinder(m_targetSpace, _size.X / 2, _size.Z); // //} // //else // //{ // //prim_geom = d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z); // //} // //} // else // { // _parent_scene.waitForSpaceUnlock(m_targetSpace); // SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); // } // d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); // d.Quaternion myrot = new d.Quaternion(); // myrot.W = _orientation.w; // myrot.X = _orientation.X; // myrot.Y = _orientation.Y; // myrot.Z = _orientation.Z; // d.GeomSetQuaternion(prim_geom, ref myrot); // //d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z); // if (IsPhysical && Body == (IntPtr) 0) // { // // Re creates body on size. // // EnableBody also does setMass() // enableBody(); // d.BodyEnable(Body); // } // } // _parent_scene.geom_name_map[prim_geom] = oldname; // changeSelectedStatus(timestamp); // resetCollisionAccounting(); // m_taintsize = _size; //} public void changefloatonwater(float timestep) { m_collidesWater = m_taintCollidesWater; if (prim_geom != IntPtr.Zero) { if (m_collidesWater) { m_collisionFlags |= CollisionCategories.Water; } else { m_collisionFlags &= ~CollisionCategories.Water; } d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags); } } public void changeshape(float timestamp) { string oldname = _parent_scene.geom_name_map[prim_geom]; // Cleanup of old prim geometry and Bodies if (IsPhysical && Body != IntPtr.Zero) { if (childPrim) { if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildDelink(this); } } else { disableBody(); } } try { d.GeomDestroy(prim_geom); } catch (System.AccessViolationException) { prim_geom = IntPtr.Zero; m_log.Error("[PHYSICS]: PrimGeom dead"); } prim_geom = IntPtr.Zero; // we don't need to do space calculation because the client sends a position update also. if (_size.X <= 0) _size.X = 0.01f; if (_size.Y <= 0) _size.Y = 0.01f; if (_size.Z <= 0) _size.Z = 0.01f; // Construction of new prim if (_parent_scene.needsMeshing(_pbs)) { // Don't need to re-enable body.. it's done in SetMesh float meshlod = _parent_scene.meshSculptLOD; if (IsPhysical) meshlod = _parent_scene.MeshSculptphysicalLOD; IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical); // createmesh returns null when it doesn't mesh. CreateGeom(m_targetSpace, mesh); } else { _mesh = null; CreateGeom(m_targetSpace, null); } d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); //myrot.W = _orientation.w; myrot.W = _orientation.W; myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; d.GeomSetQuaternion(prim_geom, ref myrot); //d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z); if (IsPhysical && Body == IntPtr.Zero) { // Re creates body on size. // EnableBody also does setMass() enableBody(); d.BodyEnable(Body); } _parent_scene.geom_name_map[prim_geom] = oldname; changeSelectedStatus(timestamp); if (childPrim) { if (_parent is OdePrim) { OdePrim parent = (OdePrim)_parent; parent.ChildSetGeom(this); } } resetCollisionAccounting(); m_taintshape = false; } public void changeAddForce(float timestamp) { if (!m_isSelected) { lock (m_forcelist) { //m_log.Info("[PHYSICS]: dequeing forcelist"); if (IsPhysical) { PhysicsVector iforce = new PhysicsVector(); for (int i = 0; i < m_forcelist.Count; i++) { iforce = iforce + (m_forcelist[i] * 100); } d.BodyEnable(Body); d.BodyAddForce(Body, iforce.X, iforce.Y, iforce.Z); } m_forcelist.Clear(); } m_collisionscore = 0; m_interpenetrationcount = 0; } m_taintforce = false; } private void changevelocity(float timestep) { if (!m_isSelected) { Thread.Sleep(20); if (IsPhysical) { if (Body != IntPtr.Zero) { d.BodySetLinearVel(Body, m_taintVelocity.X, m_taintVelocity.Y, m_taintVelocity.Z); } } //resetCollisionAccounting(); } m_taintVelocity = PhysicsVector.Zero; } public override bool IsPhysical { get { return m_isphysical; } set { m_isphysical = value; } } public void setPrimForRemoval() { m_taintremove = true; } public override bool Flying { // no flying prims for you get { return false; } set { } } public override bool IsColliding { get { return iscolliding; } set { iscolliding = value; } } public override bool CollidingGround { get { return false; } set { return; } } public override bool CollidingObj { get { return false; } set { return; } } public override bool ThrottleUpdates { get { return m_throttleUpdates; } set { m_throttleUpdates = value; } } public override bool Stopped { get { return _zeroFlag; } } public override PhysicsVector Position { get { return _position; } set { _position = value; //m_log.Info("[PHYSICS]: " + _position.ToString()); } } public override PhysicsVector Size { get { return _size; } set { _size = value; } } public override float Mass { get { return CalculateMass(); } } public override PhysicsVector Force { //get { return PhysicsVector.Zero; } get { return m_force; } set { m_force = value; } } public override int VehicleType { get { return 0; } set { return; } } public override void VehicleFloatParam(int param, float value) { } public override void VehicleVectorParam(int param, PhysicsVector value) { } public override void VehicleRotationParam(int param, Quaternion rotation) { } public override PhysicsVector CenterOfMass { get { return PhysicsVector.Zero; } } public override PhysicsVector GeometricCenter { get { return PhysicsVector.Zero; } } public override PrimitiveBaseShape Shape { set { _pbs = value; m_taintshape = true; } } public override PhysicsVector Velocity { get { // Averate previous velocity with the new one so // client object interpolation works a 'little' better PhysicsVector returnVelocity = new PhysicsVector(); returnVelocity.X = (m_lastVelocity.X + _velocity.X)/2; returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y)/2; returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z)/2; return returnVelocity; } set { _velocity = value; m_taintVelocity = value; _parent_scene.AddPhysicsActorTaint(this); } } public override float CollisionScore { get { return m_collisionscore; } set { m_collisionscore = value; } } public override bool Kinematic { get { return false; } set { } } public override Quaternion Orientation { get { return _orientation; } set { _orientation = value; } } public override PhysicsVector Acceleration { get { return _acceleration; } } public void SetAcceleration(PhysicsVector accel) { _acceleration = accel; } public override void AddForce(PhysicsVector force, bool pushforce) { m_forcelist.Add(force); m_taintforce = true; //m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString()); } public override PhysicsVector RotationalVelocity { get { PhysicsVector pv = new PhysicsVector(0, 0, 0); if (_zeroFlag) return pv; m_lastUpdateSent = false; if (m_rotationalVelocity.IsIdentical(pv, 0.2f)) return pv; return m_rotationalVelocity; } set { m_rotationalVelocity = value; } } public override void CrossingFailure() { m_crossingfailures++; if (m_crossingfailures > _parent_scene.geomCrossingFailuresBeforeOutofbounds) { base.RaiseOutOfBounds(_position); return; } else if (m_crossingfailures == _parent_scene.geomCrossingFailuresBeforeOutofbounds) { m_log.Warn("[PHYSICS]: Too many crossing failures for: " + m_primName); } } public override float Buoyancy { get { return m_buoyancy; } set { m_buoyancy = value; } } public override void link(PhysicsActor obj) { m_taintparent = obj; } public override void delink() { m_taintparent = null; } public override void LockAngularMotion(PhysicsVector axis) { // reverse the zero/non zero values for ODE. axis.X = (axis.X > 0) ? 1f : 0f; axis.Y = (axis.Y > 0) ? 1f : 0f; axis.Z = (axis.Z > 0) ? 1f : 0f; m_taintAngularLock = new PhysicsVector(axis.X, axis.Y, axis.Z); ; } public void UpdatePositionAndVelocity() { // no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit! if (_parent == null) { PhysicsVector pv = new PhysicsVector(0, 0, 0); bool lastZeroFlag = _zeroFlag; if (Body != (IntPtr)0) { d.Vector3 vec = d.BodyGetPosition(Body); d.Quaternion ori = d.BodyGetQuaternion(Body); d.Vector3 vel = d.BodyGetLinearVel(Body); d.Vector3 rotvel = d.BodyGetAngularVel(Body); PhysicsVector l_position = new PhysicsVector(); // kluge to keep things in bounds. ODE lets dead avatars drift away (they should be removed!) //if (vec.X < 0.0f) { vec.X = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } //if (vec.Y < 0.0f) { vec.Y = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } //if (vec.X > 255.95f) { vec.X = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } //if (vec.Y > 255.95f) { vec.Y = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } m_lastposition = _position; l_position.X = vec.X; l_position.Y = vec.Y; l_position.Z = vec.Z; if (l_position.X > 255.95f || l_position.X < 0f || l_position.Y > 255.95f || l_position.Y < 0f) { //base.RaiseOutOfBounds(l_position); if (m_crossingfailures < _parent_scene.geomCrossingFailuresBeforeOutofbounds) { _position = l_position; //_parent_scene.remActivePrim(this); if (_parent == null) base.RequestPhysicsterseUpdate(); return; } else { if (_parent == null) base.RaiseOutOfBounds(l_position); return; } } if (l_position.Z < 0) { // This is so prim that get lost underground don't fall forever and suck up // // Sim resources and memory. // Disables the prim's movement physics.... // It's a hack and will generate a console message if it fails. //IsPhysical = false; if (_parent == null) base.RaiseOutOfBounds(_position); _acceleration.X = 0; _acceleration.Y = 0; _acceleration.Z = 0; _velocity.X = 0; _velocity.Y = 0; _velocity.Z = 0; m_rotationalVelocity.X = 0; m_rotationalVelocity.Y = 0; m_rotationalVelocity.Z = 0; if (_parent == null) base.RequestPhysicsterseUpdate(); m_throttleUpdates = false; throttleCounter = 0; _zeroFlag = true; //outofBounds = true; } if ((Math.Abs(m_lastposition.X - l_position.X) < 0.02) && (Math.Abs(m_lastposition.Y - l_position.Y) < 0.02) && (Math.Abs(m_lastposition.Z - l_position.Z) < 0.02)) { _zeroFlag = true; m_throttleUpdates = false; } else { //System.Console.WriteLine(Math.Abs(m_lastposition.X - l_position.X).ToString()); _zeroFlag = false; } if (_zeroFlag) { _velocity.X = 0.0f; _velocity.Y = 0.0f; _velocity.Z = 0.0f; _acceleration.X = 0; _acceleration.Y = 0; _acceleration.Z = 0; //_orientation.w = 0f; //_orientation.X = 0f; //_orientation.Y = 0f; //_orientation.Z = 0f; m_rotationalVelocity.X = 0; m_rotationalVelocity.Y = 0; m_rotationalVelocity.Z = 0; if (!m_lastUpdateSent) { m_throttleUpdates = false; throttleCounter = 0; m_rotationalVelocity = pv; if (_parent == null) base.RequestPhysicsterseUpdate(); m_lastUpdateSent = true; } } else { if (lastZeroFlag != _zeroFlag) { if (_parent == null) base.RequestPhysicsterseUpdate(); } m_lastVelocity = _velocity; _position = l_position; _velocity.X = vel.X; _velocity.Y = vel.Y; _velocity.Z = vel.Z; _acceleration = ((_velocity - m_lastVelocity) / 0.1f); _acceleration = new PhysicsVector(_velocity.X - m_lastVelocity.X / 0.1f, _velocity.Y - m_lastVelocity.Y / 0.1f, _velocity.Z - m_lastVelocity.Z / 0.1f); //m_log.Info("[PHYSICS]: V1: " + _velocity + " V2: " + m_lastVelocity + " Acceleration: " + _acceleration.ToString()); if (_velocity.IsIdentical(pv, 0.5f)) { m_rotationalVelocity = pv; } else { m_rotationalVelocity.setValues(rotvel.X, rotvel.Y, rotvel.Z); } //System.Console.WriteLine("ODE: " + m_rotationalVelocity.ToString()); _orientation.X = ori.X; _orientation.Y = ori.Y; _orientation.Z = ori.Z; _orientation.W = ori.W; m_lastUpdateSent = false; if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate) { if (_parent == null) base.RequestPhysicsterseUpdate(); } else { throttleCounter++; } } m_lastposition = l_position; } else { // Not a body.. so Make sure the client isn't interpolating _velocity.X = 0; _velocity.Y = 0; _velocity.Z = 0; _acceleration.X = 0; _acceleration.Y = 0; _acceleration.Z = 0; m_rotationalVelocity.X = 0; m_rotationalVelocity.Y = 0; m_rotationalVelocity.Z = 0; _zeroFlag = true; } } } public override bool FloatOnWater { set { m_taintCollidesWater = value; _parent_scene.AddPhysicsActorTaint(this); } } public override void SetMomentum(PhysicsVector momentum) { } public override PhysicsVector PIDTarget { set { m_PIDTarget = value; ; } } public override bool PIDActive { set { m_usePID = value; } } public override float PIDTau { set { m_PIDTau = value; } } private void createAMotor(PhysicsVector axis) { if (Body == IntPtr.Zero) return; if (Amotor != IntPtr.Zero) { d.JointDestroy(Amotor); Amotor = IntPtr.Zero; } float axisnum = 3; axisnum = (axisnum - (axis.X + axis.Y + axis.Z)); if (axisnum <= 0) return; int dAMotorEuler = 1; Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero); d.JointAttach(Amotor, Body, IntPtr.Zero); d.JointSetAMotorMode(Amotor, dAMotorEuler); d.JointSetAMotorNumAxes(Amotor,(int)axisnum); int i = 0; if (axis.X == 0) { d.JointSetAMotorAxis(Amotor, i, 0, 1, 0, 0); i++; } if (axis.Y == 0) { d.JointSetAMotorAxis(Amotor, i, 0, 0, 1, 0); i++; } if (axis.Z == 0) { d.JointSetAMotorAxis(Amotor, i, 0, 0, 0, 1); i++; } for (int j = 0; j < (int)axisnum; j++) { //d.JointSetAMotorAngle(Amotor, j, 0); } //d.JointSetAMotorAngle(Amotor, 1, 0); //d.JointSetAMotorAngle(Amotor, 2, 0); // These lowstops and high stops are effectively (no wiggle room) d.JointSetAMotorParam(Amotor, (int)dParam.LowStop, -0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.LoStop3, -0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.LoStop2, -0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.HiStop, 0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.HiStop3, 0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.HiStop2, 0.000000000001f); d.JointSetAMotorParam(Amotor, (int)dParam.FudgeFactor, 0f); d.JointSetAMotorParam(Amotor, (int)dParam.FMax, m_tensor); } public override void SubscribeEvents(int ms) { m_eventsubscription = ms; _parent_scene.addCollisionEventReporting(this); } public override void UnSubscribeEvents() { _parent_scene.remCollisionEventReporting(this); m_eventsubscription = 0; } public void AddCollisionEvent(uint CollidedWith, float depth) { if (CollisionEventsThisFrame == null) CollisionEventsThisFrame = new CollisionEventUpdate(); CollisionEventsThisFrame.addCollider(CollidedWith,depth); } public void SendCollisions() { if (CollisionEventsThisFrame == null) return; base.SendCollisionUpdate(CollisionEventsThisFrame); if (CollisionEventsThisFrame.m_objCollisionList.Count == 0) CollisionEventsThisFrame = null; else CollisionEventsThisFrame = new CollisionEventUpdate(); } public override bool SubscribedEvents() { if (m_eventsubscription > 0) return true; return false; } } }