/*
* Copyright (c) Contributors
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
namespace PrimMesher
{
public struct Quat
{
/// X value
public float X;
/// Y value
public float Y;
/// Z value
public float Z;
/// W value
public float W;
public Quat(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
public Quat(Coord axis, float angle)
{
axis = axis.Normalize();
angle *= 0.5f;
float c = (float)Math.Cos(angle);
float s = (float)Math.Sin(angle);
X = axis.X * s;
Y = axis.Y * s;
Z = axis.Z * s;
W = c;
Normalize();
}
public float Length()
{
return (float)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
}
public Quat Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
float mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
float oomag = 1f / mag;
X *= oomag;
Y *= oomag;
Z *= oomag;
W *= oomag;
}
else
{
X = 0f;
Y = 0f;
Z = 0f;
W = 1f;
}
return this;
}
public static Quat operator *(Quat q1, Quat q2)
{
float x = q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y;
float y = q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X;
float z = q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W;
float w = q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z;
return new Quat(x, y, z, w);
}
public override string ToString()
{
return "< X: " + this.X.ToString() + ", Y: " + this.Y.ToString() + ", Z: " + this.Z.ToString() + ", W: " + this.W.ToString() + ">";
}
}
public struct Coord
{
public float X;
public float Y;
public float Z;
public Coord(float x, float y, float z)
{
this.X = x;
this.Y = y;
this.Z = z;
}
public float Length()
{
return (float)Math.Sqrt(this.X * this.X + this.Y * this.Y + this.Z * this.Z);
}
public Coord Invert()
{
this.X = -this.X;
this.Y = -this.Y;
this.Z = -this.Z;
return this;
}
public Coord Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
float mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
float oomag = 1.0f / mag;
this.X *= oomag;
this.Y *= oomag;
this.Z *= oomag;
}
else
{
this.X = 0.0f;
this.Y = 0.0f;
this.Z = 0.0f;
}
return this;
}
public override string ToString()
{
return this.X.ToString() + " " + this.Y.ToString() + " " + this.Z.ToString();
}
public static Coord Cross(Coord c1, Coord c2)
{
return new Coord(
c1.Y * c2.Z - c2.Y * c1.Z,
c1.Z * c2.X - c2.Z * c1.X,
c1.X * c2.Y - c2.X * c1.Y
);
}
public static Coord operator +(Coord v, Coord a)
{
return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z);
}
public static Coord operator *(Coord v, Coord m)
{
return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z);
}
public static Coord operator *(Coord v, Quat q)
{
// From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
Coord c2 = new Coord(0.0f, 0.0f, 0.0f);
c2.X = q.W * q.W * v.X +
2f * q.Y * q.W * v.Z -
2f * q.Z * q.W * v.Y +
q.X * q.X * v.X +
2f * q.Y * q.X * v.Y +
2f * q.Z * q.X * v.Z -
q.Z * q.Z * v.X -
q.Y * q.Y * v.X;
c2.Y =
2f * q.X * q.Y * v.X +
q.Y * q.Y * v.Y +
2f * q.Z * q.Y * v.Z +
2f * q.W * q.Z * v.X -
q.Z * q.Z * v.Y +
q.W * q.W * v.Y -
2f * q.X * q.W * v.Z -
q.X * q.X * v.Y;
c2.Z =
2f * q.X * q.Z * v.X +
2f * q.Y * q.Z * v.Y +
q.Z * q.Z * v.Z -
2f * q.W * q.Y * v.X -
q.Y * q.Y * v.Z +
2f * q.W * q.X * v.Y -
q.X * q.X * v.Z +
q.W * q.W * v.Z;
return c2;
}
}
public struct UVCoord
{
public float U;
public float V;
public UVCoord(float u, float v)
{
this.U = u;
this.V = v;
}
}
public struct Face
{
public int primFace;
// vertices
public int v1;
public int v2;
public int v3;
//normals
public int n1;
public int n2;
public int n3;
// uvs
public int uv1;
public int uv2;
public int uv3;
public Face(int v1, int v2, int v3)
{
primFace = 0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
this.n1 = 0;
this.n2 = 0;
this.n3 = 0;
this.uv1 = 0;
this.uv2 = 0;
this.uv3 = 0;
}
public Face(int v1, int v2, int v3, int n1, int n2, int n3)
{
primFace = 0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
this.n1 = n1;
this.n2 = n2;
this.n3 = n3;
this.uv1 = 0;
this.uv2 = 0;
this.uv3 = 0;
}
public Coord SurfaceNormal(List coordList)
{
Coord c1 = coordList[this.v1];
Coord c2 = coordList[this.v2];
Coord c3 = coordList[this.v3];
Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
return Coord.Cross(edge1, edge2).Normalize();
}
}
public struct ViewerFace
{
public int primFaceNumber;
public Coord v1;
public Coord v2;
public Coord v3;
public int coordIndex1;
public int coordIndex2;
public int coordIndex3;
public Coord n1;
public Coord n2;
public Coord n3;
public UVCoord uv1;
public UVCoord uv2;
public UVCoord uv3;
public ViewerFace(int primFaceNumber)
{
this.primFaceNumber = primFaceNumber;
this.v1 = new Coord();
this.v2 = new Coord();
this.v3 = new Coord();
this.coordIndex1 = this.coordIndex2 = this.coordIndex3 = -1; // -1 means not assigned yet
this.n1 = new Coord();
this.n2 = new Coord();
this.n3 = new Coord();
this.uv1 = new UVCoord();
this.uv2 = new UVCoord();
this.uv3 = new UVCoord();
}
public void Scale(float x, float y, float z)
{
this.v1.X *= x;
this.v1.Y *= y;
this.v1.Z *= z;
this.v2.X *= x;
this.v2.Y *= y;
this.v2.Z *= z;
this.v3.X *= x;
this.v3.Y *= y;
this.v3.Z *= z;
}
public void AddPos(float x, float y, float z)
{
this.v1.X += x;
this.v2.X += x;
this.v3.X += x;
this.v1.Y += y;
this.v2.Y += y;
this.v3.Y += y;
this.v1.Z += z;
this.v2.Z += z;
this.v3.Z += z;
}
public void AddRot(Quat q)
{
this.v1 *= q;
this.v2 *= q;
this.v3 *= q;
this.n1 *= q;
this.n2 *= q;
this.n3 *= q;
}
public void CalcSurfaceNormal()
{
Coord edge1 = new Coord(this.v2.X - this.v1.X, this.v2.Y - this.v1.Y, this.v2.Z - this.v1.Z);
Coord edge2 = new Coord(this.v3.X - this.v1.X, this.v3.Y - this.v1.Y, this.v3.Z - this.v1.Z);
this.n1 = this.n2 = this.n3 = Coord.Cross(edge1, edge2).Normalize();
}
}
internal struct Angle
{
internal float angle;
internal float X;
internal float Y;
internal Angle(float angle, float x, float y)
{
this.angle = angle;
this.X = x;
this.Y = y;
}
}
internal class AngleList
{
private float iX, iY; // intersection point
private static Angle[] angles3 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Coord[] normals3 =
{
new Coord(0.25f, 0.4330127019f, 0.0f).Normalize(),
new Coord(-0.5f, 0.0f, 0.0f).Normalize(),
new Coord(0.25f, -0.4330127019f, 0.0f).Normalize(),
new Coord(0.25f, 0.4330127019f, 0.0f).Normalize()
};
private static Angle[] angles4 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Coord[] normals4 =
{
new Coord(0.5f, 0.5f, 0.0f).Normalize(),
new Coord(-0.5f, 0.5f, 0.0f).Normalize(),
new Coord(-0.5f, -0.5f, 0.0f).Normalize(),
new Coord(0.5f, -0.5f, 0.0f).Normalize(),
new Coord(0.5f, 0.5f, 0.0f).Normalize()
};
private static Angle[] angles24 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f),
new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f),
new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f),
new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f),
new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f),
new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f),
new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f),
new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f),
new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f),
new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f),
new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f),
new Angle(1.0f, 1.0f, 0.0f)
};
private Angle interpolatePoints(float newPoint, Angle p1, Angle p2)
{
float m = (newPoint - p1.angle) / (p2.angle - p1.angle);
return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y));
}
private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{ // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
double uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3);
if (denom != 0.0)
{
double ua = uaNumerator / denom;
iX = (float)(x1 + ua * (x2 - x1));
iY = (float)(y1 + ua * (y2 - y1));
}
}
internal List angles;
internal List normals;
internal void makeAngles(int sides, float startAngle, float stopAngle)
{
angles = new List();
normals = new List();
double twoPi = System.Math.PI * 2.0;
float twoPiInv = 1.0f / (float)twoPi;
if (sides < 1)
throw new Exception("number of sides not greater than zero");
if (stopAngle <= startAngle)
throw new Exception("stopAngle not greater than startAngle");
if ((sides == 3 || sides == 4 || sides == 24))
{
startAngle *= twoPiInv;
stopAngle *= twoPiInv;
Angle[] sourceAngles;
if (sides == 3)
sourceAngles = angles3;
else if (sides == 4)
sourceAngles = angles4;
else sourceAngles = angles24;
int startAngleIndex = (int)(startAngle * sides);
int endAngleIndex = sourceAngles.Length - 1;
if (stopAngle < 1.0f)
endAngleIndex = (int)(stopAngle * sides) + 1;
if (endAngleIndex == startAngleIndex)
endAngleIndex++;
for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++)
{
angles.Add(sourceAngles[angleIndex]);
if (sides == 3)
normals.Add(normals3[angleIndex]);
else if (sides == 4)
normals.Add(normals4[angleIndex]);
}
if (startAngle > 0.0f)
angles[0] = interpolatePoints(startAngle, angles[0], angles[1]);
if (stopAngle < 1.0f)
{
int lastAngleIndex = angles.Count - 1;
angles[lastAngleIndex] = interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]);
}
}
else
{
double stepSize = twoPi / sides;
int startStep = (int)(startAngle / stepSize);
double angle = stepSize * startStep;
int step = startStep;
double stopAngleTest = stopAngle;
if (stopAngle < twoPi)
{
stopAngleTest = stepSize * ((int)(stopAngle / stepSize) + 1);
if (stopAngleTest < stopAngle)
stopAngleTest += stepSize;
if (stopAngleTest > twoPi)
stopAngleTest = twoPi;
}
while (angle <= stopAngleTest)
{
Angle newAngle;
newAngle.angle = (float)angle;
newAngle.X = (float)System.Math.Cos(angle);
newAngle.Y = (float)System.Math.Sin(angle);
angles.Add(newAngle);
step += 1;
angle = stepSize * step;
}
if (startAngle > angles[0].angle)
{
Angle newAngle;
intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float)Math.Cos(startAngle), (float)Math.Sin(startAngle));
newAngle.angle = startAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[0] = newAngle;
}
int index = angles.Count - 1;
if (stopAngle < angles[index].angle)
{
Angle newAngle;
intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float)Math.Cos(stopAngle), (float)Math.Sin(stopAngle));
newAngle.angle = stopAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[index] = newAngle;
}
}
}
}
///
/// generates a profile for extrusion
///
internal class Profile
{
private const float twoPi = 2.0f * (float)Math.PI;
internal string errorMessage = null;
internal List coords;
internal List faces;
internal List vertexNormals;
internal List us;
internal List faceUVs;
internal List faceNumbers;
// use these for making individual meshes for each prim face
internal List outerCoordIndices = null;
internal List hollowCoordIndices = null;
internal List cut1CoordIndices = null;
internal List cut2CoordIndices = null;
internal Coord faceNormal = new Coord(0.0f, 0.0f, 1.0f);
internal Coord cutNormal1 = new Coord();
internal Coord cutNormal2 = new Coord();
internal int numOuterVerts = 0;
internal int numHollowVerts = 0;
internal bool calcVertexNormals = false;
internal int bottomFaceNumber = 0;
internal int numPrimFaces = 0;
internal Profile()
{
this.coords = new List();
this.faces = new List();
this.vertexNormals = new List();
this.us = new List();
this.faceUVs = new List();
this.faceNumbers = new List();
}
internal Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool createFaces, bool calcVertexNormals)
{
this.calcVertexNormals = calcVertexNormals;
this.coords = new List();
this.faces = new List();
this.vertexNormals = new List();
this.us = new List();
this.faceUVs = new List();
this.faceNumbers = new List();
Coord center = new Coord(0.0f, 0.0f, 0.0f);
//bool hasCenter = false;
List hollowCoords = new List();
List hollowNormals = new List();
List hollowUs = new List();
if (calcVertexNormals)
{
this.outerCoordIndices = new List();
this.hollowCoordIndices = new List();
this.cut1CoordIndices = new List();
this.cut2CoordIndices = new List();
}
bool hasHollow = (hollow > 0.0f);
bool hasProfileCut = (profileStart > 0.0f || profileEnd < 1.0f);
AngleList angles = new AngleList();
AngleList hollowAngles = new AngleList();
float xScale = 0.5f;
float yScale = 0.5f;
if (sides == 4) // corners of a square are sqrt(2) from center
{
xScale = 0.707f;
yScale = 0.707f;
}
float startAngle = profileStart * twoPi;
float stopAngle = profileEnd * twoPi;
try { angles.makeAngles(sides, startAngle, stopAngle); }
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex.ToString()
+ "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString();
return;
}
this.numOuterVerts = angles.angles.Count;
// flag to create as few triangles as possible for 3 or 4 side profile
bool simpleFace = (sides < 5 && !hasHollow && !hasProfileCut);
if (hasHollow)
{
if (sides == hollowSides)
hollowAngles = angles;
else
{
try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle); }
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex.ToString()
+ "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString();
return;
}
}
this.numHollowVerts = hollowAngles.angles.Count;
}
else if (!simpleFace)
{
this.coords.Add(center);
//hasCenter = true;
if (this.calcVertexNormals)
this.vertexNormals.Add(new Coord(0.0f, 0.0f, 1.0f));
this.us.Add(0.0f);
}
float z = 0.0f;
Angle angle;
Coord newVert = new Coord();
if (hasHollow && hollowSides != sides)
{
int numHollowAngles = hollowAngles.angles.Count;
for (int i = 0; i < numHollowAngles; i++)
{
angle = hollowAngles.angles[i];
newVert.X = hollow * xScale * angle.X;
newVert.Y = hollow * yScale * angle.Y;
newVert.Z = z;
hollowCoords.Add(newVert);
if (this.calcVertexNormals)
{
if (hollowSides < 5)
hollowNormals.Add(hollowAngles.normals[i].Invert());
else
hollowNormals.Add(new Coord(-angle.X, -angle.Y, 0.0f));
hollowUs.Add(angle.angle * hollow);
}
}
}
int index = 0;
int numAngles = angles.angles.Count;
for (int i = 0; i < numAngles; i++)
{
angle = angles.angles[i];
newVert.X = angle.X * xScale;
newVert.Y = angle.Y * yScale;
newVert.Z = z;
this.coords.Add(newVert);
if (this.calcVertexNormals)
{
this.outerCoordIndices.Add(this.coords.Count - 1);
if (sides < 5)
{
this.vertexNormals.Add(angles.normals[i]);
float u = angle.angle;
this.us.Add(u);
}
else
{
this.vertexNormals.Add(new Coord(angle.X, angle.Y, 0.0f));
this.us.Add(angle.angle);
}
}
if (hasHollow)
{
if (hollowSides == sides)
{
newVert.X *= hollow;
newVert.Y *= hollow;
newVert.Z = z;
hollowCoords.Add(newVert);
if (this.calcVertexNormals)
{
if (sides < 5)
{
hollowNormals.Add(angles.normals[i].Invert());
}
else
hollowNormals.Add(new Coord(-angle.X, -angle.Y, 0.0f));
hollowUs.Add(angle.angle * hollow);
}
}
}
else if (!simpleFace && createFaces && angle.angle > 0.0001f)
{
Face newFace = new Face();
newFace.v1 = 0;
newFace.v2 = index;
newFace.v3 = index + 1;
this.faces.Add(newFace);
}
index += 1;
}
if (hasHollow)
{
hollowCoords.Reverse();
if (this.calcVertexNormals)
{
hollowNormals.Reverse();
hollowUs.Reverse();
}
if (createFaces)
{
//int numOuterVerts = this.coords.Count;
//numOuterVerts = this.coords.Count;
//int numHollowVerts = hollowCoords.Count;
int numTotalVerts = this.numOuterVerts + this.numHollowVerts;
if (this.numOuterVerts == this.numHollowVerts)
{
Face newFace = new Face();
for (int coordIndex = 0; coordIndex < this.numOuterVerts - 1; coordIndex++)
{
newFace.v1 = coordIndex;
newFace.v2 = coordIndex + 1;
newFace.v3 = numTotalVerts - coordIndex - 1;
this.faces.Add(newFace);
newFace.v1 = coordIndex + 1;
newFace.v2 = numTotalVerts - coordIndex - 2;
newFace.v3 = numTotalVerts - coordIndex - 1;
this.faces.Add(newFace);
}
}
else
{
if (this.numOuterVerts < this.numHollowVerts)
{
Face newFace = new Face();
int j = 0; // j is the index for outer vertices
int maxJ = this.numOuterVerts - 1;
for (int i = 0; i < this.numHollowVerts; i++) // i is the index for inner vertices
{
if (j < maxJ)
if (angles.angles[j + 1].angle - hollowAngles.angles[i].angle < hollowAngles.angles[i].angle - angles.angles[j].angle + 0.000001f)
{
newFace.v1 = numTotalVerts - i - 1;
newFace.v2 = j;
newFace.v3 = j + 1;
this.faces.Add(newFace);
j += 1;
}
newFace.v1 = j;
newFace.v2 = numTotalVerts - i - 2;
newFace.v3 = numTotalVerts - i - 1;
this.faces.Add(newFace);
}
}
else // numHollowVerts < numOuterVerts
{
Face newFace = new Face();
int j = 0; // j is the index for inner vertices
int maxJ = this.numHollowVerts - 1;
for (int i = 0; i < this.numOuterVerts; i++)
{
if (j < maxJ)
if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[j].angle + 0.000001f)
{
newFace.v1 = i;
newFace.v2 = numTotalVerts - j - 2;
newFace.v3 = numTotalVerts - j - 1;
this.faces.Add(newFace);
j += 1;
}
newFace.v1 = numTotalVerts - j - 1;
newFace.v2 = i;
newFace.v3 = i + 1;
this.faces.Add(newFace);
}
}
}
}
if (calcVertexNormals)
{
foreach (Coord hc in hollowCoords)
{
this.coords.Add(hc);
hollowCoordIndices.Add(this.coords.Count - 1);
}
}
else
this.coords.AddRange(hollowCoords);
if (this.calcVertexNormals)
{
this.vertexNormals.AddRange(hollowNormals);
this.us.AddRange(hollowUs);
}
}
if (simpleFace && createFaces)
{
if (sides == 3)
this.faces.Add(new Face(0, 1, 2));
else if (sides == 4)
{
this.faces.Add(new Face(0, 1, 2));
this.faces.Add(new Face(0, 2, 3));
}
}
if (calcVertexNormals && hasProfileCut)
{
if (hasHollow)
{
int lastOuterVertIndex = this.numOuterVerts - 1;
this.cut1CoordIndices.Add(0);
this.cut1CoordIndices.Add(this.coords.Count - 1);
this.cut2CoordIndices.Add(lastOuterVertIndex + 1);
this.cut2CoordIndices.Add(lastOuterVertIndex);
this.cutNormal1.X = this.coords[0].Y - this.coords[this.coords.Count - 1].Y;
this.cutNormal1.Y = -(this.coords[0].X - this.coords[this.coords.Count - 1].X);
this.cutNormal2.X = this.coords[lastOuterVertIndex + 1].Y - this.coords[lastOuterVertIndex].Y;
this.cutNormal2.Y = -(this.coords[lastOuterVertIndex + 1].X - this.coords[lastOuterVertIndex].X);
}
else
{
this.cutNormal1.X = this.vertexNormals[1].Y;
this.cutNormal1.Y = -this.vertexNormals[1].X;
this.cutNormal2.X = -this.vertexNormals[this.vertexNormals.Count - 2].Y;
this.cutNormal2.Y = this.vertexNormals[this.vertexNormals.Count - 2].X;
}
this.cutNormal1.Normalize();
this.cutNormal2.Normalize();
}
this.MakeFaceUVs();
hollowCoords = null;
hollowNormals = null;
hollowUs = null;
if (calcVertexNormals)
{ // calculate prim face numbers
// face number order is top, outer, hollow, bottom, start cut, end cut
// I know it's ugly but so is the whole concept of prim face numbers
int faceNum = 1; // start with outer faces
int startVert = hasProfileCut && !hasHollow ? 1 : 0;
if (startVert > 0)
this.faceNumbers.Add(-1);
for (int i = 0; i < this.numOuterVerts - 1; i++)
this.faceNumbers.Add(sides < 5 ? faceNum++ : faceNum);
//if (!hasHollow && !hasProfileCut)
// this.bottomFaceNumber = faceNum++;
this.faceNumbers.Add(hasProfileCut ? -1 : faceNum++);
if (sides > 4 && (hasHollow || hasProfileCut))
faceNum++;
if (hasHollow)
{
for (int i = 0; i < this.numHollowVerts; i++)
this.faceNumbers.Add(faceNum);
faceNum++;
}
//if (hasProfileCut || hasHollow)
// this.bottomFaceNumber = faceNum++;
this.bottomFaceNumber = faceNum++;
if (hasHollow && hasProfileCut)
this.faceNumbers.Add(faceNum++);
for (int i = 0; i < this.faceNumbers.Count; i++)
if (this.faceNumbers[i] == -1)
this.faceNumbers[i] = faceNum++;
this.numPrimFaces = faceNum;
}
}
internal void MakeFaceUVs()
{
this.faceUVs = new List();
foreach (Coord c in this.coords)
this.faceUVs.Add(new UVCoord(0.5f + c.X, 0.5f - c.Y));
}
internal Profile Copy()
{
return this.Copy(true);
}
internal Profile Copy(bool needFaces)
{
Profile copy = new Profile();
copy.coords.AddRange(this.coords);
copy.faceUVs.AddRange(this.faceUVs);
if (needFaces)
copy.faces.AddRange(this.faces);
if ((copy.calcVertexNormals = this.calcVertexNormals) == true)
{
copy.vertexNormals.AddRange(this.vertexNormals);
copy.faceNormal = this.faceNormal;
copy.cutNormal1 = this.cutNormal1;
copy.cutNormal2 = this.cutNormal2;
copy.us.AddRange(this.us);
copy.faceNumbers.AddRange(this.faceNumbers);
copy.cut1CoordIndices = new List(this.cut1CoordIndices);
copy.cut2CoordIndices = new List(this.cut2CoordIndices);
copy.hollowCoordIndices = new List(this.hollowCoordIndices);
copy.outerCoordIndices = new List(this.outerCoordIndices);
}
copy.numOuterVerts = this.numOuterVerts;
copy.numHollowVerts = this.numHollowVerts;
return copy;
}
internal void AddPos(Coord v)
{
this.AddPos(v.X, v.Y, v.Z);
}
internal void AddPos(float x, float y, float z)
{
int i;
int numVerts = this.coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = this.coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
this.coords[i] = vert;
}
}
internal void AddRot(Quat q)
{
int i;
int numVerts = this.coords.Count;
for (i = 0; i < numVerts; i++)
this.coords[i] *= q;
if (this.calcVertexNormals)
{
int numNormals = this.vertexNormals.Count;
for (i = 0; i < numNormals; i++)
this.vertexNormals[i] *= q;
this.faceNormal *= q;
this.cutNormal1 *= q;
this.cutNormal2 *= q;
}
}
internal void Scale(float x, float y)
{
int i;
int numVerts = this.coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = this.coords[i];
vert.X *= x;
vert.Y *= y;
this.coords[i] = vert;
}
}
///
/// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial vertices
///
internal void FlipNormals()
{
int i;
int numFaces = this.faces.Count;
Face tmpFace;
int tmp;
for (i = 0; i < numFaces; i++)
{
tmpFace = this.faces[i];
tmp = tmpFace.v3;
tmpFace.v3 = tmpFace.v1;
tmpFace.v1 = tmp;
this.faces[i] = tmpFace;
}
if (this.calcVertexNormals)
{
int normalCount = this.vertexNormals.Count;
if (normalCount > 0)
{
Coord n = this.vertexNormals[normalCount - 1];
n.Z = -n.Z;
this.vertexNormals[normalCount - 1] = n;
}
}
this.faceNormal.X = -this.faceNormal.X;
this.faceNormal.Y = -this.faceNormal.Y;
this.faceNormal.Z = -this.faceNormal.Z;
int numfaceUVs = this.faceUVs.Count;
for (i = 0; i < numfaceUVs; i++)
{
UVCoord uv = this.faceUVs[i];
uv.V = 1.0f - uv.V;
this.faceUVs[i] = uv;
}
}
internal void AddValue2FaceVertexIndices(int num)
{
int numFaces = this.faces.Count;
Face tmpFace;
for (int i = 0; i < numFaces; i++)
{
tmpFace = this.faces[i];
tmpFace.v1 += num;
tmpFace.v2 += num;
tmpFace.v3 += num;
this.faces[i] = tmpFace;
}
}
internal void AddValue2FaceNormalIndices(int num)
{
if (this.calcVertexNormals)
{
int numFaces = this.faces.Count;
Face tmpFace;
for (int i = 0; i < numFaces; i++)
{
tmpFace = this.faces[i];
tmpFace.n1 += num;
tmpFace.n2 += num;
tmpFace.n3 += num;
this.faces[i] = tmpFace;
}
}
}
internal void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = System.IO.Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
for (int i = 0; i < this.faces.Count; i++)
{
string s = this.coords[this.faces[i].v1].ToString();
s += " " + this.coords[this.faces[i].v2].ToString();
s += " " + this.coords[this.faces[i].v3].ToString();
sw.WriteLine(s);
}
sw.Close();
}
}
public struct PathNode
{
public Coord position;
public Quat rotation;
public float xScale;
public float yScale;
public float percentOfPath;
}
public enum PathType { Linear = 0, Circular = 1, Flexible = 2 }
public class Path
{
public List pathNodes = new List();
public float twistBegin = 0.0f;
public float twistEnd = 0.0f;
public float topShearX = 0.0f;
public float topShearY = 0.0f;
public float pathCutBegin = 0.0f;
public float pathCutEnd = 1.0f;
public float dimpleBegin = 0.0f;
public float dimpleEnd = 1.0f;
public float skew = 0.0f;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
public float taperX = 0.0f;
public float taperY = 0.0f;
public float radius = 0.0f;
public float revolutions = 1.0f;
public int stepsPerRevolution = 24;
private const float twoPi = 2.0f * (float)Math.PI;
public void Create(PathType pathType, int steps)
{
if (pathType == PathType.Linear || pathType == PathType.Flexible)
{
int step = 0;
float length = this.pathCutEnd - this.pathCutBegin;
float twistTotal = twistEnd - twistBegin;
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number
float start = -0.5f;
float stepSize = length / (float)steps;
float percentOfPathMultiplier = stepSize;
float xOffset = 0.0f;
float yOffset = 0.0f;
float zOffset = start;
float xOffsetStepIncrement = this.topShearX / steps;
float yOffsetStepIncrement = this.topShearY / steps;
float percentOfPath = this.pathCutBegin;
zOffset += percentOfPath;
// sanity checks
bool done = false;
while (!done)
{
PathNode newNode = new PathNode();
newNode.xScale = 1.0f;
if (this.taperX == 0.0f)
newNode.xScale = 1.0f;
else if (this.taperX > 0.0f)
newNode.xScale = 1.0f - percentOfPath * this.taperX;
else newNode.xScale = 1.0f + (1.0f - percentOfPath) * this.taperX;
newNode.yScale = 1.0f;
if (this.taperY == 0.0f)
newNode.yScale = 1.0f;
else if (this.taperY > 0.0f)
newNode.yScale = 1.0f - percentOfPath * this.taperY;
else newNode.yScale = 1.0f + (1.0f - percentOfPath) * this.taperY;
float twist = twistBegin + twistTotal * percentOfPath;
newNode.rotation = new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.position = new Coord(xOffset, yOffset, zOffset);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
if (step < steps)
{
step += 1;
percentOfPath += percentOfPathMultiplier;
xOffset += xOffsetStepIncrement;
yOffset += yOffsetStepIncrement;
zOffset += stepSize;
if (percentOfPath > this.pathCutEnd)
done = true;
}
else done = true;
}
} // end of linear path code
else // pathType == Circular
{
float twistTotal = twistEnd - twistBegin;
// if the profile has a lot of twist, add more layers otherwise the layers may overlap
// and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't
// accurately match the viewer
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
{
if (twistTotalAbs > Math.PI * 1.5f)
steps *= 2;
if (twistTotalAbs > Math.PI * 3.0f)
steps *= 2;
}
float yPathScale = this.holeSizeY * 0.5f;
float pathLength = this.pathCutEnd - this.pathCutBegin;
float totalSkew = this.skew * 2.0f * pathLength;
float skewStart = this.pathCutBegin * 2.0f * this.skew - this.skew;
float xOffsetTopShearXFactor = this.topShearX * (0.25f + 0.5f * (0.5f - this.holeSizeY));
float yShearCompensation = 1.0f + Math.Abs(this.topShearY) * 0.25f;
// It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end
// angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used
// to calculate the sine for generating the path radius appears to approximate it's effects there
// too, but there are some subtle differences in the radius which are noticeable as the prim size
// increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on
// the meshes generated with this technique appear nearly identical in shape to the same prims when
// displayed by the viewer.
float startAngle = (twoPi * this.pathCutBegin * this.revolutions) - this.topShearY * 0.9f;
float endAngle = (twoPi * this.pathCutEnd * this.revolutions) - this.topShearY * 0.9f;
float stepSize = twoPi / this.stepsPerRevolution;
int step = (int)(startAngle / stepSize);
float angle = startAngle;
bool done = false;
while (!done) // loop through the length of the path and add the layers
{
PathNode newNode = new PathNode();
float xProfileScale = (1.0f - Math.Abs(this.skew)) * this.holeSizeX;
float yProfileScale = this.holeSizeY;
float percentOfPath = angle / (twoPi * this.revolutions);
float percentOfAngles = (angle - startAngle) / (endAngle - startAngle);
if (this.taperX > 0.01f)
xProfileScale *= 1.0f - percentOfPath * this.taperX;
else if (this.taperX < -0.01f)
xProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperX;
if (this.taperY > 0.01f)
yProfileScale *= 1.0f - percentOfPath * this.taperY;
else if (this.taperY < -0.01f)
yProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperY;
newNode.xScale = xProfileScale;
newNode.yScale = yProfileScale;
float radiusScale = 1.0f;
if (this.radius > 0.001f)
radiusScale = 1.0f - this.radius * percentOfPath;
else if (this.radius < 0.001f)
radiusScale = 1.0f + this.radius * (1.0f - percentOfPath);
float twist = twistBegin + twistTotal * percentOfPath;
float xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles);
xOffset += (float)Math.Sin(angle) * xOffsetTopShearXFactor;
float yOffset = yShearCompensation * (float)Math.Cos(angle) * (0.5f - yPathScale) * radiusScale;
float zOffset = (float)Math.Sin(angle + this.topShearY) * (0.5f - yPathScale) * radiusScale;
newNode.position = new Coord(xOffset, yOffset, zOffset);
// now orient the rotation of the profile layer relative to it's position on the path
// adding taperY to the angle used to generate the quat appears to approximate the viewer
newNode.rotation = new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + this.topShearY);
// next apply twist rotation to the profile layer
if (twistTotal != 0.0f || twistBegin != 0.0f)
newNode.rotation *= new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
// calculate terms for next iteration
// calculate the angle for the next iteration of the loop
if (angle >= endAngle - 0.01)
done = true;
else
{
step += 1;
angle = stepSize * step;
if (angle > endAngle)
angle = endAngle;
}
}
}
}
}
public class PrimMesh
{
public string errorMessage = "";
private const float twoPi = 2.0f * (float)Math.PI;
public List coords;
public List normals;
public List faces;
public List viewerFaces;
private int sides = 4;
private int hollowSides = 4;
private float profileStart = 0.0f;
private float profileEnd = 1.0f;
private float hollow = 0.0f;
public int twistBegin = 0;
public int twistEnd = 0;
public float topShearX = 0.0f;
public float topShearY = 0.0f;
public float pathCutBegin = 0.0f;
public float pathCutEnd = 1.0f;
public float dimpleBegin = 0.0f;
public float dimpleEnd = 1.0f;
public float skew = 0.0f;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
public float taperX = 0.0f;
public float taperY = 0.0f;
public float radius = 0.0f;
public float revolutions = 1.0f;
public int stepsPerRevolution = 24;
private bool hasProfileCut = false;
private bool hasHollow = false;
public bool calcVertexNormals = false;
private bool normalsProcessed = false;
public bool viewerMode = false;
public int numPrimFaces = 0;
///
/// Human readable string representation of the parameters used to create a mesh.
///
///
public string ParamsToDisplayString()
{
string s = "";
s += "sides..................: " + this.sides.ToString();
s += "\nhollowSides..........: " + this.hollowSides.ToString();
s += "\nprofileStart.........: " + this.profileStart.ToString();
s += "\nprofileEnd...........: " + this.profileEnd.ToString();
s += "\nhollow...............: " + this.hollow.ToString();
s += "\ntwistBegin...........: " + this.twistBegin.ToString();
s += "\ntwistEnd.............: " + this.twistEnd.ToString();
s += "\ntopShearX............: " + this.topShearX.ToString();
s += "\ntopShearY............: " + this.topShearY.ToString();
s += "\npathCutBegin.........: " + this.pathCutBegin.ToString();
s += "\npathCutEnd...........: " + this.pathCutEnd.ToString();
s += "\ndimpleBegin..........: " + this.dimpleBegin.ToString();
s += "\ndimpleEnd............: " + this.dimpleEnd.ToString();
s += "\nskew.................: " + this.skew.ToString();
s += "\nholeSizeX............: " + this.holeSizeX.ToString();
s += "\nholeSizeY............: " + this.holeSizeY.ToString();
s += "\ntaperX...............: " + this.taperX.ToString();
s += "\ntaperY...............: " + this.taperY.ToString();
s += "\nradius...............: " + this.radius.ToString();
s += "\nrevolutions..........: " + this.revolutions.ToString();
s += "\nstepsPerRevolution...: " + this.stepsPerRevolution.ToString();
return s;
}
///
/// Constructs a PrimMesh object and creates the profile for extrusion.
///
///
///
///
///
///
public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides)
{
this.coords = new List();
this.faces = new List();
this.sides = sides;
this.profileStart = profileStart;
this.profileEnd = profileEnd;
this.hollow = hollow;
this.hollowSides = hollowSides;
if (sides < 3)
this.sides = 3;
if (hollowSides < 3)
this.hollowSides = 3;
if (profileStart < 0.0f)
this.profileStart = 0.0f;
if (profileEnd > 1.0f)
this.profileEnd = 1.0f;
if (profileEnd < 0.02f)
this.profileEnd = 0.02f;
if (profileStart >= profileEnd)
this.profileStart = profileEnd - 0.02f;
if (hollow > 0.99f)
this.hollow = 0.99f;
if (hollow < 0.0f)
this.hollow = 0.0f;
this.hasProfileCut = (this.profileStart > 0.0f || this.profileEnd < 1.0f);
this.hasHollow = (this.hollow > 0.001f);
}
///
/// Extrudes a profile along a path.
///
public void Extrude(PathType pathType)
{
this.coords = new List();
this.faces = new List();
if (this.viewerMode)
{
this.viewerFaces = new List();
this.calcVertexNormals = true;
}
if (this.calcVertexNormals)
this.normals = new List();
int steps = 1;
float length = this.pathCutEnd - this.pathCutBegin;
normalsProcessed = false;
if (this.viewerMode && this.sides == 3)
{
// prisms don't taper well so add some vertical resolution
// other prims may benefit from this but just do prisms for now
if (Math.Abs(this.taperX) > 0.01 || Math.Abs(this.taperY) > 0.01)
steps = (int)(steps * 4.5 * length);
}
float twistBegin = this.twistBegin / 360.0f * twoPi;
float twistEnd = this.twistEnd / 360.0f * twoPi;
float twistTotal = twistEnd - twistBegin;
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number
float hollow = this.hollow;
// sanity checks
float initialProfileRot = 0.0f;
if (pathType == PathType.Circular)
{
if (this.sides == 3)
{
initialProfileRot = (float)Math.PI;
if (this.hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else hollow *= 0.5f;
}
else if (this.sides == 4)
{
initialProfileRot = 0.25f * (float)Math.PI;
if (this.hollowSides != 4)
hollow *= 0.707f;
}
else if (this.sides > 4)
{
initialProfileRot = (float)Math.PI;
if (this.hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow /= 0.7f;
}
}
}
else
{
if (this.sides == 3)
{
if (this.hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else hollow *= 0.5f;
}
else if (this.sides == 4)
{
initialProfileRot = 1.25f * (float)Math.PI;
if (this.hollowSides != 4)
hollow *= 0.707f;
}
else if (this.sides == 24 && this.hollowSides == 4)
hollow *= 1.414f;
}
Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides, true, calcVertexNormals);
this.errorMessage = profile.errorMessage;
this.numPrimFaces = profile.numPrimFaces;
int cut1Vert = -1;
int cut2Vert = -1;
if (hasProfileCut)
{
cut1Vert = hasHollow ? profile.coords.Count - 1 : 0;
cut2Vert = hasHollow ? profile.numOuterVerts - 1 : profile.numOuterVerts;
}
if (initialProfileRot != 0.0f)
{
profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot));
if (viewerMode)
profile.MakeFaceUVs();
}
Coord lastCutNormal1 = new Coord();
Coord lastCutNormal2 = new Coord();
float lastV = 1.0f;
Path path = new Path();
path.twistBegin = twistBegin;
path.twistEnd = twistEnd;
path.topShearX = topShearX;
path.topShearY = topShearY;
path.pathCutBegin = pathCutBegin;
path.pathCutEnd = pathCutEnd;
path.dimpleBegin = dimpleBegin;
path.dimpleEnd = dimpleEnd;
path.skew = skew;
path.holeSizeX = holeSizeX;
path.holeSizeY = holeSizeY;
path.taperX = taperX;
path.taperY = taperY;
path.radius = radius;
path.revolutions = revolutions;
path.stepsPerRevolution = stepsPerRevolution;
path.Create(pathType, steps);
bool needEndFaces = false;
if (pathType == PathType.Circular)
{
needEndFaces = false;
if (this.pathCutBegin != 0.0f || this.pathCutEnd != 1.0f)
needEndFaces = true;
else if (this.taperX != 0.0f || this.taperY != 0.0f)
needEndFaces = true;
else if (this.skew != 0.0f)
needEndFaces = true;
else if (twistTotal != 0.0f)
needEndFaces = true;
else if (this.radius != 0.0f)
needEndFaces = true;
}
else needEndFaces = true;
for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
{
PathNode node = path.pathNodes[nodeIndex];
Profile newLayer = profile.Copy();
newLayer.Scale(node.xScale, node.yScale);
newLayer.AddRot(node.rotation);
newLayer.AddPos(node.position);
if (needEndFaces && nodeIndex == 0)
{
newLayer.FlipNormals();
// add the top faces to the viewerFaces list here
if (this.viewerMode)
{
Coord faceNormal = newLayer.faceNormal;
ViewerFace newViewerFace = new ViewerFace(profile.bottomFaceNumber);
int numFaces = newLayer.faces.Count;
List faces = newLayer.faces;
for (int i = 0; i < numFaces; i++)
{
Face face = faces[i];
newViewerFace.v1 = newLayer.coords[face.v1];
newViewerFace.v2 = newLayer.coords[face.v2];
newViewerFace.v3 = newLayer.coords[face.v3];
newViewerFace.coordIndex1 = face.v1;
newViewerFace.coordIndex2 = face.v2;
newViewerFace.coordIndex3 = face.v3;
newViewerFace.n1 = faceNormal;
newViewerFace.n2 = faceNormal;
newViewerFace.n3 = faceNormal;
newViewerFace.uv1 = newLayer.faceUVs[face.v1];
newViewerFace.uv2 = newLayer.faceUVs[face.v2];
newViewerFace.uv3 = newLayer.faceUVs[face.v3];
this.viewerFaces.Add(newViewerFace);
}
}
} // if (nodeIndex == 0)
// append this layer
int coordsLen = this.coords.Count;
newLayer.AddValue2FaceVertexIndices(coordsLen);
this.coords.AddRange(newLayer.coords);
if (this.calcVertexNormals)
{
newLayer.AddValue2FaceNormalIndices(this.normals.Count);
this.normals.AddRange(newLayer.vertexNormals);
}
if (node.percentOfPath < this.pathCutBegin + 0.01f || node.percentOfPath > this.pathCutEnd - 0.01f)
this.faces.AddRange(newLayer.faces);
// fill faces between layers
int numVerts = newLayer.coords.Count;
Face newFace = new Face();
if (nodeIndex > 0)
{
int startVert = coordsLen + 1;
int endVert = this.coords.Count;
if (sides < 5 || this.hasProfileCut || hollow > 0.0f)
startVert--;
for (int i = startVert; i < endVert; i++)
{
int iNext = i + 1;
if (i == endVert - 1)
iNext = startVert;
int whichVert = i - startVert;
newFace.v1 = i;
newFace.v2 = i - numVerts;
newFace.v3 = iNext - numVerts;
this.faces.Add(newFace);
newFace.v2 = iNext - numVerts;
newFace.v3 = iNext;
this.faces.Add(newFace);
if (this.viewerMode)
{
// add the side faces to the list of viewerFaces here
int primFaceNum = profile.faceNumbers[whichVert];
if (!needEndFaces)
primFaceNum -= 1;
ViewerFace newViewerFace1 = new ViewerFace(primFaceNum);
ViewerFace newViewerFace2 = new ViewerFace(primFaceNum);
float u1 = newLayer.us[whichVert];
float u2 = 1.0f;
if (whichVert < newLayer.us.Count - 1)
u2 = newLayer.us[whichVert + 1];
if (whichVert == cut1Vert || whichVert == cut2Vert)
{
u1 = 0.0f;
u2 = 1.0f;
}
else if (sides < 5)
{
if (whichVert < profile.numOuterVerts)
{ // boxes and prisms have one texture face per side of the prim, so the U values have to be scaled
// to reflect the entire texture width
u1 *= sides;
u2 *= sides;
u2 -= (int)u1;
u1 -= (int)u1;
if (u2 < 0.1f)
u2 = 1.0f;
}
else if (whichVert > profile.coords.Count - profile.numHollowVerts - 1)
{
u1 *= 2.0f;
u2 *= 2.0f;
}
}
newViewerFace1.uv1.U = u1;
newViewerFace1.uv2.U = u1;
newViewerFace1.uv3.U = u2;
newViewerFace1.uv1.V = 1.0f - node.percentOfPath;
newViewerFace1.uv2.V = lastV;
newViewerFace1.uv3.V = lastV;
newViewerFace2.uv1.U = u1;
newViewerFace2.uv2.U = u2;
newViewerFace2.uv3.U = u2;
newViewerFace2.uv1.V = 1.0f - node.percentOfPath;
newViewerFace2.uv2.V = lastV;
newViewerFace2.uv3.V = 1.0f - node.percentOfPath;
newViewerFace1.v1 = this.coords[i];
newViewerFace1.v2 = this.coords[i - numVerts];
newViewerFace1.v3 = this.coords[iNext - numVerts];
newViewerFace2.v1 = this.coords[i];
newViewerFace2.v2 = this.coords[iNext - numVerts];
newViewerFace2.v3 = this.coords[iNext];
newViewerFace1.coordIndex1 = i;
newViewerFace1.coordIndex2 = i - numVerts;
newViewerFace1.coordIndex3 = iNext - numVerts;
newViewerFace2.coordIndex1 = i;
newViewerFace2.coordIndex2 = iNext - numVerts;
newViewerFace2.coordIndex3 = iNext;
// profile cut faces
if (whichVert == cut1Vert)
{
newViewerFace1.n1 = newLayer.cutNormal1;
newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal1;
newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal1;
newViewerFace2.n2 = lastCutNormal1;
}
else if (whichVert == cut2Vert)
{
newViewerFace1.n1 = newLayer.cutNormal2;
newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal2;
newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal2;
newViewerFace2.n2 = lastCutNormal2;
}
else // outer and hollow faces
{
if ((sides < 5 && whichVert < newLayer.numOuterVerts) || (hollowSides < 5 && whichVert >= newLayer.numOuterVerts))
{ // looks terrible when path is twisted... need vertex normals here
newViewerFace1.CalcSurfaceNormal();
newViewerFace2.CalcSurfaceNormal();
}
else
{
newViewerFace1.n1 = this.normals[i];
newViewerFace1.n2 = this.normals[i - numVerts];
newViewerFace1.n3 = this.normals[iNext - numVerts];
newViewerFace2.n1 = this.normals[i];
newViewerFace2.n2 = this.normals[iNext - numVerts];
newViewerFace2.n3 = this.normals[iNext];
}
}
this.viewerFaces.Add(newViewerFace1);
this.viewerFaces.Add(newViewerFace2);
}
}
}
lastCutNormal1 = newLayer.cutNormal1;
lastCutNormal2 = newLayer.cutNormal2;
lastV = 1.0f - node.percentOfPath;
if (needEndFaces && nodeIndex == path.pathNodes.Count - 1 && viewerMode)
{
// add the top faces to the viewerFaces list here
Coord faceNormal = newLayer.faceNormal;
ViewerFace newViewerFace = new ViewerFace();
newViewerFace.primFaceNumber = 0;
int numFaces = newLayer.faces.Count;
List faces = newLayer.faces;
for (int i = 0; i < numFaces; i++)
{
Face face = faces[i];
newViewerFace.v1 = newLayer.coords[face.v1 - coordsLen];
newViewerFace.v2 = newLayer.coords[face.v2 - coordsLen];
newViewerFace.v3 = newLayer.coords[face.v3 - coordsLen];
newViewerFace.coordIndex1 = face.v1 - coordsLen;
newViewerFace.coordIndex2 = face.v2 - coordsLen;
newViewerFace.coordIndex3 = face.v3 - coordsLen;
newViewerFace.n1 = faceNormal;
newViewerFace.n2 = faceNormal;
newViewerFace.n3 = faceNormal;
newViewerFace.uv1 = newLayer.faceUVs[face.v1 - coordsLen];
newViewerFace.uv2 = newLayer.faceUVs[face.v2 - coordsLen];
newViewerFace.uv3 = newLayer.faceUVs[face.v3 - coordsLen];
this.viewerFaces.Add(newViewerFace);
}
}
} // for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
}
///
/// DEPRICATED - use Extrude(PathType.Linear) instead
/// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism.
///
///
public void ExtrudeLinear()
{
this.Extrude(PathType.Linear);
}
///
/// DEPRICATED - use Extrude(PathType.Circular) instead
/// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring.
///
///
public void ExtrudeCircular()
{
this.Extrude(PathType.Circular);
}
private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3)
{
Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
Coord normal = Coord.Cross(edge1, edge2);
normal.Normalize();
return normal;
}
private Coord SurfaceNormal(Face face)
{
return SurfaceNormal(this.coords[face.v1], this.coords[face.v2], this.coords[face.v3]);
}
///
/// Calculate the surface normal for a face in the list of faces
///
///
///
public Coord SurfaceNormal(int faceIndex)
{
int numFaces = this.faces.Count;
if (faceIndex < 0 || faceIndex >= numFaces)
throw new Exception("faceIndex out of range");
return SurfaceNormal(this.faces[faceIndex]);
}
///
/// Duplicates a PrimMesh object. All object properties are copied by value, including lists.
///
///
public PrimMesh Copy()
{
PrimMesh copy = new PrimMesh(this.sides, this.profileStart, this.profileEnd, this.hollow, this.hollowSides);
copy.twistBegin = this.twistBegin;
copy.twistEnd = this.twistEnd;
copy.topShearX = this.topShearX;
copy.topShearY = this.topShearY;
copy.pathCutBegin = this.pathCutBegin;
copy.pathCutEnd = this.pathCutEnd;
copy.dimpleBegin = this.dimpleBegin;
copy.dimpleEnd = this.dimpleEnd;
copy.skew = this.skew;
copy.holeSizeX = this.holeSizeX;
copy.holeSizeY = this.holeSizeY;
copy.taperX = this.taperX;
copy.taperY = this.taperY;
copy.radius = this.radius;
copy.revolutions = this.revolutions;
copy.stepsPerRevolution = this.stepsPerRevolution;
copy.calcVertexNormals = this.calcVertexNormals;
copy.normalsProcessed = this.normalsProcessed;
copy.viewerMode = this.viewerMode;
copy.numPrimFaces = this.numPrimFaces;
copy.errorMessage = this.errorMessage;
copy.coords = new List(this.coords);
copy.faces = new List(this.faces);
copy.viewerFaces = new List(this.viewerFaces);
copy.normals = new List(this.normals);
return copy;
}
///
/// Calculate surface normals for all of the faces in the list of faces in this mesh
///
public void CalcNormals()
{
if (normalsProcessed)
return;
normalsProcessed = true;
int numFaces = faces.Count;
if (!this.calcVertexNormals)
this.normals = new List();
for (int i = 0; i < numFaces; i++)
{
Face face = faces[i];
this.normals.Add(SurfaceNormal(i).Normalize());
int normIndex = normals.Count - 1;
face.n1 = normIndex;
face.n2 = normIndex;
face.n3 = normIndex;
this.faces[i] = face;
}
}
///
/// Adds a value to each XYZ vertex coordinate in the mesh
///
///
///
///
public void AddPos(float x, float y, float z)
{
int i;
int numVerts = this.coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = this.coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
this.coords[i] = vert;
}
if (this.viewerFaces != null)
{
int numViewerFaces = this.viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
ViewerFace v = this.viewerFaces[i];
v.AddPos(x, y, z);
this.viewerFaces[i] = v;
}
}
}
///
/// Rotates the mesh
///
///
public void AddRot(Quat q)
{
int i;
int numVerts = this.coords.Count;
for (i = 0; i < numVerts; i++)
this.coords[i] *= q;
if (this.normals != null)
{
int numNormals = this.normals.Count;
for (i = 0; i < numNormals; i++)
this.normals[i] *= q;
}
if (this.viewerFaces != null)
{
int numViewerFaces = this.viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
ViewerFace v = this.viewerFaces[i];
v.v1 *= q;
v.v2 *= q;
v.v3 *= q;
v.n1 *= q;
v.n2 *= q;
v.n3 *= q;
this.viewerFaces[i] = v;
}
}
}
#if VERTEX_INDEXER
public VertexIndexer GetVertexIndexer()
{
if (this.viewerMode && this.viewerFaces.Count > 0)
return new VertexIndexer(this);
return null;
}
#endif
///
/// Scales the mesh
///
///
///
///
public void Scale(float x, float y, float z)
{
int i;
int numVerts = this.coords.Count;
//Coord vert;
Coord m = new Coord(x, y, z);
for (i = 0; i < numVerts; i++)
this.coords[i] *= m;
if (this.viewerFaces != null)
{
int numViewerFaces = this.viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
ViewerFace v = this.viewerFaces[i];
v.v1 *= m;
v.v2 *= m;
v.v3 *= m;
this.viewerFaces[i] = v;
}
}
}
///
/// Dumps the mesh to a Blender compatible "Raw" format file
///
///
///
///
public void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = System.IO.Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
for (int i = 0; i < this.faces.Count; i++)
{
string s = this.coords[this.faces[i].v1].ToString();
s += " " + this.coords[this.faces[i].v2].ToString();
s += " " + this.coords[this.faces[i].v3].ToString();
sw.WriteLine(s);
}
sw.Close();
}
}
}