/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSim Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.IO; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.Meshing { public struct Coord { public float X; public float Y; public float Z; public Coord(float x, float y, float z) { this.X = x; this.Y = y; this.Z = z; } public override string ToString() { return this.X.ToString() + " " + this.Y.ToString() + " " + this.Z.ToString(); } } public struct Face { public int v1; public int v2; public int v3; public Face(int v1, int v2, int v3) { this.v1 = v1; this.v2 = v2; this.v3 = v3; } } internal struct Angle { internal float angle; internal float X; internal float Y; internal Angle(float angle, float x, float y) { this.angle = angle; this.X = x; this.Y = y; } } internal class AngleList { private float iX, iY; // intersection point private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); double uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3); if (denom != 0.0) { double ua = uaNumerator / denom; iX = (float)(x1 + ua * (x2 - x1)); iY = (float)(y1 + ua * (y2 - y1)); } } internal List angles; // this class should have a table of most commonly computed values // instead of all the trig function calls // most common would be for sides = 3, 4, or 24 internal void makeAngles( int sides, float startAngle, float stopAngle ) { angles = new List(); double twoPi = System.Math.PI * 2.0; if (sides < 1) throw new Exception("number of sides not greater than zero"); if (stopAngle <= startAngle) throw new Exception("stopAngle not greater than startAngle"); double stepSize = twoPi / sides; int startStep = (int) (startAngle / stepSize); double angle = stepSize * startStep; int step = startStep; double stopAngleTest = stopAngle; if (stopAngle < twoPi) { stopAngleTest = stepSize * ((int)(stopAngle / stepSize) + 1); if (stopAngleTest < stopAngle) stopAngleTest += stepSize; if (stopAngleTest > twoPi) stopAngleTest = twoPi; } while (angle <= stopAngleTest) { Angle newAngle; newAngle.angle = (float) angle; newAngle.X = (float) System.Math.Cos(angle); newAngle.Y = (float) System.Math.Sin(angle); angles.Add(newAngle); step += 1; angle = stepSize * step; } if (startAngle > angles[0].angle) { Angle newAngle; intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float)Math.Cos(startAngle), (float)Math.Sin(startAngle)); newAngle.angle = startAngle; newAngle.X = iX; newAngle.Y = iY; angles[0] = newAngle; } int index = angles.Count - 1; if (stopAngle < angles[index].angle) { Angle newAngle; intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float)Math.Cos(stopAngle), (float)Math.Sin(stopAngle)); newAngle.angle = stopAngle; newAngle.X = iX; newAngle.Y = iY; angles[index] = newAngle; } } } /// /// generates a profile for extrusion /// public class Profile { private const float twoPi = 2.0f * (float)Math.PI; internal List coords; internal List faces; internal Profile() { this.coords = new List(); this.faces = new List(); } public Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides) { this.coords = new List(); this.faces = new List(); Coord center = new Coord(0.0f, 0.0f, 0.0f); List hollowCoords = new List(); AngleList angles = new AngleList(); AngleList hollowAngles = new AngleList(); float xScale = 0.5f; float yScale = 0.5f; if (sides == 4) // corners of a square are sqrt(2) from center { xScale = 0.707f; yScale = 0.707f; } float startAngle = profileStart * twoPi; float stopAngle = profileEnd * twoPi; // float stepSize = twoPi / sides; try { angles.makeAngles(sides, startAngle, stopAngle); } catch (Exception ex) { Console.WriteLine("makeAngles failed: Exception: " + ex.ToString()); Console.WriteLine("sides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString()); return; } if (hollow > 0.001f) { if (sides == hollowSides) hollowAngles = angles; else { try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle); } catch (Exception ex) { Console.WriteLine("makeAngles failed: Exception: " + ex.ToString()); Console.WriteLine("sides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString()); return; } } } else this.coords.Add(center); float z = 0.0f; Angle angle; Coord newVert = new Coord(); if (hollow > 0.001f && hollowSides != sides) { int numHollowAngles = hollowAngles.angles.Count; for (int i = 0; i < numHollowAngles; i++) { angle = hollowAngles.angles[i]; newVert.X = hollow * xScale * angle.X; newVert.Y = hollow * yScale * angle.Y; newVert.Z = z; hollowCoords.Add(newVert); } } int index = 0; int numAngles = angles.angles.Count; for (int i = 0; i < numAngles; i++) { angle = angles.angles[i]; newVert.X = angle.X * xScale; newVert.Y = angle.Y * yScale; newVert.Z = z; this.coords.Add(newVert); if (hollow > 0.0f) { if (hollowSides == sides) { newVert.X *= hollow; newVert.Y *= hollow; newVert.Z = z; hollowCoords.Add(newVert); } } else if (angle.angle > 0.0001f) { Face newFace = new Face(); newFace.v1 = 0; newFace.v2 = index; newFace.v3 = index + 1; this.faces.Add(newFace); } index += 1; } if (hollow > 0.0f) { hollowCoords.Reverse(); int numOuterVerts = this.coords.Count; int numHollowVerts = hollowCoords.Count; int numTotalVerts = numOuterVerts + numHollowVerts; if (numOuterVerts == numHollowVerts) { Face newFace = new Face(); for (int coordIndex = 0; coordIndex < numOuterVerts - 1; coordIndex++) { newFace.v1 = coordIndex; newFace.v2 = coordIndex + 1; newFace.v3 = numTotalVerts - coordIndex - 1; this.faces.Add(newFace); newFace.v1 = coordIndex + 1; newFace.v2 = numTotalVerts - coordIndex - 2; newFace.v3 = numTotalVerts - coordIndex - 1; this.faces.Add(newFace); } } else { if (numOuterVerts < numHollowVerts) { Face newFace = new Face(); int j = 0; // j is the index for outer vertices int maxJ = numOuterVerts - 1; for (int i = 0; i < numHollowVerts; i++) // i is the index for inner vertices { if (j < maxJ) if (angles.angles[j + 1].angle - hollowAngles.angles[i].angle <= hollowAngles.angles[i].angle - angles.angles[j].angle) { newFace.v1 = numTotalVerts - i - 1; newFace.v2 = j; newFace.v3 = j + 1; this.faces.Add(newFace); j += 1; } newFace.v1 = j; newFace.v2 = numTotalVerts - i - 2; newFace.v3 = numTotalVerts - i - 1; this.faces.Add(newFace); } } else // numHollowVerts < numOuterVerts { Face newFace = new Face(); int j = 0; // j is the index for inner vertices int maxJ = numHollowVerts - 1; for (int i = 0; i < numOuterVerts; i++) { if (j < maxJ) if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle <= angles.angles[i].angle - hollowAngles.angles[j].angle) { newFace.v1 = i; newFace.v2 = numTotalVerts - j - 2; newFace.v3 = numTotalVerts - j - 1; this.faces.Add(newFace); j += 1; } newFace.v1 = numTotalVerts - j - 1; newFace.v2 = i; newFace.v3 = i + 1; this.faces.Add(newFace); } } } this.coords.AddRange(hollowCoords); } } public Profile Clone() { Profile clone = new Profile(); clone.coords.AddRange(this.coords); clone.faces.AddRange(this.faces); return clone; } public void AddPos(Coord v) { this.AddPos(v.X, v.Y, v.Z); } public void AddPos(float x, float y, float z) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X += x; vert.Y += y; vert.Z += z; this.coords[i] = vert; } } public void AddRot(Quaternion q) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; Vertex v = new Vertex(vert.X, vert.Y, vert.Z) * q; vert.X = v.X; vert.Y = v.Y; vert.Z = v.Z; this.coords[i] = vert; } } public void Scale(float x, float y) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X *= x; vert.Y *= y; this.coords[i] = vert; } } public void FlipNormals() { int i; int numFaces = this.faces.Count; Face tmpFace; int tmp; for (i = 0; i < numFaces; i++) { tmpFace = this.faces[i]; tmp = tmpFace.v3; tmpFace.v3 = tmpFace.v1; tmpFace.v1 = tmp; this.faces[i] = tmpFace; } } public void AddValue2Faces(int num) { int numFaces = this.faces.Count; Face tmpFace; for (int i = 0; i < numFaces; i++) { tmpFace = this.faces[i]; tmpFace.v1 += num; tmpFace.v2 += num; tmpFace.v3 += num; this.faces[i] = tmpFace; } } public void DumpRaw(String path, String name, String title) { if (path == null) return; String fileName = name + "_" + title + ".raw"; String completePath = Path.Combine(path, fileName); StreamWriter sw = new StreamWriter(completePath); for (int i = 0; i < this.faces.Count; i++) { string s = this.coords[this.faces[i].v1].ToString(); s += " " + this.coords[this.faces[i].v2].ToString(); s += " " + this.coords[this.faces[i].v3].ToString(); sw.WriteLine(s); } sw.Close(); } } public class PrimMesh { private const float twoPi = 2.0f * (float)Math.PI; public List coords; public List faces; public int sides = 4; public int hollowSides = 4; public float profileStart = 0.0f; public float profileEnd = 1.0f; public float hollow = 0.0f; public int twistBegin = 0; public int twistEnd = 0; public float topShearX = 0.0f; public float topShearY = 0.0f; public float pathCutBegin = 0.0f; public float pathCutEnd = 1.0f; public float dimpleBegin = 0.0f; public float dimpleEnd = 1.0f; public float skew = 0.0f; public float holeSizeX = 1.0f; // called pathScaleX in pbs public float holeSizeY = 0.25f; public float taperX = 0.0f; public float taperY = 0.0f; public float radius = 0.0f; public float revolutions = 1.0f; public int stepsPerRevolution = 24; public string ParamsToDisplayString() { string s = ""; s += "sides..................: " + this.sides.ToString(); s += "\nhollowSides..........: " + this.hollowSides.ToString(); s += "\nprofileStart.........: " + this.profileStart.ToString(); s += "\nprofileEnd...........: " + this.profileEnd.ToString(); s += "\nhollow...............: " + this.hollow.ToString(); s += "\ntwistBegin...........: " + this.twistBegin.ToString(); s += "\ntwistEnd.............: " + this.twistEnd.ToString(); s += "\ntopShearX............: " + this.topShearX.ToString(); s += "\ntopShearY............: " + this.topShearY.ToString(); s += "\npathCutBegin.........: " + this.pathCutBegin.ToString(); s += "\npathCutEnd...........: " + this.pathCutEnd.ToString(); s += "\ndimpleBegin..........: " + this.dimpleBegin.ToString(); s += "\ndimpleEnd............: " + this.dimpleEnd.ToString(); s += "\nskew.................: " + this.skew.ToString(); s += "\nholeSizeX............: " + this.holeSizeX.ToString(); s += "\nholeSizeY............: " + this.holeSizeY.ToString(); s += "\ntaperX...............: " + this.taperX.ToString(); s += "\ntaperY...............: " + this.taperY.ToString(); s += "\nradius...............: " + this.radius.ToString(); s += "\nrevolutions..........: " + this.revolutions.ToString(); s += "\nstepsPerRevolution...: " + this.stepsPerRevolution.ToString(); return s; } public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides) { this.coords = new List(); this.faces = new List(); this.sides = sides; this.profileStart = profileStart; this.profileEnd = profileEnd; this.hollow = hollow; this.hollowSides = hollowSides; if (sides < 3) this.sides = 3; if ( hollowSides < 3) this.hollowSides = 3; if (profileStart < 0.0f) this.profileStart = 0.0f; if (profileEnd > 1.0f) this.profileEnd = 1.0f; if (profileEnd < 0.02f) this.profileEnd = 0.02f; if (profileStart >= profileEnd) this.profileStart = profileEnd - 0.02f; if (hollow > 1.0f) this.hollow = 1.0f; if (hollow < 0.0f) this.hollow = 0.0f; } public void ExtrudeLinear() { this.coords = new List(); this.faces = new List(); int step = 0; int steps = 1; float length = this.pathCutEnd - this.pathCutBegin; #if VIEWER if (this.sides == 3) { // prisms don't taper well so add some vertical resolution // other prims may benefit from this but just do prisms for now if (Math.Abs(this.taperX) > 0.01 || Math.Abs(this.taperY) > 0.01) steps = (int)(steps * 4.5 * length); } #endif float twistBegin = this.twistBegin / 360.0f * twoPi; float twistEnd = this.twistEnd / 360.0f * twoPi; float twistTotal = twistEnd - twistBegin; float twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number float start = -0.5f; float stepSize = length / (float)steps; float percentOfPathMultiplier = stepSize; float xProfileScale = 1.0f; float yProfileScale = 1.0f; float xOffset = 0.0f; float yOffset = 0.0f; float zOffset = start; float xOffsetStepIncrement = this.topShearX / steps; float yOffsetStepIncrement = this.topShearY / steps; float percentOfPath = this.pathCutBegin; zOffset += percentOfPath; float hollow = this.hollow; // sanity checks float initialProfileRot = 0.0f; if (this.sides == 3) { if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else hollow *= 0.5f; } else if (this.sides == 4) { initialProfileRot = 1.25f * (float)Math.PI; if (this.hollowSides != 4) hollow *= 0.707f; } Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides); if (initialProfileRot != 0.0f) profile.AddRot(new Quaternion(new Vertex(0.0f, 0.0f, 1.0f), initialProfileRot)); bool done = false; while (!done) { Profile newLayer = profile.Clone(); if (this.taperX == 0.0f) xProfileScale = 1.0f; else if (this.taperX > 0.0f) xProfileScale = 1.0f - percentOfPath * this.taperX; else xProfileScale = 1.0f + (1.0f - percentOfPath) * this.taperX; if (this.taperY == 0.0f) yProfileScale = 1.0f; else if (this.taperY > 0.0f) yProfileScale = 1.0f - percentOfPath * this.taperY; else yProfileScale = 1.0f + (1.0f - percentOfPath) * this.taperY; if (xProfileScale != 1.0f || yProfileScale != 1.0f) newLayer.Scale(xProfileScale, yProfileScale); float twist = twistBegin + twistTotal * percentOfPath; if (twist != 0.0f) newLayer.AddRot(new Quaternion(new Vertex(0.0f, 0.0f, 1.0f), twist)); newLayer.AddPos(xOffset, yOffset, zOffset); if (step == 0) newLayer.FlipNormals(); // append this layer int coordsLen = this.coords.Count; newLayer.AddValue2Faces(coordsLen); this.coords.AddRange(newLayer.coords); this.faces.AddRange(newLayer.faces); // fill faces between layers int numVerts = newLayer.coords.Count; Face newFace = new Face(); if (step > 0) { for (int i = coordsLen; i < this.coords.Count - 1; i++) { newFace.v1 = i; newFace.v2 = i - numVerts; newFace.v3 = i - numVerts + 1; this.faces.Add(newFace); newFace.v2 = i - numVerts + 1; newFace.v3 = i + 1; this.faces.Add(newFace); } newFace.v1 = coordsLen - 1; newFace.v2 = coordsLen - numVerts; newFace.v3 = coordsLen; this.faces.Add(newFace); newFace.v1 = coordsLen + numVerts - 1; newFace.v2 = coordsLen - 1; newFace.v3 = coordsLen; this.faces.Add(newFace); } // calc the step for the next iteration of the loop if (step < steps) { step += 1; percentOfPath += percentOfPathMultiplier; xOffset += xOffsetStepIncrement; yOffset += yOffsetStepIncrement; zOffset += stepSize; if (percentOfPath > this.pathCutEnd) done = true; } else done = true; } } public void ExtrudeCircular() { this.coords = new List(); this.faces = new List(); int step = 0; int steps = 24; float twistBegin = this.twistBegin / 360.0f * twoPi; float twistEnd = this.twistEnd / 360.0f * twoPi; float twistTotal = twistEnd - twistBegin; // if the profile has a lot of twist, add more layers otherwise the layers may overlap // and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't // accurately match the viewer float twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) { if (twistTotalAbs > Math.PI * 1.5f) steps *= 2; if (twistTotalAbs > Math.PI * 3.0f) steps *= 2; } float yPathScale = this.holeSizeY * 0.5f; float pathLength = this.pathCutEnd - this.pathCutBegin; float totalSkew = this.skew * 2.0f * pathLength; float skewStart = this.pathCutBegin * 2.0f * this.skew - this.skew; float xOffsetTopShearXFactor = this.topShearX * (0.25f + 0.5f * (0.5f - this.holeSizeY)); float yShearCompensation = 1.0f + Math.Abs(this.topShearY) * 0.25f; // It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end // angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used // to calculate the sine for generating the path radius appears to approximate it's effects there // too, but there are some subtle differences in the radius which are noticeable as the prim size // increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on // the meshes generated with this technique appear nearly identical in shape to the same prims when // displayed by the viewer. float startAngle = (twoPi * this.pathCutBegin * this.revolutions) - this.topShearY * 0.9f; float endAngle = (twoPi * this.pathCutEnd * this.revolutions) - this.topShearY * 0.9f; float stepSize = twoPi / this.stepsPerRevolution; step = (int)(startAngle / stepSize); int firstStep = step; float angle = startAngle; float hollow = this.hollow; // sanity checks float initialProfileRot = 0.0f; if (this.sides == 3) { initialProfileRot = (float)Math.PI; if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else hollow *= 0.5f; } else if (this.sides == 4) { initialProfileRot = 0.25f * (float)Math.PI; if (this.hollowSides != 4) hollow *= 0.707f; } else if (this.sides > 4) { initialProfileRot = (float)Math.PI; if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow /= 0.7f; } } Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides); if (initialProfileRot != 0.0f) profile.AddRot(new Quaternion(new Vertex(0.0f, 0.0f, 1.0f), initialProfileRot)); bool done = false; while (!done) // loop through the length of the path and add the layers { Profile newLayer = profile.Clone(); float xProfileScale = (1.0f - Math.Abs(this.skew)) * this.holeSizeX; float yProfileScale = this.holeSizeY; float percentOfPath = angle / (twoPi * this.revolutions); float percentOfAngles = (angle - startAngle) / (endAngle - startAngle); if (this.taperX > 0.01f) xProfileScale *= 1.0f - percentOfPath * this.taperX; else if (this.taperX < -0.01f) xProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperX; if (this.taperY > 0.01f) yProfileScale *= 1.0f - percentOfPath * this.taperY; else if (this.taperY < -0.01f) yProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperY; if (xProfileScale != 1.0f || yProfileScale != 1.0f) newLayer.Scale(xProfileScale, yProfileScale); float radiusScale = 1.0f; if (this.radius > 0.001f) radiusScale = 1.0f - this.radius * percentOfPath; else if (this.radius < 0.001f) radiusScale = 1.0f + this.radius * (1.0f - percentOfPath); float twist = twistBegin + twistTotal * percentOfPath; float xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles); xOffset += (float)Math.Sin(angle) * xOffsetTopShearXFactor; float yOffset = yShearCompensation * (float)Math.Cos(angle) * (0.5f - yPathScale) * radiusScale; float zOffset = (float)Math.Sin(angle + this.topShearY) * (0.5f - yPathScale) * radiusScale; // next apply twist rotation to the profile layer if (twistTotal != 0.0f || twistBegin != 0.0f) newLayer.AddRot(new Quaternion(new Vertex(0.0f, 0.0f, 1.0f), twist)); // now orient the rotation of the profile layer relative to it's position on the path // adding taperY to the angle used to generate the quat appears to approximate the viewer //newLayer.AddRot(new Quaternion(new Vertex(1.0f, 0.0f, 0.0f), angle + this.topShearY * 0.9f)); newLayer.AddRot(new Quaternion(new Vertex(1.0f, 0.0f, 0.0f), angle + this.topShearY)); newLayer.AddPos(xOffset, yOffset, zOffset); if (angle == startAngle) newLayer.FlipNormals(); // append the layer and fill in the sides int coordsLen = this.coords.Count; newLayer.AddValue2Faces(coordsLen); this.coords.AddRange(newLayer.coords); this.faces.AddRange(newLayer.faces); // fill faces between layers int numVerts = newLayer.coords.Count; Face newFace = new Face(); if (step > firstStep) { for (int i = coordsLen; i < this.coords.Count - 1; i++) { newFace.v1 = i; newFace.v2 = i - numVerts; newFace.v3 = i - numVerts + 1; this.faces.Add(newFace); newFace.v2 = i - numVerts + 1; newFace.v3 = i + 1; this.faces.Add(newFace); } newFace.v1 = coordsLen - 1; newFace.v2 = coordsLen - numVerts; newFace.v3 = coordsLen; this.faces.Add(newFace); newFace.v1 = coordsLen + numVerts - 1; newFace.v2 = coordsLen - 1; newFace.v3 = coordsLen; this.faces.Add(newFace); } // calculate terms for next iteration // calculate the angle for the next iteration of the loop if (angle >= endAngle) done = true; else { step += 1; angle = stepSize * step; if (angle > endAngle) angle = endAngle; } } } public void AddPos(float x, float y, float z) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X += x; vert.Y += y; vert.Z += z; this.coords[i] = vert; } } public void AddRot(Quaternion q) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; Vertex v = new Vertex(vert.X, vert.Y, vert.Z) * q; vert.X = v.X; vert.Y = v.Y; vert.Z = v.Z; this.coords[i] = vert; } } public void Scale(float x, float y, float z) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X *= x; vert.Y *= y; vert.Z *= z; this.coords[i] = vert; } } public void DumpRaw(String path, String name, String title) { if (path == null) return; String fileName = name + "_" + title + ".raw"; String completePath = Path.Combine(path, fileName); StreamWriter sw = new StreamWriter(completePath); for (int i = 0; i < this.faces.Count; i++) { string s = this.coords[this.faces[i].v1].ToString(); s += " " + this.coords[this.faces[i].v2].ToString(); s += " " + this.coords[this.faces[i].v3].ToString(); sw.WriteLine(s); } sw.Close(); } } }