/* The MIT License * * Copyright (c) 2010 Intel Corporation. * All rights reserved. * * Based on the convexdecomposition library from * <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ using System; using System.Collections.Generic; using System.Diagnostics; namespace OpenSim.Region.Physics.ConvexDecompositionDotNet { public delegate void ConvexDecompositionCallback(ConvexResult result); public class FaceTri { public float3 P1; public float3 P2; public float3 P3; public FaceTri() { } public FaceTri(List<float3> vertices, int i1, int i2, int i3) { P1 = new float3(vertices[i1]); P2 = new float3(vertices[i2]); P3 = new float3(vertices[i3]); } } public static class ConvexDecomposition { private static void addTri(VertexPool vl, List<int> list, float3 p1, float3 p2, float3 p3) { int i1 = vl.getIndex(p1); int i2 = vl.getIndex(p2); int i3 = vl.getIndex(p3); // do *not* process degenerate triangles! if ( i1 != i2 && i1 != i3 && i2 != i3 ) { list.Add(i1); list.Add(i2); list.Add(i3); } } public static void calcConvexDecomposition(List<float3> vertices, List<int> indices, ConvexDecompositionCallback callback, float masterVolume, int depth, int maxDepth, float concavePercent, float mergePercent) { float4 plane = new float4(); bool split = false; if (depth < maxDepth) { float volume = 0f; float c = Concavity.computeConcavity(vertices, indices, ref plane, ref volume); if (depth == 0) { masterVolume = volume; } float percent = (c * 100.0f) / masterVolume; if (percent > concavePercent) // if great than 5% of the total volume is concave, go ahead and keep splitting. { split = true; } } if (depth >= maxDepth || !split) { HullResult result = new HullResult(); HullDesc desc = new HullDesc(); desc.SetHullFlag(HullFlag.QF_TRIANGLES); desc.Vertices = vertices; HullError ret = HullUtils.CreateConvexHull(desc, ref result); if (ret == HullError.QE_OK) { ConvexResult r = new ConvexResult(result.OutputVertices, result.Indices); callback(r); } return; } List<int> ifront = new List<int>(); List<int> iback = new List<int>(); VertexPool vfront = new VertexPool(); VertexPool vback = new VertexPool(); // ok..now we are going to 'split' all of the input triangles against this plane! for (int i = 0; i < indices.Count / 3; i++) { int i1 = indices[i * 3 + 0]; int i2 = indices[i * 3 + 1]; int i3 = indices[i * 3 + 2]; FaceTri t = new FaceTri(vertices, i1, i2, i3); float3[] front = new float3[4]; float3[] back = new float3[4]; int fcount = 0; int bcount = 0; PlaneTriResult result = PlaneTri.planeTriIntersection(plane, t, 0.00001f, ref front, out fcount, ref back, out bcount); if (fcount > 4 || bcount > 4) { result = PlaneTri.planeTriIntersection(plane, t, 0.00001f, ref front, out fcount, ref back, out bcount); } switch (result) { case PlaneTriResult.PTR_FRONT: Debug.Assert(fcount == 3); addTri(vfront, ifront, front[0], front[1], front[2]); break; case PlaneTriResult.PTR_BACK: Debug.Assert(bcount == 3); addTri(vback, iback, back[0], back[1], back[2]); break; case PlaneTriResult.PTR_SPLIT: Debug.Assert(fcount >= 3 && fcount <= 4); Debug.Assert(bcount >= 3 && bcount <= 4); addTri(vfront, ifront, front[0], front[1], front[2]); addTri(vback, iback, back[0], back[1], back[2]); if (fcount == 4) { addTri(vfront, ifront, front[0], front[2], front[3]); } if (bcount == 4) { addTri(vback, iback, back[0], back[2], back[3]); } break; } } // ok... here we recursively call if (ifront.Count > 0) { int vcount = vfront.GetSize(); List<float3> vertices2 = vfront.GetVertices(); for (int i = 0; i < vertices2.Count; i++) vertices2[i] = new float3(vertices2[i]); int tcount = ifront.Count / 3; calcConvexDecomposition(vertices2, ifront, callback, masterVolume, depth + 1, maxDepth, concavePercent, mergePercent); } ifront.Clear(); vfront.Clear(); if (iback.Count > 0) { int vcount = vback.GetSize(); List<float3> vertices2 = vback.GetVertices(); int tcount = iback.Count / 3; calcConvexDecomposition(vertices2, iback, callback, masterVolume, depth + 1, maxDepth, concavePercent, mergePercent); } iback.Clear(); vback.Clear(); } } }