/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Reflection; using System.Collections.Generic; using System.Xml; using log4net; using OMV = OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenSim.Region.Physics.ConvexDecompositionDotNet; namespace OpenSim.Region.Physics.BulletSPlugin { [Serializable] public sealed class BSPrim : BSPhysObject { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static readonly string LogHeader = "[BULLETS PRIM]"; private IMesh _mesh; private PrimitiveBaseShape _pbs; private ShapeData.PhysicsShapeType _shapeType; private ulong _meshKey; private ulong _hullKey; private List _hulls; private BSScene _scene; public BSScene Scene { get { return _scene; } } private String _avName; private uint _localID = 0; // _size is what the user passed. _scale is what we pass to the physics engine with the mesh. // Often _scale is unity because the meshmerizer will apply _size when creating the mesh. private OMV.Vector3 _size; // the multiplier for each mesh dimension as passed by the user private OMV.Vector3 _scale; // the multiplier for each mesh dimension for the mesh as created by the meshmerizer private bool _stopped; private bool _grabbed; private bool _isSelected; private bool _isVolumeDetect; private OMV.Vector3 _position; private float _mass; // the mass of this object private float _density; private OMV.Vector3 _force; private OMV.Vector3 _velocity; private OMV.Vector3 _torque; private float _collisionScore; private OMV.Vector3 _acceleration; private OMV.Quaternion _orientation; private int _physicsActorType; private bool _isPhysical; private bool _flying; private float _friction; private float _restitution; private bool _setAlwaysRun; private bool _throttleUpdates; private bool _isColliding; private bool _collidingGround; private bool _collidingObj; private bool _floatOnWater; private OMV.Vector3 _rotationalVelocity; private bool _kinematic; private float _buoyancy; // Membership in a linkset is controlled by this class. public override BSLinkset Linkset { get; set; } private int _subscribedEventsMs = 0; private int _nextCollisionOkTime = 0; long _collidingStep; long _collidingGroundStep; CollisionFlags m_currentCollisionFlags = 0; public override BulletBody BSBody { get; set; } public override BulletShape BSShape { get; set; } private BSDynamics _vehicle; private OMV.Vector3 _PIDTarget; private bool _usePID; private float _PIDTau; private bool _useHoverPID; private float _PIDHoverHeight; private PIDHoverType _PIDHoverType; private float _PIDHoverTao; public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size, OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical) { // m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID); _localID = localID; _avName = primName; _physicsActorType = (int)ActorTypes.Prim; _scene = parent_scene; _position = pos; _size = size; _scale = new OMV.Vector3(1f, 1f, 1f); // the scale will be set by CreateGeom depending on object type _orientation = rotation; _buoyancy = 1f; _velocity = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; _hullKey = 0; _meshKey = 0; _pbs = pbs; _isPhysical = pisPhysical; _isVolumeDetect = false; _subscribedEventsMs = 0; _friction = _scene.Params.defaultFriction; // TODO: compute based on object material _density = _scene.Params.defaultDensity; // TODO: compute based on object material _restitution = _scene.Params.defaultRestitution; Linkset = new BSLinkset(Scene, this); // a linkset of one _vehicle = new BSDynamics(Scene, this); // add vehicleness _mass = CalculateMass(); DetailLog("{0},BSPrim.constructor,call", LocalID); // do the actual object creation at taint time _scene.TaintedObject("BSPrim.create", delegate() { CreateGeomAndObject(true); // Get the pointer to the physical body for this object. // At the moment, we're still letting BulletSim manage the creation and destruction // of the object. Someday we'll move that into the C# code. BSBody = new BulletBody(LocalID, BulletSimAPI.GetBodyHandle2(_scene.World.Ptr, LocalID)); BSShape = new BulletShape(BulletSimAPI.GetCollisionShape2(BSBody.Ptr)); m_currentCollisionFlags = BulletSimAPI.GetCollisionFlags2(BSBody.Ptr); }); } // called when this prim is being destroyed and we should free all the resources public override void Destroy() { // m_log.DebugFormat("{0}: Destroy, id={1}", LogHeader, LocalID); // Undo any links between me and any other object BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = Linkset.RemoveMeFromLinkset(this); DetailLog("{0},BSPrim.Destroy,call,parentBefore={1},childrenBefore={2},parentAfter={3},childrenAfter={4}", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); // Undo any vehicle properties this.VehicleType = (int)Vehicle.TYPE_NONE; _scene.TaintedObject("BSPrim.destroy", delegate() { DetailLog("{0},BSPrim.Destroy,taint,", LocalID); // everything in the C# world will get garbage collected. Tell the C++ world to free stuff. BulletSimAPI.DestroyObject(_scene.WorldID, LocalID); }); } public override bool Stopped { get { return _stopped; } } public override OMV.Vector3 Size { get { return _size; } set { _size = value; _scene.TaintedObject("BSPrim.setSize", delegate() { _mass = CalculateMass(); // changing size changes the mass // Since _size changed, the mesh needs to be rebuilt. If rebuilt, all the correct // scale and margins are set. CreateGeomAndObject(true); DetailLog("{0}: BSPrim.setSize: size={1}, scale={2}, mass={3}, physical={4}", LocalID, _size, _scale, _mass, IsPhysical); }); } } public override PrimitiveBaseShape Shape { set { _pbs = value; _scene.TaintedObject("BSPrim.setShape", delegate() { _mass = CalculateMass(); // changing the shape changes the mass CreateGeomAndObject(false); }); } } public override uint LocalID { set { _localID = value; } get { return _localID; } } public override bool Grabbed { set { _grabbed = value; } } public override bool Selected { set { _isSelected = value; _scene.TaintedObject("BSPrim.setSelected", delegate() { SetObjectDynamic(); }); } } public override void CrossingFailure() { return; } // link me to the specified parent public override void link(PhysicsActor obj) { BSPrim parent = obj as BSPrim; if (parent != null) { BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = parent.Linkset.AddMeToLinkset(this); DetailLog("{0},BSPrim.link,call,parentBefore={1}, childrenBefore=={2}, parentAfter={3}, childrenAfter={4}", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); } return; } // delink me from my linkset public override void delink() { // TODO: decide if this parent checking needs to happen at taint time // Race condition here: if link() and delink() in same simulation tick, the delink will not happen BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = Linkset.RemoveMeFromLinkset(this); DetailLog("{0},BSPrim.delink,parentBefore={1},childrenBefore={2},parentAfter={3},childrenAfter={4}, ", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); return; } // Set motion values to zero. // Do it to the properties so the values get set in the physics engine. // Push the setting of the values to the viewer. // Called at taint time! public override void ZeroMotion() { _velocity = OMV.Vector3.Zero; _acceleration = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; // Zero some other properties directly into the physics engine BulletSimAPI.SetLinearVelocity2(BSBody.Ptr, OMV.Vector3.Zero); BulletSimAPI.SetAngularVelocity2(BSBody.Ptr, OMV.Vector3.Zero); BulletSimAPI.SetInterpolationVelocity2(BSBody.Ptr, OMV.Vector3.Zero, OMV.Vector3.Zero); BulletSimAPI.ClearForces2(BSBody.Ptr); } public override void LockAngularMotion(OMV.Vector3 axis) { DetailLog("{0},BSPrim.LockAngularMotion,call,axis={1}", LocalID, axis); return; } public override OMV.Vector3 Position { get { if (!Linkset.IsRoot(this)) // child prims move around based on their parent. Need to get the latest location _position = BulletSimAPI.GetPosition2(BSBody.Ptr); // don't do the GetObjectPosition for root elements because this function is called a zillion times // _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID); return _position; } set { _position = value; // TODO: what does it mean to set the position of a child prim?? Rebuild the constraint? _scene.TaintedObject("BSPrim.setPosition", delegate() { DetailLog("{0},BSPrim.SetPosition,taint,pos={1},orient={2}", LocalID, _position, _orientation); BulletSimAPI.SetTranslation2(BSBody.Ptr, _position, _orientation); }); } } // Return the effective mass of the object. // If there are multiple items in the linkset, add them together for the root public override float Mass { get { // return Linkset.LinksetMass; return _mass; } } // used when we only want this prim's mass and not the linkset thing public override float MassRaw { get { return _mass; } } // Is this used? public override OMV.Vector3 CenterOfMass { get { return Linkset.CenterOfMass; } } // Is this used? public override OMV.Vector3 GeometricCenter { get { return Linkset.GeometricCenter; } } public override OMV.Vector3 Force { get { return _force; } set { _force = value; _scene.TaintedObject("BSPrim.setForce", delegate() { DetailLog("{0},BSPrim.setForce,taint,force={1}", LocalID, _force); BulletSimAPI.SetObjectForce2(BSBody.Ptr, _force); }); } } public override int VehicleType { get { return (int)_vehicle.Type; // if we are a vehicle, return that type } set { Vehicle type = (Vehicle)value; BSPrim vehiclePrim = this; _scene.TaintedObject("setVehicleType", delegate() { // Done at taint time so we're sure the physics engine is not using the variables // Vehicle code changes the parameters for this vehicle type. _vehicle.ProcessTypeChange(type); // Tell the scene about the vehicle so it will get processing each frame. _scene.VehicleInSceneTypeChanged(this, type); }); } } public override void VehicleFloatParam(int param, float value) { _scene.TaintedObject("BSPrim.VehicleFloatParam", delegate() { _vehicle.ProcessFloatVehicleParam((Vehicle)param, value); }); } public override void VehicleVectorParam(int param, OMV.Vector3 value) { _scene.TaintedObject("BSPrim.VehicleVectorParam", delegate() { _vehicle.ProcessVectorVehicleParam((Vehicle)param, value); }); } public override void VehicleRotationParam(int param, OMV.Quaternion rotation) { _scene.TaintedObject("BSPrim.VehicleRotationParam", delegate() { _vehicle.ProcessRotationVehicleParam((Vehicle)param, rotation); }); } public override void VehicleFlags(int param, bool remove) { _scene.TaintedObject("BSPrim.VehicleFlags", delegate() { _vehicle.ProcessVehicleFlags(param, remove); }); } // Called each simulation step to advance vehicle characteristics. // Called from Scene when doing simulation step so we're in taint processing time. public override void StepVehicle(float timeStep) { if (IsPhysical) _vehicle.Step(timeStep); } // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more public override void SetVolumeDetect(int param) { bool newValue = (param != 0); _isVolumeDetect = newValue; _scene.TaintedObject("BSPrim.SetVolumeDetect", delegate() { SetObjectDynamic(); }); return; } public override OMV.Vector3 Velocity { get { return _velocity; } set { _velocity = value; _scene.TaintedObject("BSPrim.setVelocity", delegate() { DetailLog("{0},BSPrim.SetVelocity,taint,vel={1}", LocalID, _velocity); BulletSimAPI.SetLinearVelocity2(BSBody.Ptr, _velocity); }); } } public override OMV.Vector3 Torque { get { return _torque; } set { _torque = value; DetailLog("{0},BSPrim.SetTorque,call,torque={1}", LocalID, _torque); } } public override float CollisionScore { get { return _collisionScore; } set { _collisionScore = value; } } public override OMV.Vector3 Acceleration { get { return _acceleration; } set { _acceleration = value; } } public override OMV.Quaternion Orientation { get { if (!Linkset.IsRoot(this)) { // Children move around because tied to parent. Get a fresh value. _orientation = BulletSimAPI.GetOrientation2(BSBody.Ptr); } return _orientation; } set { _orientation = value; // TODO: what does it mean if a child in a linkset changes its orientation? Rebuild the constraint? _scene.TaintedObject("BSPrim.setOrientation", delegate() { // _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID); DetailLog("{0},BSPrim.setOrientation,taint,pos={1},orient={2}", LocalID, _position, _orientation); BulletSimAPI.SetTranslation2(BSBody.Ptr, _position, _orientation); }); } } public override int PhysicsActorType { get { return _physicsActorType; } set { _physicsActorType = value; } } public override bool IsPhysical { get { return _isPhysical; } set { _isPhysical = value; _scene.TaintedObject("BSPrim.setIsPhysical", delegate() { SetObjectDynamic(); }); } } // An object is static (does not move) if selected or not physical private bool IsStatic { get { return _isSelected || !IsPhysical; } } // An object is solid if it's not phantom and if it's not doing VolumeDetect private bool IsSolid { get { return !IsPhantom && !_isVolumeDetect; } } // Make gravity work if the object is physical and not selected // No locking here because only called when it is safe // There are four flags we're interested in: // IsStatic: Object does not move, otherwise the object has mass and moves // isSolid: other objects bounce off of this object // isVolumeDetect: other objects pass through but can generate collisions // collisionEvents: whether this object returns collision events private void SetObjectDynamic() { // If it's becoming dynamic, it will need hullness VerifyCorrectPhysicalShape(); UpdatePhysicalParameters(); } private void UpdatePhysicalParameters() { /* // Bullet wants static objects to have a mass of zero float mass = IsStatic ? 0f : _mass; BulletSimAPI.SetObjectProperties(_scene.WorldID, LocalID, IsStatic, IsSolid, SubscribedEvents(), mass); */ BulletSimAPI.RemoveObjectFromWorld2(Scene.World.Ptr, BSBody.Ptr); // Set up the object physicalness (does gravity and collisions move this object) MakeDynamic(IsStatic); // Make solid or not (do things bounce off or pass through this object) MakeSolid(IsSolid); // Arrange for collisions events if the simulator wants them EnableCollisions(SubscribedEvents()); BulletSimAPI.AddObjectToWorld2(Scene.World.Ptr, BSBody.Ptr); // Recompute any linkset parameters. // When going from non-physical to physical, this re-enables the constraints that // had been automatically disabled when the mass was set to zero. Linkset.Refresh(this); DetailLog("{0},BSPrim.UpdatePhysicalParameters,taint,static={1},solid={2},mass={3}, cf={4}", LocalID, IsStatic, IsSolid, _mass, m_currentCollisionFlags); } // "Making dynamic" means changing to and from static. // When static, gravity does not effect the object and it is fixed in space. // When dynamic, the object can fall and be pushed by others. // This is independent of its 'solidness' which controls what passes through // this object and what interacts with it. private void MakeDynamic(bool makeStatic) { if (makeStatic) { // Become a Bullet 'static' object type m_currentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.Ptr, CollisionFlags.CF_STATIC_OBJECT); // Stop all movement BulletSimAPI.ClearAllForces2(BSBody.Ptr); // Center of mass is at the center of the object BulletSimAPI.SetCenterOfMassByPosRot2(Linkset.LinksetRoot.BSBody.Ptr, _position, _orientation); // Mass is zero which disables a bunch of physics stuff in Bullet BulletSimAPI.SetMassProps2(BSBody.Ptr, 0f, OMV.Vector3.Zero); // There is no inertia in a static object BulletSimAPI.UpdateInertiaTensor2(BSBody.Ptr); // There can be special things needed for implementing linksets Linkset.MakeStatic(this); // The activation state is 'sleeping' so Bullet will not try to act on it BulletSimAPI.ForceActivationState2(BSBody.Ptr, ActivationState.ISLAND_SLEEPING); } else { // Not a Bullet static object m_currentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.Ptr, CollisionFlags.CF_STATIC_OBJECT); // Set various physical properties so internal things will get computed correctly as they are set BulletSimAPI.SetFriction2(BSBody.Ptr, Scene.Params.defaultFriction); BulletSimAPI.SetRestitution2(BSBody.Ptr, Scene.Params.defaultRestitution); // per http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=3382 BulletSimAPI.SetInterpolationLinearVelocity2(BSBody.Ptr, OMV.Vector3.Zero); BulletSimAPI.SetInterpolationAngularVelocity2(BSBody.Ptr, OMV.Vector3.Zero); BulletSimAPI.SetInterpolationVelocity2(BSBody.Ptr, OMV.Vector3.Zero, OMV.Vector3.Zero); // A dynamic object has mass IntPtr collisionShapePtr = BulletSimAPI.GetCollisionShape2(BSBody.Ptr); OMV.Vector3 inertia = BulletSimAPI.CalculateLocalInertia2(collisionShapePtr, Linkset.LinksetMass); BulletSimAPI.SetMassProps2(BSBody.Ptr, _mass, inertia); // Inertia is based on our new mass BulletSimAPI.UpdateInertiaTensor2(BSBody.Ptr); // Various values for simulation limits BulletSimAPI.SetDamping2(BSBody.Ptr, Scene.Params.linearDamping, Scene.Params.angularDamping); BulletSimAPI.SetDeactivationTime2(BSBody.Ptr, Scene.Params.deactivationTime); BulletSimAPI.SetSleepingThresholds2(BSBody.Ptr, Scene.Params.linearSleepingThreshold, Scene.Params.angularSleepingThreshold); BulletSimAPI.SetContactProcessingThreshold2(BSBody.Ptr, Scene.Params.contactProcessingThreshold); // There can be special things needed for implementing linksets Linkset.MakeDynamic(this); // Force activation of the object so Bullet will act on it. BulletSimAPI.Activate2(BSBody.Ptr, true); } } // "Making solid" means that other object will not pass through this object. private void MakeSolid(bool makeSolid) { if (makeSolid) { // Easy in Bullet -- just remove the object flag that controls collision response m_currentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.Ptr, CollisionFlags.CF_NO_CONTACT_RESPONSE); } else { m_currentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.Ptr, CollisionFlags.CF_NO_CONTACT_RESPONSE); } } // Turn on or off the flag controlling whether collision events are returned to the simulator. private void EnableCollisions(bool wantsCollisionEvents) { if (wantsCollisionEvents) { m_currentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.Ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } else { m_currentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.Ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } } // prims don't fly public override bool Flying { get { return _flying; } set { _flying = value; } } public override bool SetAlwaysRun { get { return _setAlwaysRun; } set { _setAlwaysRun = value; } } public override bool ThrottleUpdates { get { return _throttleUpdates; } set { _throttleUpdates = value; } } public override bool IsColliding { get { return (_collidingStep == _scene.SimulationStep); } set { _isColliding = value; } } public override bool CollidingGround { get { return (_collidingGroundStep == _scene.SimulationStep); } set { _collidingGround = value; } } public override bool CollidingObj { get { return _collidingObj; } set { _collidingObj = value; } } public bool IsPhantom { get { // SceneObjectPart removes phantom objects from the physics scene // so, although we could implement touching and such, we never // are invoked as a phantom object return false; } } public override bool FloatOnWater { set { _floatOnWater = value; } } public override OMV.Vector3 RotationalVelocity { get { /* OMV.Vector3 pv = OMV.Vector3.Zero; // if close to zero, report zero // This is copied from ODE but I'm not sure why it returns zero but doesn't // zero the property in the physics engine. if (_rotationalVelocity.ApproxEquals(pv, 0.2f)) return pv; */ return _rotationalVelocity; } set { _rotationalVelocity = value; // m_log.DebugFormat("{0}: RotationalVelocity={1}", LogHeader, _rotationalVelocity); _scene.TaintedObject("BSPrim.setRotationalVelocity", delegate() { DetailLog("{0},BSPrim.SetRotationalVel,taint,rotvel={1}", LocalID, _rotationalVelocity); BulletSimAPI.SetAngularVelocity2(BSBody.Ptr, _rotationalVelocity); }); } } public override bool Kinematic { get { return _kinematic; } set { _kinematic = value; // m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic); } } public override float Buoyancy { get { return _buoyancy; } set { _buoyancy = value; _scene.TaintedObject("BSPrim.setBuoyancy", delegate() { DetailLog("{0},BSPrim.SetBuoyancy,taint,buoy={1}", LocalID, _buoyancy); // Buoyancy is faked by changing the gravity applied to the object float grav = Scene.Params.gravity * (1f - _buoyancy); BulletSimAPI.SetGravity2(BSBody.Ptr, new OMV.Vector3(0f, 0f, grav)); // BulletSimAPI.SetObjectBuoyancy(_scene.WorldID, _localID, _buoyancy); }); } } // Used for MoveTo public override OMV.Vector3 PIDTarget { set { _PIDTarget = value; } } public override bool PIDActive { set { _usePID = value; } } public override float PIDTau { set { _PIDTau = value; } } // Used for llSetHoverHeight and maybe vehicle height // Hover Height will override MoveTo target's Z public override bool PIDHoverActive { set { _useHoverPID = value; } } public override float PIDHoverHeight { set { _PIDHoverHeight = value; } } public override PIDHoverType PIDHoverType { set { _PIDHoverType = value; } } public override float PIDHoverTau { set { _PIDHoverTao = value; } } // For RotLookAt public override OMV.Quaternion APIDTarget { set { return; } } public override bool APIDActive { set { return; } } public override float APIDStrength { set { return; } } public override float APIDDamping { set { return; } } private List m_accumulatedForces = new List(); public override void AddForce(OMV.Vector3 force, bool pushforce) { // for an object, doesn't matter if force is a pushforce or not if (force.IsFinite()) { // _force += force; lock (m_accumulatedForces) m_accumulatedForces.Add(new OMV.Vector3(force)); } else { m_log.WarnFormat("{0}: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID); return; } _scene.TaintedObject("BSPrim.AddForce", delegate() { OMV.Vector3 fSum = OMV.Vector3.Zero; lock (m_accumulatedForces) { foreach (OMV.Vector3 v in m_accumulatedForces) { fSum += v; } m_accumulatedForces.Clear(); } DetailLog("{0},BSPrim.AddObjectForce,taint,force={1}", LocalID, fSum); // For unknown reasons, "ApplyCentralForce" adds this force to the total force on the object. BulletSimAPI.ApplyCentralForce2(BSBody.Ptr, fSum); }); } public override void AddAngularForce(OMV.Vector3 force, bool pushforce) { DetailLog("{0},BSPrim.AddAngularForce,call,angForce={1},push={2}", LocalID, force, pushforce); // m_log.DebugFormat("{0}: AddAngularForce. f={1}, push={2}", LogHeader, force, pushforce); } public override void SetMomentum(OMV.Vector3 momentum) { DetailLog("{0},BSPrim.SetMomentum,call,mom={1}", LocalID, momentum); } public override void SubscribeEvents(int ms) { _subscribedEventsMs = ms; if (ms > 0) { // make sure first collision happens _nextCollisionOkTime = Util.EnvironmentTickCount() - _subscribedEventsMs; Scene.TaintedObject("BSPrim.SubscribeEvents", delegate() { m_currentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.Ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); }); } } public override void UnSubscribeEvents() { _subscribedEventsMs = 0; Scene.TaintedObject("BSPrim.UnSubscribeEvents", delegate() { m_currentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.Ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); }); } public override bool SubscribedEvents() { return (_subscribedEventsMs > 0); } #region Mass Calculation private float CalculateMass() { float volume = _size.X * _size.Y * _size.Z; // default float tmp; float returnMass = 0; float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f; float hollowVolume = hollowAmount * hollowAmount; switch (_pbs.ProfileShape) { case ProfileShape.Square: // default box if (_pbs.PathCurve == (byte)Extrusion.Straight) { if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= (0.5f * .5f); break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { //a tube volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX); tmp= 1.0f -2.0e-2f * (float)(200 - _pbs.PathScaleY); volume -= volume*tmp*tmp; if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f;; break; case HollowShape.Triangle: hollowVolume *= 0.5f * 0.5f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.Circle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.78539816339f; // elipse base if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.HalfCircle: if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.52359877559829887307710723054658f; } break; case ProfileShape.EquilateralTriangle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.32475953f; if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.32475953f; volume *= 0.01f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; default: break; } float taperX1; float taperY1; float taperX; float taperY; float pathBegin; float pathEnd; float profileBegin; float profileEnd; if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible) { taperX1 = _pbs.PathScaleX * 0.01f; if (taperX1 > 1.0f) taperX1 = 2.0f - taperX1; taperX = 1.0f - taperX1; taperY1 = _pbs.PathScaleY * 0.01f; if (taperY1 > 1.0f) taperY1 = 2.0f - taperY1; taperY = 1.0f - taperY1; } else { taperX = _pbs.PathTaperX * 0.01f; if (taperX < 0.0f) taperX = -taperX; taperX1 = 1.0f - taperX; taperY = _pbs.PathTaperY * 0.01f; if (taperY < 0.0f) taperY = -taperY; taperY1 = 1.0f - taperY; } volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY); pathBegin = (float)_pbs.PathBegin * 2.0e-5f; pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f; volume *= (pathEnd - pathBegin); // this is crude aproximation profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f; profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f; volume *= (profileEnd - profileBegin); returnMass = _density * volume; /* * This change means each object keeps its own mass and the Mass property * will return the sum if we're part of a linkset. if (IsRootOfLinkset) { foreach (BSPrim prim in _childrenPrims) { returnMass += prim.CalculateMass(); } } */ if (returnMass <= 0) returnMass = 0.0001f; if (returnMass > _scene.MaximumObjectMass) returnMass = _scene.MaximumObjectMass; return returnMass; }// end CalculateMass #endregion Mass Calculation // Create the geometry information in Bullet for later use. // The objects needs a hull if it's physical otherwise a mesh is enough. // No locking here because this is done when we know physics is not simulating. // if 'forceRebuild' is true, the geometry is rebuilt. Otherwise a previously built version is used. // Returns 'true' if the geometry was rebuilt. // Called at taint-time! private bool CreateGeom(bool forceRebuild) { bool ret = false; bool haveShape = false; // If the prim attributes are simple, this could be a simple Bullet native shape if ((_pbs.SculptEntry && !Scene.ShouldMeshSculptedPrim) || (_pbs.ProfileBegin == 0 && _pbs.ProfileEnd == 0 && _pbs.ProfileHollow == 0 && _pbs.PathTwist == 0 && _pbs.PathTwistBegin == 0 && _pbs.PathBegin == 0 && _pbs.PathEnd == 0 && _pbs.PathTaperX == 0 && _pbs.PathTaperY == 0 && _pbs.PathScaleX == 100 && _pbs.PathScaleY == 100 && _pbs.PathShearX == 0 && _pbs.PathShearY == 0) ) { if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) { haveShape = true; if (forceRebuild || (_shapeType != ShapeData.PhysicsShapeType.SHAPE_SPHERE)) { DetailLog("{0},BSPrim.CreateGeom,sphere (force={1}", LocalID, forceRebuild); _shapeType = ShapeData.PhysicsShapeType.SHAPE_SPHERE; // Bullet native objects are scaled by the Bullet engine so pass the size in _scale = _size; // TODO: do we need to check for and destroy a mesh or hull that might have been left from before? ret = true; } } else { // m_log.DebugFormat("{0}: CreateGeom: Defaulting to box. lid={1}, type={2}, size={3}", LogHeader, LocalID, _shapeType, _size); haveShape = true; if (forceRebuild || (_shapeType != ShapeData.PhysicsShapeType.SHAPE_BOX)) { DetailLog("{0},BSPrim.CreateGeom,box (force={1})", LocalID, forceRebuild); _shapeType = ShapeData.PhysicsShapeType.SHAPE_BOX; _scale = _size; // TODO: do we need to check for and destroy a mesh or hull that might have been left from before? ret = true; } } } // If a simple shape isn't happening, create a mesh and possibly a hull if (!haveShape) { if (IsPhysical) { if (forceRebuild || _hullKey == 0) { // physical objects require a hull for interaction. // This also creates the mesh if it doesn't already exist ret = CreateGeomHull(); } } else { if (forceRebuild || _meshKey == 0) { // Static (non-physical) objects only need a mesh for bumping into ret = CreateGeomMesh(); } } } return ret; } // No locking here because this is done when we know physics is not simulating // Returns 'true' of a mesh was actually rebuild (we could also have one of these specs). // Called at taint-time! private bool CreateGeomMesh() { // level of detail based on size and type of the object float lod = _scene.MeshLOD; if (_pbs.SculptEntry) lod = _scene.SculptLOD; float maxAxis = Math.Max(_size.X, Math.Max(_size.Y, _size.Z)); if (maxAxis > _scene.MeshMegaPrimThreshold) lod = _scene.MeshMegaPrimLOD; ulong newMeshKey = (ulong)_pbs.GetMeshKey(_size, lod); // m_log.DebugFormat("{0}: CreateGeomMesh: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _meshKey, newMeshKey); // if this new shape is the same as last time, don't recreate the mesh if (_meshKey == newMeshKey) return false; DetailLog("{0},BSPrim.CreateGeomMesh,create,key={1}", LocalID, newMeshKey); // Since we're recreating new, get rid of any previously generated shape if (_meshKey != 0) { // m_log.DebugFormat("{0}: CreateGeom: deleting old mesh. lID={1}, Key={2}", LogHeader, _localID, _meshKey); DetailLog("{0},BSPrim.CreateGeomMesh,deleteOld,key={1}", LocalID, _meshKey); BulletSimAPI.DestroyMesh(_scene.WorldID, _meshKey); _mesh = null; _meshKey = 0; } _meshKey = newMeshKey; // always pass false for physicalness as this creates some sort of bounding box which we don't need _mesh = _scene.mesher.CreateMesh(_avName, _pbs, _size, lod, false); int[] indices = _mesh.getIndexListAsInt(); List vertices = _mesh.getVertexList(); float[] verticesAsFloats = new float[vertices.Count * 3]; int vi = 0; foreach (OMV.Vector3 vv in vertices) { verticesAsFloats[vi++] = vv.X; verticesAsFloats[vi++] = vv.Y; verticesAsFloats[vi++] = vv.Z; } // m_log.DebugFormat("{0}: CreateGeomMesh: calling CreateMesh. lid={1}, key={2}, indices={3}, vertices={4}", // LogHeader, _localID, _meshKey, indices.Length, vertices.Count); BulletSimAPI.CreateMesh(_scene.WorldID, _meshKey, indices.GetLength(0), indices, vertices.Count, verticesAsFloats); _shapeType = ShapeData.PhysicsShapeType.SHAPE_MESH; // meshes are already scaled by the meshmerizer _scale = new OMV.Vector3(1f, 1f, 1f); return true; } // No locking here because this is done when we know physics is not simulating // Returns 'true' of a mesh was actually rebuild (we could also have one of these specs). private bool CreateGeomHull() { float lod = _pbs.SculptEntry ? _scene.SculptLOD : _scene.MeshLOD; ulong newHullKey = (ulong)_pbs.GetMeshKey(_size, lod); // m_log.DebugFormat("{0}: CreateGeomHull: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _hullKey, newHullKey); // if the hull hasn't changed, don't rebuild it if (newHullKey == _hullKey) return false; DetailLog("{0},BSPrim.CreateGeomHull,create,oldKey={1},newKey={2}", LocalID, _hullKey, newHullKey); // Since we're recreating new, get rid of any previously generated shape if (_hullKey != 0) { // m_log.DebugFormat("{0}: CreateGeom: deleting old hull. Key={1}", LogHeader, _hullKey); DetailLog("{0},BSPrim.CreateGeomHull,deleteOldHull,key={1}", LocalID, _hullKey); BulletSimAPI.DestroyHull(_scene.WorldID, _hullKey); _hullKey = 0; } _hullKey = newHullKey; // Make sure the underlying mesh exists and is correct CreateGeomMesh(); int[] indices = _mesh.getIndexListAsInt(); List vertices = _mesh.getVertexList(); //format conversion from IMesh format to DecompDesc format List convIndices = new List(); List convVertices = new List(); for (int ii = 0; ii < indices.GetLength(0); ii++) { convIndices.Add(indices[ii]); } foreach (OMV.Vector3 vv in vertices) { convVertices.Add(new float3(vv.X, vv.Y, vv.Z)); } // setup and do convex hull conversion _hulls = new List(); DecompDesc dcomp = new DecompDesc(); dcomp.mIndices = convIndices; dcomp.mVertices = convVertices; ConvexBuilder convexBuilder = new ConvexBuilder(HullReturn); // create the hull into the _hulls variable convexBuilder.process(dcomp); // Convert the vertices and indices for passing to unmanaged. // The hull information is passed as a large floating point array. // The format is: // convHulls[0] = number of hulls // convHulls[1] = number of vertices in first hull // convHulls[2] = hull centroid X coordinate // convHulls[3] = hull centroid Y coordinate // convHulls[4] = hull centroid Z coordinate // convHulls[5] = first hull vertex X // convHulls[6] = first hull vertex Y // convHulls[7] = first hull vertex Z // convHulls[8] = second hull vertex X // ... // convHulls[n] = number of vertices in second hull // convHulls[n+1] = second hull centroid X coordinate // ... // // TODO: is is very inefficient. Someday change the convex hull generator to return // data structures that do not need to be converted in order to pass to Bullet. // And maybe put the values directly into pinned memory rather than marshaling. int hullCount = _hulls.Count; int totalVertices = 1; // include one for the count of the hulls foreach (ConvexResult cr in _hulls) { totalVertices += 4; // add four for the vertex count and centroid totalVertices += cr.HullIndices.Count * 3; // we pass just triangles } float[] convHulls = new float[totalVertices]; convHulls[0] = (float)hullCount; int jj = 1; foreach (ConvexResult cr in _hulls) { // copy vertices for index access float3[] verts = new float3[cr.HullVertices.Count]; int kk = 0; foreach (float3 ff in cr.HullVertices) { verts[kk++] = ff; } // add to the array one hull's worth of data convHulls[jj++] = cr.HullIndices.Count; convHulls[jj++] = 0f; // centroid x,y,z convHulls[jj++] = 0f; convHulls[jj++] = 0f; foreach (int ind in cr.HullIndices) { convHulls[jj++] = verts[ind].x; convHulls[jj++] = verts[ind].y; convHulls[jj++] = verts[ind].z; } } // create the hull definition in Bullet // m_log.DebugFormat("{0}: CreateGeom: calling CreateHull. lid={1}, key={2}, hulls={3}", LogHeader, _localID, _hullKey, hullCount); BulletSimAPI.CreateHull(_scene.WorldID, _hullKey, hullCount, convHulls); _shapeType = ShapeData.PhysicsShapeType.SHAPE_HULL; // meshes are already scaled by the meshmerizer _scale = new OMV.Vector3(1f, 1f, 1f); DetailLog("{0},BSPrim.CreateGeomHull,done", LocalID); return true; } // Callback from convex hull creater with a newly created hull. // Just add it to the collection of hulls for this shape. private void HullReturn(ConvexResult result) { _hulls.Add(result); return; } private void VerifyCorrectPhysicalShape() { if (!IsStatic) { // if not static, it will need a hull to efficiently collide with things if (_hullKey == 0) { CreateGeomAndObject(false); } } } // Create an object in Bullet if it has not already been created // No locking here because this is done when the physics engine is not simulating // Returns 'true' if an object was actually created. private bool CreateObject() { // this routine is called when objects are rebuilt. // the mesh or hull must have already been created in Bullet ShapeData shape; FillShapeInfo(out shape); // m_log.DebugFormat("{0}: CreateObject: lID={1}, shape={2}", LogHeader, _localID, shape.Type); bool ret = BulletSimAPI.CreateObject(_scene.WorldID, shape); // the CreateObject() may have recreated the rigid body. Make sure we have the latest address. BSBody = new BulletBody(LocalID, BulletSimAPI.GetBodyHandle2(_scene.World.Ptr, LocalID)); BSShape = new BulletShape(BulletSimAPI.GetCollisionShape2(BSBody.Ptr)); return ret; } // Copy prim's info into the BulletSim shape description structure public void FillShapeInfo(out ShapeData shape) { shape.ID = _localID; shape.Type = _shapeType; shape.Position = _position; shape.Rotation = _orientation; shape.Velocity = _velocity; shape.Scale = _scale; shape.Mass = _isPhysical ? _mass : 0f; shape.Buoyancy = _buoyancy; shape.HullKey = _hullKey; shape.MeshKey = _meshKey; shape.Friction = _friction; shape.Restitution = _restitution; shape.Collidable = (!IsPhantom) ? ShapeData.numericTrue : ShapeData.numericFalse; shape.Static = _isPhysical ? ShapeData.numericFalse : ShapeData.numericTrue; } // Rebuild the geometry and object. // This is called when the shape changes so we need to recreate the mesh/hull. // No locking here because this is done when the physics engine is not simulating private void CreateGeomAndObject(bool forceRebuild) { // m_log.DebugFormat("{0}: CreateGeomAndObject. lID={1}, force={2}", LogHeader, _localID, forceRebuild); // Create the geometry that will make up the object if (CreateGeom(forceRebuild)) { // Create the object and place it into the world CreateObject(); // Make sure the properties are set on the new object UpdatePhysicalParameters(); } return; } // The physics engine says that properties have updated. Update same and inform // the world that things have changed. // TODO: do we really need to check for changed? Maybe just copy values and call RequestPhysicsterseUpdate() enum UpdatedProperties { Position = 1 << 0, Rotation = 1 << 1, Velocity = 1 << 2, Acceleration = 1 << 3, RotationalVel = 1 << 4 } const float ROTATION_TOLERANCE = 0.01f; const float VELOCITY_TOLERANCE = 0.001f; const float POSITION_TOLERANCE = 0.05f; const float ACCELERATION_TOLERANCE = 0.01f; const float ROTATIONAL_VELOCITY_TOLERANCE = 0.01f; public override void UpdateProperties(EntityProperties entprop) { /* UpdatedProperties changed = 0; // assign to the local variables so the normal set action does not happen // if (_position != entprop.Position) if (!_position.ApproxEquals(entprop.Position, POSITION_TOLERANCE)) { _position = entprop.Position; changed |= UpdatedProperties.Position; } // if (_orientation != entprop.Rotation) if (!_orientation.ApproxEquals(entprop.Rotation, ROTATION_TOLERANCE)) { _orientation = entprop.Rotation; changed |= UpdatedProperties.Rotation; } // if (_velocity != entprop.Velocity) if (!_velocity.ApproxEquals(entprop.Velocity, VELOCITY_TOLERANCE)) { _velocity = entprop.Velocity; changed |= UpdatedProperties.Velocity; } // if (_acceleration != entprop.Acceleration) if (!_acceleration.ApproxEquals(entprop.Acceleration, ACCELERATION_TOLERANCE)) { _acceleration = entprop.Acceleration; changed |= UpdatedProperties.Acceleration; } // if (_rotationalVelocity != entprop.RotationalVelocity) if (!_rotationalVelocity.ApproxEquals(entprop.RotationalVelocity, ROTATIONAL_VELOCITY_TOLERANCE)) { _rotationalVelocity = entprop.RotationalVelocity; changed |= UpdatedProperties.RotationalVel; } if (changed != 0) { // Only update the position of single objects and linkset roots if (this._parentPrim == null) { base.RequestPhysicsterseUpdate(); } } */ // Don't check for damping here -- it's done in BulletSim and SceneObjectPart. // Updates only for individual prims and for the root object of a linkset. if (Linkset.IsRoot(this)) { // Assign to the local variables so the normal set action does not happen _position = entprop.Position; _orientation = entprop.Rotation; _velocity = entprop.Velocity; _acceleration = entprop.Acceleration; _rotationalVelocity = entprop.RotationalVelocity; DetailLog("{0},BSPrim.UpdateProperties,call,pos={1},orient={2},vel={3},accel={4},rotVel={5}", LocalID, _position, _orientation, _velocity, _acceleration, _rotationalVelocity); // BulletSimAPI.DumpRigidBody2(Scene.World.Ptr, BSBody.Ptr); base.RequestPhysicsterseUpdate(); } /* else { // For debugging, we can also report the movement of children DetailLog("{0},BSPrim.UpdateProperties,child,pos={1},orient={2},vel={3},accel={4},rotVel={5}", LocalID, entprop.Position, entprop.Rotation, entprop.Velocity, entprop.Acceleration, entprop.RotationalVelocity); } */ } // I've collided with something // Called at taint time from within the Step() function CollisionEventUpdate collisionCollection; public override bool Collide(uint collidingWith, BSPhysObject collidee, OMV.Vector3 contactPoint, OMV.Vector3 contactNormal, float pentrationDepth) { bool ret = false; // The following lines make IsColliding() and IsCollidingGround() work _collidingStep = Scene.SimulationStep; if (collidingWith <= Scene.TerrainManager.HighestTerrainID) { _collidingGroundStep = Scene.SimulationStep; } // DetailLog("{0},BSPrim.Collison,call,with={1}", LocalID, collidingWith); // prims in the same linkset cannot collide with each other if (collidee != null && (this.Linkset.LinksetID == collidee.Linkset.LinksetID)) { return ret; } // if someone has subscribed for collision events.... if (SubscribedEvents()) { // throttle the collisions to the number of milliseconds specified in the subscription int nowTime = Scene.SimulationNowTime; if (nowTime >= _nextCollisionOkTime) { _nextCollisionOkTime = nowTime + _subscribedEventsMs; if (collisionCollection == null) collisionCollection = new CollisionEventUpdate(); collisionCollection.AddCollider(collidingWith, new ContactPoint(contactPoint, contactNormal, pentrationDepth)); ret = true; } } return ret; } // The scene is telling us it's time to pass our collected collisions into the simulator public override void SendCollisions() { if (collisionCollection != null && collisionCollection.Count > 0) { base.SendCollisionUpdate(collisionCollection); // The collisionCollection structure is passed around in the simulator. // Make sure we don't have a handle to that one and that a new one is used next time. collisionCollection = null; } } // Invoke the detailed logger and output something if it's enabled. private void DetailLog(string msg, params Object[] args) { Scene.PhysicsLogging.Write(msg, args); } } }