/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Uncomment this it enable code to do all shape an body memory management // in the C# code. using System; using System.Reflection; using System.Collections.Generic; using System.Xml; using log4net; using OMV = OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenSim.Region.Physics.ConvexDecompositionDotNet; namespace OpenSim.Region.Physics.BulletSPlugin { [Serializable] public sealed class BSPrim : BSPhysObject { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static readonly string LogHeader = "[BULLETS PRIM]"; private IMesh _mesh; private PrimitiveBaseShape _pbs; private ShapeData.PhysicsShapeType _shapeType; private ulong _meshKey; private ulong _hullKey; private List _hulls; // _size is what the user passed. _scale is what we pass to the physics engine with the mesh. // Often _scale is unity because the meshmerizer will apply _size when creating the mesh. private OMV.Vector3 _size; // the multiplier for each mesh dimension as passed by the user private OMV.Vector3 _scale; // the multiplier for each mesh dimension for the mesh as created by the meshmerizer private bool _stopped; private bool _grabbed; private bool _isSelected; private bool _isVolumeDetect; private OMV.Vector3 _position; private float _mass; // the mass of this object private float _density; private OMV.Vector3 _force; private OMV.Vector3 _velocity; private OMV.Vector3 _torque; private float _collisionScore; private OMV.Vector3 _acceleration; private OMV.Quaternion _orientation; private int _physicsActorType; private bool _isPhysical; private bool _flying; private float _friction; private float _restitution; private bool _setAlwaysRun; private bool _throttleUpdates; private bool _isColliding; private bool _collidingGround; private bool _collidingObj; private bool _floatOnWater; private OMV.Vector3 _rotationalVelocity; private bool _kinematic; private float _buoyancy; private BSDynamics _vehicle; private OMV.Vector3 _PIDTarget; private bool _usePID; private float _PIDTau; private bool _useHoverPID; private float _PIDHoverHeight; private PIDHoverType _PIDHoverType; private float _PIDHoverTao; public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size, OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical) { // m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID); base.BaseInitialize(parent_scene, localID, primName, "BSPrim"); _physicsActorType = (int)ActorTypes.Prim; _position = pos; _size = size; _scale = new OMV.Vector3(1f, 1f, 1f); // the scale will be set by CreateGeom depending on object type _orientation = rotation; _buoyancy = 1f; _velocity = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; _hullKey = 0; _meshKey = 0; _pbs = pbs; _isPhysical = pisPhysical; _isVolumeDetect = false; _friction = PhysicsScene.Params.defaultFriction; // TODO: compute based on object material _density = PhysicsScene.Params.defaultDensity; // TODO: compute based on object material _restitution = PhysicsScene.Params.defaultRestitution; _vehicle = new BSDynamics(PhysicsScene, this); // add vehicleness _mass = CalculateMass(); // No body or shape yet BSBody = new BulletBody(LocalID, IntPtr.Zero); BSShape = new BulletShape(IntPtr.Zero); DetailLog("{0},BSPrim.constructor,call", LocalID); // do the actual object creation at taint time PhysicsScene.TaintedObject("BSPrim.create", delegate() { CreateGeomAndObject(true); CurrentCollisionFlags = BulletSimAPI.GetCollisionFlags2(BSBody.ptr); }); } // called when this prim is being destroyed and we should free all the resources public override void Destroy() { // m_log.DebugFormat("{0}: Destroy, id={1}", LogHeader, LocalID); // Undo any links between me and any other object BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = Linkset.RemoveMeFromLinkset(this); DetailLog("{0},BSPrim.Destroy,call,parentBefore={1},childrenBefore={2},parentAfter={3},childrenAfter={4}", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); // Undo any vehicle properties this.VehicleType = (int)Vehicle.TYPE_NONE; PhysicsScene.TaintedObject("BSPrim.destroy", delegate() { DetailLog("{0},BSPrim.Destroy,taint,", LocalID); // everything in the C# world will get garbage collected. Tell the C++ world to free stuff. BulletSimAPI.DestroyObject(PhysicsScene.WorldID, LocalID); }); } public override bool Stopped { get { return _stopped; } } public override OMV.Vector3 Size { get { return _size; } set { _size = value; PhysicsScene.TaintedObject("BSPrim.setSize", delegate() { _mass = CalculateMass(); // changing size changes the mass // Since _size changed, the mesh needs to be rebuilt. If rebuilt, all the correct // scale and margins are set. CreateGeomAndObject(true); // DetailLog("{0},BSPrim.setSize,size={1},scale={2},mass={3},physical={4}", LocalID, _size, _scale, _mass, IsPhysical); }); } } // Scale is what we set in the physics engine. It is different than 'size' in that // 'size' can be encorporated into the mesh. In that case, the scale is <1,1,1>. public OMV.Vector3 Scale { get { return _scale; } set { _scale = value; } } public override PrimitiveBaseShape Shape { set { _pbs = value; PhysicsScene.TaintedObject("BSPrim.setShape", delegate() { _mass = CalculateMass(); // changing the shape changes the mass CreateGeomAndObject(true); }); } } public override bool Grabbed { set { _grabbed = value; } } public override bool Selected { set { _isSelected = value; PhysicsScene.TaintedObject("BSPrim.setSelected", delegate() { // DetailLog("{0},BSPrim.selected,taint,selected={1}", LocalID, _isSelected); SetObjectDynamic(false); }); } } public override void CrossingFailure() { return; } // link me to the specified parent public override void link(PhysicsActor obj) { BSPrim parent = obj as BSPrim; if (parent != null) { BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = parent.Linkset.AddMeToLinkset(this); DetailLog("{0},BSPrim.link,call,parentBefore={1}, childrenBefore=={2}, parentAfter={3}, childrenAfter={4}", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); } return; } // delink me from my linkset public override void delink() { // TODO: decide if this parent checking needs to happen at taint time // Race condition here: if link() and delink() in same simulation tick, the delink will not happen BSPhysObject parentBefore = Linkset.LinksetRoot; int childrenBefore = Linkset.NumberOfChildren; Linkset = Linkset.RemoveMeFromLinkset(this); DetailLog("{0},BSPrim.delink,parentBefore={1},childrenBefore={2},parentAfter={3},childrenAfter={4}, ", LocalID, parentBefore.LocalID, childrenBefore, Linkset.LinksetRoot.LocalID, Linkset.NumberOfChildren); return; } // Set motion values to zero. // Do it to the properties so the values get set in the physics engine. // Push the setting of the values to the viewer. // Called at taint time! public override void ZeroMotion() { _velocity = OMV.Vector3.Zero; _acceleration = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; // Zero some other properties directly into the physics engine BulletSimAPI.SetLinearVelocity2(BSBody.ptr, OMV.Vector3.Zero); BulletSimAPI.SetAngularVelocity2(BSBody.ptr, OMV.Vector3.Zero); BulletSimAPI.SetInterpolationVelocity2(BSBody.ptr, OMV.Vector3.Zero, OMV.Vector3.Zero); BulletSimAPI.ClearForces2(BSBody.ptr); } public override void LockAngularMotion(OMV.Vector3 axis) { DetailLog("{0},BSPrim.LockAngularMotion,call,axis={1}", LocalID, axis); return; } public override OMV.Vector3 Position { get { if (!Linkset.IsRoot(this)) // child prims move around based on their parent. Need to get the latest location _position = BulletSimAPI.GetPosition2(BSBody.ptr); // don't do the GetObjectPosition for root elements because this function is called a zillion times // _position = BulletSimAPI.GetObjectPosition2(PhysicsScene.World.ptr, BSBody.ptr); return _position; } set { _position = value; // TODO: what does it mean to set the position of a child prim?? Rebuild the constraint? PhysicsScene.TaintedObject("BSPrim.setPosition", delegate() { // DetailLog("{0},BSPrim.SetPosition,taint,pos={1},orient={2}", LocalID, _position, _orientation); BulletSimAPI.SetTranslation2(BSBody.ptr, _position, _orientation); }); } } // Return the effective mass of the object. // If there are multiple items in the linkset, add them together for the root public override float Mass { get { // return Linkset.LinksetMass; return _mass; } } // used when we only want this prim's mass and not the linkset thing public override float MassRaw { get { return _mass; } } // Is this used? public override OMV.Vector3 CenterOfMass { get { return Linkset.CenterOfMass; } } // Is this used? public override OMV.Vector3 GeometricCenter { get { return Linkset.GeometricCenter; } } public override OMV.Vector3 Force { get { return _force; } set { _force = value; PhysicsScene.TaintedObject("BSPrim.setForce", delegate() { // DetailLog("{0},BSPrim.setForce,taint,force={1}", LocalID, _force); BulletSimAPI.SetObjectForce2(BSBody.ptr, _force); }); } } public override int VehicleType { get { return (int)_vehicle.Type; // if we are a vehicle, return that type } set { Vehicle type = (Vehicle)value; BSPrim vehiclePrim = this; PhysicsScene.TaintedObject("setVehicleType", delegate() { // Done at taint time so we're sure the physics engine is not using the variables // Vehicle code changes the parameters for this vehicle type. _vehicle.ProcessTypeChange(type); // Tell the scene about the vehicle so it will get processing each frame. PhysicsScene.VehicleInSceneTypeChanged(this, type); }); } } public override void VehicleFloatParam(int param, float value) { PhysicsScene.TaintedObject("BSPrim.VehicleFloatParam", delegate() { _vehicle.ProcessFloatVehicleParam((Vehicle)param, value); }); } public override void VehicleVectorParam(int param, OMV.Vector3 value) { PhysicsScene.TaintedObject("BSPrim.VehicleVectorParam", delegate() { _vehicle.ProcessVectorVehicleParam((Vehicle)param, value); }); } public override void VehicleRotationParam(int param, OMV.Quaternion rotation) { PhysicsScene.TaintedObject("BSPrim.VehicleRotationParam", delegate() { _vehicle.ProcessRotationVehicleParam((Vehicle)param, rotation); }); } public override void VehicleFlags(int param, bool remove) { PhysicsScene.TaintedObject("BSPrim.VehicleFlags", delegate() { _vehicle.ProcessVehicleFlags(param, remove); }); } // Called each simulation step to advance vehicle characteristics. // Called from Scene when doing simulation step so we're in taint processing time. public override void StepVehicle(float timeStep) { if (IsPhysical) _vehicle.Step(timeStep); } // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more public override void SetVolumeDetect(int param) { bool newValue = (param != 0); if (_isVolumeDetect != newValue) { _isVolumeDetect = newValue; PhysicsScene.TaintedObject("BSPrim.SetVolumeDetect", delegate() { // DetailLog("{0},setVolumeDetect,taint,volDetect={1}", LocalID, _isVolumeDetect); SetObjectDynamic(true); }); } return; } public override OMV.Vector3 Velocity { get { return _velocity; } set { _velocity = value; PhysicsScene.TaintedObject("BSPrim.setVelocity", delegate() { // DetailLog("{0},BSPrim.SetVelocity,taint,vel={1}", LocalID, _velocity); BulletSimAPI.SetLinearVelocity2(BSBody.ptr, _velocity); }); } } public override OMV.Vector3 Torque { get { return _torque; } set { _torque = value; // DetailLog("{0},BSPrim.SetTorque,call,torque={1}", LocalID, _torque); } } public override float CollisionScore { get { return _collisionScore; } set { _collisionScore = value; } } public override OMV.Vector3 Acceleration { get { return _acceleration; } set { _acceleration = value; } } public override OMV.Quaternion Orientation { get { if (!Linkset.IsRoot(this)) { // Children move around because tied to parent. Get a fresh value. _orientation = BulletSimAPI.GetOrientation2(BSBody.ptr); } return _orientation; } set { _orientation = value; // TODO: what does it mean if a child in a linkset changes its orientation? Rebuild the constraint? PhysicsScene.TaintedObject("BSPrim.setOrientation", delegate() { // _position = BulletSimAPI.GetObjectPosition2(PhysicsScene.World.ptr, BSBody.ptr); // DetailLog("{0},BSPrim.setOrientation,taint,pos={1},orient={2}", LocalID, _position, _orientation); BulletSimAPI.SetTranslation2(BSBody.ptr, _position, _orientation); }); } } public override int PhysicsActorType { get { return _physicsActorType; } set { _physicsActorType = value; } } public override bool IsPhysical { get { return _isPhysical; } set { if (_isPhysical != value) { _isPhysical = value; PhysicsScene.TaintedObject("BSPrim.setIsPhysical", delegate() { // DetailLog("{0},setIsPhysical,taint,isPhys={1}", LocalID, _isPhysical); SetObjectDynamic(true); }); } } } // An object is static (does not move) if selected or not physical private bool IsStatic { get { return _isSelected || !IsPhysical; } } // An object is solid if it's not phantom and if it's not doing VolumeDetect public bool IsSolid { get { return !IsPhantom && !_isVolumeDetect; } } // Make gravity work if the object is physical and not selected // Called at taint-time!! private void SetObjectDynamic(bool forceRebuild) { // Recreate the physical object if necessary CreateGeomAndObject(forceRebuild); } // Convert the simulator's physical properties into settings on BulletSim objects. // There are four flags we're interested in: // IsStatic: Object does not move, otherwise the object has mass and moves // isSolid: other objects bounce off of this object // isVolumeDetect: other objects pass through but can generate collisions // collisionEvents: whether this object returns collision events private void UpdatePhysicalParameters() { // DetailLog("{0},BSPrim.UpdatePhysicalParameters,entry,body={1},shape={2}", LocalID, BSBody, BSShape); // Mangling all the physical properties requires the object not be in the physical world. // This is a NOOP if the object is not in the world (BulletSim and Bullet ignore objects not found). BulletSimAPI.RemoveObjectFromWorld2(PhysicsScene.World.ptr, BSBody.ptr); // Set up the object physicalness (does gravity and collisions move this object) MakeDynamic(IsStatic); // Do any vehicle stuff _vehicle.Refresh(); // Arrange for collision events if the simulator wants them EnableCollisions(SubscribedEvents()); // Make solid or not (do things bounce off or pass through this object). MakeSolid(IsSolid); BulletSimAPI.AddObjectToWorld2(PhysicsScene.World.ptr, BSBody.ptr); // Rebuild its shape BulletSimAPI.UpdateSingleAabb2(PhysicsScene.World.ptr, BSBody.ptr); // Collision filter can be set only when the object is in the world if (BSBody.collisionFilter != 0 || BSBody.collisionMask != 0) { BulletSimAPI.SetCollisionFilterMask2(BSBody.ptr, (uint)BSBody.collisionFilter, (uint)BSBody.collisionMask); } // Recompute any linkset parameters. // When going from non-physical to physical, this re-enables the constraints that // had been automatically disabled when the mass was set to zero. Linkset.Refresh(this); DetailLog("{0},BSPrim.UpdatePhysicalParameters,exit,static={1},solid={2},mass={3},collide={4},cf={5:X},body={6},shape={7}", LocalID, IsStatic, IsSolid, _mass, SubscribedEvents(), CurrentCollisionFlags, BSBody, BSShape); } // "Making dynamic" means changing to and from static. // When static, gravity does not effect the object and it is fixed in space. // When dynamic, the object can fall and be pushed by others. // This is independent of its 'solidness' which controls what passes through // this object and what interacts with it. private void MakeDynamic(bool makeStatic) { if (makeStatic) { // Become a Bullet 'static' object type CurrentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.ptr, CollisionFlags.CF_STATIC_OBJECT); // Stop all movement BulletSimAPI.ClearAllForces2(BSBody.ptr); // Center of mass is at the center of the object BulletSimAPI.SetCenterOfMassByPosRot2(Linkset.LinksetRoot.BSBody.ptr, _position, _orientation); // Mass is zero which disables a bunch of physics stuff in Bullet BulletSimAPI.SetMassProps2(BSBody.ptr, 0f, OMV.Vector3.Zero); // There is no inertia in a static object BulletSimAPI.UpdateInertiaTensor2(BSBody.ptr); // There can be special things needed for implementing linksets Linkset.MakeStatic(this); // The activation state is 'disabled' so Bullet will not try to act on it BulletSimAPI.ForceActivationState2(BSBody.ptr, ActivationState.DISABLE_SIMULATION); BSBody.collisionFilter = CollisionFilterGroups.StaticObjectFilter; BSBody.collisionMask = CollisionFilterGroups.StaticObjectMask; } else { // Not a Bullet static object CurrentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.ptr, CollisionFlags.CF_STATIC_OBJECT); // Set various physical properties so internal dynamic properties will get computed correctly as they are set BulletSimAPI.SetFriction2(BSBody.ptr, PhysicsScene.Params.defaultFriction); BulletSimAPI.SetRestitution2(BSBody.ptr, PhysicsScene.Params.defaultRestitution); // per http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=3382 BulletSimAPI.ClearAllForces2(BSBody.ptr); // A dynamic object has mass IntPtr collisionShapePtr = BulletSimAPI.GetCollisionShape2(BSBody.ptr); OMV.Vector3 inertia = BulletSimAPI.CalculateLocalInertia2(collisionShapePtr, Mass); // OMV.Vector3 inertia = OMV.Vector3.Zero; BulletSimAPI.SetMassProps2(BSBody.ptr, _mass, inertia); BulletSimAPI.UpdateInertiaTensor2(BSBody.ptr); // Various values for simulation limits BulletSimAPI.SetDamping2(BSBody.ptr, PhysicsScene.Params.linearDamping, PhysicsScene.Params.angularDamping); BulletSimAPI.SetDeactivationTime2(BSBody.ptr, PhysicsScene.Params.deactivationTime); BulletSimAPI.SetSleepingThresholds2(BSBody.ptr, PhysicsScene.Params.linearSleepingThreshold, PhysicsScene.Params.angularSleepingThreshold); BulletSimAPI.SetContactProcessingThreshold2(BSBody.ptr, PhysicsScene.Params.contactProcessingThreshold); // There can be special things needed for implementing linksets. Linkset.MakeDynamic(this); // Force activation of the object so Bullet will act on it. // Must do the ForceActivationState2() to overcome the DISABLE_SIMULATION from static objects. BulletSimAPI.ForceActivationState2(BSBody.ptr, ActivationState.ISLAND_SLEEPING); BulletSimAPI.Activate2(BSBody.ptr, true); BSBody.collisionFilter = CollisionFilterGroups.ObjectFilter; BSBody.collisionMask = CollisionFilterGroups.ObjectMask; } } // "Making solid" means that other object will not pass through this object. // To make transparent, we create a Bullet ghost object. // Note: This expects to be called from the UpdatePhysicalParameters() routine as // the functions after this one set up the state of a possibly newly created collision body. private void MakeSolid(bool makeSolid) { CollisionObjectTypes bodyType = (CollisionObjectTypes)BulletSimAPI.GetBodyType2(BSBody.ptr); if (makeSolid) { // Verify the previous code created the correct shape for this type of thing. if ((bodyType & CollisionObjectTypes.CO_RIGID_BODY) == 0) { m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for solidity. id={1}, type={2}", LogHeader, LocalID, bodyType); } CurrentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.ptr, CollisionFlags.CF_NO_CONTACT_RESPONSE); } else { if ((bodyType & CollisionObjectTypes.CO_GHOST_OBJECT) == 0) { m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for non-solidness. id={1}, type={2}", LogHeader, LocalID, bodyType); } CurrentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.ptr, CollisionFlags.CF_NO_CONTACT_RESPONSE); BSBody.collisionFilter = CollisionFilterGroups.VolumeDetectFilter; BSBody.collisionMask = CollisionFilterGroups.VolumeDetectMask; } } // Turn on or off the flag controlling whether collision events are returned to the simulator. private void EnableCollisions(bool wantsCollisionEvents) { if (wantsCollisionEvents) { CurrentCollisionFlags = BulletSimAPI.AddToCollisionFlags2(BSBody.ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } else { CurrentCollisionFlags = BulletSimAPI.RemoveFromCollisionFlags2(BSBody.ptr, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } } // prims don't fly public override bool Flying { get { return _flying; } set { _flying = value; } } public override bool SetAlwaysRun { get { return _setAlwaysRun; } set { _setAlwaysRun = value; } } public override bool ThrottleUpdates { get { return _throttleUpdates; } set { _throttleUpdates = value; } } public override bool IsColliding { get { return (CollidingStep == PhysicsScene.SimulationStep); } set { _isColliding = value; } } public override bool CollidingGround { get { return (CollidingGroundStep == PhysicsScene.SimulationStep); } set { _collidingGround = value; } } public override bool CollidingObj { get { return _collidingObj; } set { _collidingObj = value; } } public bool IsPhantom { get { // SceneObjectPart removes phantom objects from the physics scene // so, although we could implement touching and such, we never // are invoked as a phantom object return false; } } public override bool FloatOnWater { set { _floatOnWater = value; } } public override OMV.Vector3 RotationalVelocity { get { /* OMV.Vector3 pv = OMV.Vector3.Zero; // if close to zero, report zero // This is copied from ODE but I'm not sure why it returns zero but doesn't // zero the property in the physics engine. if (_rotationalVelocity.ApproxEquals(pv, 0.2f)) return pv; */ return _rotationalVelocity; } set { _rotationalVelocity = value; // m_log.DebugFormat("{0}: RotationalVelocity={1}", LogHeader, _rotationalVelocity); PhysicsScene.TaintedObject("BSPrim.setRotationalVelocity", delegate() { // DetailLog("{0},BSPrim.SetRotationalVel,taint,rotvel={1}", LocalID, _rotationalVelocity); BulletSimAPI.SetAngularVelocity2(BSBody.ptr, _rotationalVelocity); }); } } public override bool Kinematic { get { return _kinematic; } set { _kinematic = value; // m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic); } } public override float Buoyancy { get { return _buoyancy; } set { _buoyancy = value; PhysicsScene.TaintedObject("BSPrim.setBuoyancy", delegate() { // DetailLog("{0},BSPrim.SetBuoyancy,taint,buoy={1}", LocalID, _buoyancy); // Buoyancy is faked by changing the gravity applied to the object float grav = PhysicsScene.Params.gravity * (1f - _buoyancy); BulletSimAPI.SetGravity2(BSBody.ptr, new OMV.Vector3(0f, 0f, grav)); }); } } // Used for MoveTo public override OMV.Vector3 PIDTarget { set { _PIDTarget = value; } } public override bool PIDActive { set { _usePID = value; } } public override float PIDTau { set { _PIDTau = value; } } // Used for llSetHoverHeight and maybe vehicle height // Hover Height will override MoveTo target's Z public override bool PIDHoverActive { set { _useHoverPID = value; } } public override float PIDHoverHeight { set { _PIDHoverHeight = value; } } public override PIDHoverType PIDHoverType { set { _PIDHoverType = value; } } public override float PIDHoverTau { set { _PIDHoverTao = value; } } // For RotLookAt public override OMV.Quaternion APIDTarget { set { return; } } public override bool APIDActive { set { return; } } public override float APIDStrength { set { return; } } public override float APIDDamping { set { return; } } private List m_accumulatedForces = new List(); public override void AddForce(OMV.Vector3 force, bool pushforce) { // for an object, doesn't matter if force is a pushforce or not if (force.IsFinite()) { // _force += force; lock (m_accumulatedForces) m_accumulatedForces.Add(new OMV.Vector3(force)); } else { m_log.WarnFormat("{0}: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID); return; } PhysicsScene.TaintedObject("BSPrim.AddForce", delegate() { OMV.Vector3 fSum = OMV.Vector3.Zero; lock (m_accumulatedForces) { foreach (OMV.Vector3 v in m_accumulatedForces) { fSum += v; } m_accumulatedForces.Clear(); } // DetailLog("{0},BSPrim.AddObjectForce,taint,force={1}", LocalID, fSum); // For unknown reasons, "ApplyCentralForce" adds this force to the total force on the object. BulletSimAPI.ApplyCentralForce2(BSBody.ptr, fSum); }); } public override void AddAngularForce(OMV.Vector3 force, bool pushforce) { // DetailLog("{0},BSPrim.AddAngularForce,call,angForce={1},push={2}", LocalID, force, pushforce); // m_log.DebugFormat("{0}: AddAngularForce. f={1}, push={2}", LogHeader, force, pushforce); } public override void SetMomentum(OMV.Vector3 momentum) { // DetailLog("{0},BSPrim.SetMomentum,call,mom={1}", LocalID, momentum); } #region Mass Calculation private float CalculateMass() { float volume = _size.X * _size.Y * _size.Z; // default float tmp; float returnMass = 0; float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f; float hollowVolume = hollowAmount * hollowAmount; switch (_pbs.ProfileShape) { case ProfileShape.Square: // default box if (_pbs.PathCurve == (byte)Extrusion.Straight) { if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= (0.5f * .5f); break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { //a tube volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX); tmp= 1.0f -2.0e-2f * (float)(200 - _pbs.PathScaleY); volume -= volume*tmp*tmp; if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f;; break; case HollowShape.Triangle: hollowVolume *= 0.5f * 0.5f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.Circle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.78539816339f; // elipse base if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.HalfCircle: if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.52359877559829887307710723054658f; } break; case ProfileShape.EquilateralTriangle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.32475953f; if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.32475953f; volume *= 0.01f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; default: break; } float taperX1; float taperY1; float taperX; float taperY; float pathBegin; float pathEnd; float profileBegin; float profileEnd; if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible) { taperX1 = _pbs.PathScaleX * 0.01f; if (taperX1 > 1.0f) taperX1 = 2.0f - taperX1; taperX = 1.0f - taperX1; taperY1 = _pbs.PathScaleY * 0.01f; if (taperY1 > 1.0f) taperY1 = 2.0f - taperY1; taperY = 1.0f - taperY1; } else { taperX = _pbs.PathTaperX * 0.01f; if (taperX < 0.0f) taperX = -taperX; taperX1 = 1.0f - taperX; taperY = _pbs.PathTaperY * 0.01f; if (taperY < 0.0f) taperY = -taperY; taperY1 = 1.0f - taperY; } volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY); pathBegin = (float)_pbs.PathBegin * 2.0e-5f; pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f; volume *= (pathEnd - pathBegin); // this is crude aproximation profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f; profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f; volume *= (profileEnd - profileBegin); returnMass = _density * volume; /* * This change means each object keeps its own mass and the Mass property * will return the sum if we're part of a linkset. if (IsRootOfLinkset) { foreach (BSPrim prim in _childrenPrims) { returnMass += prim.CalculateMass(); } } */ if (returnMass <= 0) returnMass = 0.0001f; if (returnMass > PhysicsScene.MaximumObjectMass) returnMass = PhysicsScene.MaximumObjectMass; return returnMass; }// end CalculateMass #endregion Mass Calculation // Copy prim's info into the BulletSim shape description structure public void FillShapeInfo(out ShapeData shape) { shape.ID = LocalID; shape.Type = _shapeType; shape.Position = _position; shape.Rotation = _orientation; shape.Velocity = _velocity; shape.Scale = _scale; shape.Mass = _isPhysical ? _mass : 0f; shape.Buoyancy = _buoyancy; shape.HullKey = _hullKey; shape.MeshKey = _meshKey; shape.Friction = _friction; shape.Restitution = _restitution; shape.Collidable = (!IsPhantom) ? ShapeData.numericTrue : ShapeData.numericFalse; shape.Static = _isPhysical ? ShapeData.numericFalse : ShapeData.numericTrue; shape.Solid = IsSolid ? ShapeData.numericFalse : ShapeData.numericTrue; shape.Size = _size; } // Rebuild the geometry and object. // This is called when the shape changes so we need to recreate the mesh/hull. // Called at taint-time!!! private void CreateGeomAndObject(bool forceRebuild) { ShapeData shapeData; FillShapeInfo(out shapeData); // Undo me from any possible linkset so, if body is rebuilt, the link will get restored. // NOTE that the new linkset is not set. This saves the handle to the linkset // so we can add ourselves back when shape mangling is complete. bool needToRestoreLinkset = false; // Create the correct physical representation for this type of object. // Updates BSBody and BSShape with the new information. PhysicsScene.Shapes.GetBodyAndShape(forceRebuild, PhysicsScene.World, this, shapeData, _pbs, null, delegate(BulletBody dBody) { // Called if the current prim body is about to be destroyed. // The problem is the constraints for Linksets which need to be updated for the new body. Linkset.RemoveBodyDependencies(this); needToRestoreLinkset = true; }); if (needToRestoreLinkset) Linkset.RestoreBodyDependencies(this); // Make sure the properties are set on the new object UpdatePhysicalParameters(); return; } // The physics engine says that properties have updated. Update same and inform // the world that things have changed. // TODO: do we really need to check for changed? Maybe just copy values and call RequestPhysicsterseUpdate() enum UpdatedProperties { Position = 1 << 0, Rotation = 1 << 1, Velocity = 1 << 2, Acceleration = 1 << 3, RotationalVel = 1 << 4 } const float ROTATION_TOLERANCE = 0.01f; const float VELOCITY_TOLERANCE = 0.001f; const float POSITION_TOLERANCE = 0.05f; const float ACCELERATION_TOLERANCE = 0.01f; const float ROTATIONAL_VELOCITY_TOLERANCE = 0.01f; public override void UpdateProperties(EntityProperties entprop) { /* UpdatedProperties changed = 0; // assign to the local variables so the normal set action does not happen // if (_position != entprop.Position) if (!_position.ApproxEquals(entprop.Position, POSITION_TOLERANCE)) { _position = entprop.Position; changed |= UpdatedProperties.Position; } // if (_orientation != entprop.Rotation) if (!_orientation.ApproxEquals(entprop.Rotation, ROTATION_TOLERANCE)) { _orientation = entprop.Rotation; changed |= UpdatedProperties.Rotation; } // if (_velocity != entprop.Velocity) if (!_velocity.ApproxEquals(entprop.Velocity, VELOCITY_TOLERANCE)) { _velocity = entprop.Velocity; changed |= UpdatedProperties.Velocity; } // if (_acceleration != entprop.Acceleration) if (!_acceleration.ApproxEquals(entprop.Acceleration, ACCELERATION_TOLERANCE)) { _acceleration = entprop.Acceleration; changed |= UpdatedProperties.Acceleration; } // if (_rotationalVelocity != entprop.RotationalVelocity) if (!_rotationalVelocity.ApproxEquals(entprop.RotationalVelocity, ROTATIONAL_VELOCITY_TOLERANCE)) { _rotationalVelocity = entprop.RotationalVelocity; changed |= UpdatedProperties.RotationalVel; } if (changed != 0) { // Only update the position of single objects and linkset roots if (this._parentPrim == null) { base.RequestPhysicsterseUpdate(); } } */ // Don't check for damping here -- it's done in BulletSim and SceneObjectPart. // Updates only for individual prims and for the root object of a linkset. if (Linkset.IsRoot(this)) { // Assign to the local variables so the normal set action does not happen _position = entprop.Position; _orientation = entprop.Rotation; _velocity = entprop.Velocity; _acceleration = entprop.Acceleration; _rotationalVelocity = entprop.RotationalVelocity; DetailLog("{0},BSPrim.UpdateProperties,call,pos={1},orient={2},vel={3},accel={4},rotVel={5}", LocalID, _position, _orientation, _velocity, _acceleration, _rotationalVelocity); // BulletSimAPI.DumpRigidBody2(Scene.World.Ptr, BSBody.Ptr); base.RequestPhysicsterseUpdate(); } /* else { // For debugging, we can also report the movement of children DetailLog("{0},BSPrim.UpdateProperties,child,pos={1},orient={2},vel={3},accel={4},rotVel={5}", LocalID, entprop.Position, entprop.Rotation, entprop.Velocity, entprop.Acceleration, entprop.RotationalVelocity); } */ } } }