/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; using OpenSim.Region.Physics.Manager; using OpenMetaverse; using Nini.Config; namespace OpenSim.Region.Physics.BulletSPlugin { public static class BSParam { // Level of Detail values kept as float because that's what the Meshmerizer wants public static float MeshLOD { get; private set; } public static float MeshMegaPrimLOD { get; private set; } public static float MeshMegaPrimThreshold { get; private set; } public static float SculptLOD { get; private set; } public static float MinimumObjectMass { get; private set; } public static float MaximumObjectMass { get; private set; } public static float MaxLinearVelocity { get; private set; } public static float MaxAngularVelocity { get; private set; } public static float MaxAddForceMagnitude { get; private set; } public static float LinearDamping { get; private set; } public static float AngularDamping { get; private set; } public static float DeactivationTime { get; private set; } public static float LinearSleepingThreshold { get; private set; } public static float AngularSleepingThreshold { get; private set; } public static float CcdMotionThreshold { get; private set; } public static float CcdSweptSphereRadius { get; private set; } public static float ContactProcessingThreshold { get; private set; } public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects public static float TerrainImplementation { get; private set; } public static float TerrainFriction { get; private set; } public static float TerrainHitFraction { get; private set; } public static float TerrainRestitution { get; private set; } public static float TerrainCollisionMargin { get; private set; } // Avatar parameters public static float AvatarFriction { get; private set; } public static float AvatarStandingFriction { get; private set; } public static float AvatarAlwaysRunFactor { get; private set; } public static float AvatarDensity { get; private set; } public static float AvatarRestitution { get; private set; } public static float AvatarCapsuleWidth { get; private set; } public static float AvatarCapsuleDepth { get; private set; } public static float AvatarCapsuleHeight { get; private set; } public static float AvatarContactProcessingThreshold { get; private set; } public static float AvatarStepHeight { get; private set; } public static float AvatarStepApproachFactor { get; private set; } public static float AvatarStepForceFactor { get; private set; } // Vehicle parameters public static float VehicleMaxLinearVelocity { get; private set; } public static float VehicleMaxAngularVelocity { get; private set; } public static float VehicleAngularDamping { get; private set; } public static float VehicleFriction { get; private set; } public static float VehicleRestitution { get; private set; } public static float VehicleLinearFactor { get; private set; } private static Vector3? vehicleLinearFactorV; public static Vector3 VehicleLinearFactorV { get { if (!vehicleLinearFactorV.HasValue) vehicleLinearFactorV = new Vector3(VehicleLinearFactor, VehicleLinearFactor, VehicleLinearFactor); return (Vector3)vehicleLinearFactorV; } } public static float VehicleAngularFactor { get; private set; } private static Vector3? vehicleAngularFactorV; public static Vector3 VehicleAngularFactorV { get { if (!vehicleAngularFactorV.HasValue) vehicleAngularFactorV = new Vector3(VehicleAngularFactor, VehicleAngularFactor, VehicleAngularFactor); return (Vector3)vehicleAngularFactorV; } } public static float VehicleGroundGravityFudge { get; private set; } public static float VehicleDebuggingEnabled { get; private set; } public static float LinksetImplementation { get; private set; } public static float LinkConstraintUseFrameOffset { get; private set; } public static float LinkConstraintEnableTransMotor { get; private set; } public static float LinkConstraintTransMotorMaxVel { get; private set; } public static float LinkConstraintTransMotorMaxForce { get; private set; } public static float LinkConstraintERP { get; private set; } public static float LinkConstraintCFM { get; private set; } public static float LinkConstraintSolverIterations { get; private set; } public static float PID_D { get; private set; } // derivative public static float PID_P { get; private set; } // proportional // Various constants that come from that other virtual world that shall not be named. public const float MinGravityZ = -1f; public const float MaxGravityZ = 28f; public const float MinFriction = 0f; public const float MaxFriction = 255f; public const float MinDensity = 0.01f; public const float MaxDensity = 22587f; public const float MinRestitution = 0f; public const float MaxRestitution = 1f; // =========================================================================== public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val); public delegate float ParamGet(BSScene scene); public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val); public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val); public struct ParameterDefn { public string name; // string name of the parameter public string desc; // a short description of what the parameter means public float defaultValue; // default value if not specified anywhere else public ParamUser userParam; // get the value from the configuration file public ParamGet getter; // return the current value stored for this parameter public ParamSet setter; // set the current value for this parameter public SetOnObject onObject; // set the value on an object in the physical domain public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s) { name = n; desc = d; defaultValue = v; userParam = u; getter = g; setter = s; onObject = null; } public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o) { name = n; desc = d; defaultValue = v; userParam = u; getter = g; setter = s; onObject = o; } } // List of all of the externally visible parameters. // For each parameter, this table maps a text name to getter and setters. // To add a new externally referencable/settable parameter, add the paramter storage // location somewhere in the program and make an entry in this table with the // getters and setters. // It is easiest to find an existing definition and copy it. // Parameter values are floats. Booleans are converted to a floating value. // // A ParameterDefn() takes the following parameters: // -- the text name of the parameter. This is used for console input and ini file. // -- a short text description of the parameter. This shows up in the console listing. // -- a default value (float) // -- a delegate for fetching the parameter from the ini file. // Should handle fetching the right type from the ini file and converting it. // -- a delegate for getting the value as a float // -- a delegate for setting the value from a float // -- an optional delegate to update the value in the world. Most often used to // push the new value to an in-world object. // // The single letter parameters for the delegates are: // s = BSScene // o = BSPhysObject // p = string parameter name // l = localID of referenced object // v = value (float) // cf = parameter configuration class (for fetching values from ini file) private static ParameterDefn[] ParameterDefinitions = { new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties", ConfigurationParameters.numericTrue, (s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, (s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); }, (s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ), new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects", ConfigurationParameters.numericFalse, (s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, (s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); }, (s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ), new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects", ConfigurationParameters.numericTrue, (s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, (s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); }, (s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ), new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)", 8f, (s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); }, (s) => { return MeshLOD; }, (s,p,l,v) => { MeshLOD = v; } ), new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters", 16f, (s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); }, (s) => { return MeshMegaPrimLOD; }, (s,p,l,v) => { MeshMegaPrimLOD = v; } ), new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD", 10f, (s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); }, (s) => { return MeshMegaPrimThreshold; }, (s,p,l,v) => { MeshMegaPrimThreshold = v; } ), new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)", 32f, (s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); }, (s) => { return SculptLOD; }, (s,p,l,v) => { SculptLOD = v; } ), new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps", 10f, (s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); }, (s) => { return (float)s.m_maxSubSteps; }, (s,p,l,v) => { s.m_maxSubSteps = (int)v; } ), new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)", 1f / 60f, (s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); }, (s) => { return (float)s.m_fixedTimeStep; }, (s,p,l,v) => { s.m_fixedTimeStep = v; } ), new ParameterDefn("NominalFrameRate", "The base frame rate we claim", 55f, (s,cf,p,v) => { s.NominalFrameRate = cf.GetInt(p, (int)v); }, (s) => { return (float)s.NominalFrameRate; }, (s,p,l,v) => { s.NominalFrameRate = (int)v; } ), new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame", 2048f, (s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); }, (s) => { return (float)s.m_maxCollisionsPerFrame; }, (s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ), new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame", 8000f, (s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); }, (s) => { return (float)s.m_maxUpdatesPerFrame; }, (s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ), new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)", 0.0001f, (s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); }, (s) => { return (float)MinimumObjectMass; }, (s,p,l,v) => { MinimumObjectMass = v; } ), new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)", 10000.01f, (s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); }, (s) => { return (float)MaximumObjectMass; }, (s,p,l,v) => { MaximumObjectMass = v; } ), new ParameterDefn("MaxLinearVelocity", "Maximum velocity magnitude that can be assigned to an object", 1000.0f, (s,cf,p,v) => { MaxLinearVelocity = cf.GetFloat(p, v); }, (s) => { return (float)MaxLinearVelocity; }, (s,p,l,v) => { MaxLinearVelocity = v; } ), new ParameterDefn("MaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to an object", 1000.0f, (s,cf,p,v) => { MaxAngularVelocity = cf.GetFloat(p, v); }, (s) => { return (float)MaxAngularVelocity; }, (s,p,l,v) => { MaxAngularVelocity = v; } ), // LL documentation says thie number should be 20f for llApplyImpulse and 200f for llRezObject new ParameterDefn("MaxAddForceMagnitude", "Maximum force that can be applied by llApplyImpulse (SL says 20f)", 20000.0f, (s,cf,p,v) => { MaxAddForceMagnitude = cf.GetFloat(p, v); }, (s) => { return (float)MaxAddForceMagnitude; }, (s,p,l,v) => { MaxAddForceMagnitude = v; } ), new ParameterDefn("PID_D", "Derivitive factor for motion smoothing", 2200f, (s,cf,p,v) => { PID_D = cf.GetFloat(p, v); }, (s) => { return (float)PID_D; }, (s,p,l,v) => { PID_D = v; } ), new ParameterDefn("PID_P", "Parameteric factor for motion smoothing", 900f, (s,cf,p,v) => { PID_P = cf.GetFloat(p, v); }, (s) => { return (float)PID_P; }, (s,p,l,v) => { PID_P = v; } ), new ParameterDefn("DefaultFriction", "Friction factor used on new objects", 0.2f, (s,cf,p,v) => { s.UnmanagedParams[0].defaultFriction = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].defaultFriction; }, (s,p,l,v) => { s.UnmanagedParams[0].defaultFriction = v; } ), new ParameterDefn("DefaultDensity", "Density for new objects" , 10.000006836f, // Aluminum g/cm3 (s,cf,p,v) => { s.UnmanagedParams[0].defaultDensity = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].defaultDensity; }, (s,p,l,v) => { s.UnmanagedParams[0].defaultDensity = v; } ), new ParameterDefn("DefaultRestitution", "Bouncyness of an object" , 0f, (s,cf,p,v) => { s.UnmanagedParams[0].defaultRestitution = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].defaultRestitution; }, (s,p,l,v) => { s.UnmanagedParams[0].defaultRestitution = v; } ), new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)", 0.04f, (s,cf,p,v) => { s.UnmanagedParams[0].collisionMargin = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].collisionMargin; }, (s,p,l,v) => { s.UnmanagedParams[0].collisionMargin = v; } ), new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)", -9.80665f, (s,cf,p,v) => { s.UnmanagedParams[0].gravity = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].gravity; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{s.UnmanagedParams[0].gravity=x;}, p, PhysParameterEntry.APPLY_TO_NONE, v); }, (s,o,v) => { s.PE.SetGravity(o.PhysBody, new Vector3(0f,0f,v)); } ), new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)", 0f, (s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); }, (s) => { return LinearDamping; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearDamping=x;}, p, l, v); }, (s,o,v) => { s.PE.SetDamping(o.PhysBody, v, AngularDamping); } ), new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)", 0f, (s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); }, (s) => { return AngularDamping; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularDamping=x;}, p, l, v); }, (s,o,v) => { s.PE.SetDamping(o.PhysBody, LinearDamping, v); } ), new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static", 0.2f, (s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); }, (s) => { return DeactivationTime; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{DeactivationTime=x;}, p, l, v); }, (s,o,v) => { s.PE.SetDeactivationTime(o.PhysBody, v); } ), new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static", 0.8f, (s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); }, (s) => { return LinearSleepingThreshold; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearSleepingThreshold=x;}, p, l, v); }, (s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ), new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static", 1.0f, (s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); }, (s) => { return AngularSleepingThreshold; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularSleepingThreshold=x;}, p, l, v); }, (s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ), new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" , 0.0f, // set to zero to disable (s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); }, (s) => { return CcdMotionThreshold; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdMotionThreshold=x;}, p, l, v); }, (s,o,v) => { s.PE.SetCcdMotionThreshold(o.PhysBody, v); } ), new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" , 0.2f, (s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); }, (s) => { return CcdSweptSphereRadius; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdSweptSphereRadius=x;}, p, l, v); }, (s,o,v) => { s.PE.SetCcdSweptSphereRadius(o.PhysBody, v); } ), new ParameterDefn("ContactProcessingThreshold", "Distance above which contacts can be discarded (0 means no discard)" , 0.0f, (s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); }, (s) => { return ContactProcessingThreshold; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{ContactProcessingThreshold=x;}, p, l, v); }, (s,o,v) => { s.PE.SetContactProcessingThreshold(o.PhysBody, v); } ), new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)", (float)BSTerrainPhys.TerrainImplementation.Mesh, (s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); }, (s) => { return TerrainImplementation; }, (s,p,l,v) => { TerrainImplementation = v; } ), new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" , 0.3f, (s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); }, (s) => { return TerrainFriction; }, (s,p,l,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ), new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" , 0.8f, (s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); }, (s) => { return TerrainHitFraction; }, (s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ), new ParameterDefn("TerrainRestitution", "Bouncyness" , 0f, (s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); }, (s) => { return TerrainRestitution; }, (s,p,l,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ), new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" , 0.04f, (s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); }, (s) => { return TerrainCollisionMargin; }, (s,p,l,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ), new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.", 0.2f, (s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); }, (s) => { return AvatarFriction; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarFriction=x;}, p, l, v); } ), new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.", 10.0f, (s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); }, (s) => { return AvatarStandingFriction; }, (s,p,l,v) => { AvatarStandingFriction = v; } ), new ParameterDefn("AvatarAlwaysRunFactor", "Speed multiplier if avatar is set to always run", 1.3f, (s,cf,p,v) => { AvatarAlwaysRunFactor = cf.GetFloat(p, v); }, (s) => { return AvatarAlwaysRunFactor; }, (s,p,l,v) => { AvatarAlwaysRunFactor = v; } ), new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.", 3.5f, (s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); }, (s) => { return AvatarDensity; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarDensity=x;}, p, l, v); } ), new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.", 0f, (s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); }, (s) => { return AvatarRestitution; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarRestitution=x;}, p, l, v); } ), new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule", 0.6f, (s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); }, (s) => { return AvatarCapsuleWidth; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleWidth=x;}, p, l, v); } ), new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule", 0.45f, (s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); }, (s) => { return AvatarCapsuleDepth; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleDepth=x;}, p, l, v); } ), new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar", 1.5f, (s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); }, (s) => { return AvatarCapsuleHeight; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleHeight=x;}, p, l, v); } ), new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions", 0.1f, (s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); }, (s) => { return AvatarContactProcessingThreshold; }, (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarContactProcessingThreshold=x;}, p, l, v); } ), new ParameterDefn("AvatarStepHeight", "Height of a step obstacle to consider step correction", 0.3f, (s,cf,p,v) => { AvatarStepHeight = cf.GetFloat(p, v); }, (s) => { return AvatarStepHeight; }, (s,p,l,v) => { AvatarStepHeight = v; } ), new ParameterDefn("AvatarStepApproachFactor", "Factor to control angle of approach to step (0=straight on)", 0.6f, (s,cf,p,v) => { AvatarStepApproachFactor = cf.GetFloat(p, v); }, (s) => { return AvatarStepApproachFactor; }, (s,p,l,v) => { AvatarStepApproachFactor = v; } ), new ParameterDefn("AvatarStepForceFactor", "Controls the amount of force up applied to step up onto a step", 2.0f, (s,cf,p,v) => { AvatarStepForceFactor = cf.GetFloat(p, v); }, (s) => { return AvatarStepForceFactor; }, (s,p,l,v) => { AvatarStepForceFactor = v; } ), new ParameterDefn("VehicleMaxLinearVelocity", "Maximum velocity magnitude that can be assigned to a vehicle", 1000.0f, (s,cf,p,v) => { VehicleMaxLinearVelocity = cf.GetFloat(p, v); }, (s) => { return (float)VehicleMaxLinearVelocity; }, (s,p,l,v) => { VehicleMaxLinearVelocity = v; } ), new ParameterDefn("VehicleMaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to a vehicle", 12.0f, (s,cf,p,v) => { VehicleMaxAngularVelocity = cf.GetFloat(p, v); }, (s) => { return (float)VehicleMaxAngularVelocity; }, (s,p,l,v) => { VehicleMaxAngularVelocity = v; } ), new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)", 0.0f, (s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); }, (s) => { return VehicleAngularDamping; }, (s,p,l,v) => { VehicleAngularDamping = v; } ), new ParameterDefn("VehicleLinearFactor", "Fraction of physical linear changes applied to vehicle (0.0 - 1.0)", 1.0f, (s,cf,p,v) => { VehicleLinearFactor = cf.GetFloat(p, v); }, (s) => { return VehicleLinearFactor; }, (s,p,l,v) => { VehicleLinearFactor = v; } ), new ParameterDefn("VehicleAngularFactor", "Fraction of physical angular changes applied to vehicle (0.0 - 1.0)", 1.0f, (s,cf,p,v) => { VehicleAngularFactor = cf.GetFloat(p, v); }, (s) => { return VehicleAngularFactor; }, (s,p,l,v) => { VehicleAngularFactor = v; } ), new ParameterDefn("VehicleFriction", "Friction of vehicle on the ground (0.0 - 1.0)", 0.0f, (s,cf,p,v) => { VehicleFriction = cf.GetFloat(p, v); }, (s) => { return VehicleFriction; }, (s,p,l,v) => { VehicleFriction = v; } ), new ParameterDefn("VehicleRestitution", "Bouncyness factor for vehicles (0.0 - 1.0)", 0.2f, (s,cf,p,v) => { VehicleRestitution = cf.GetFloat(p, v); }, (s) => { return VehicleRestitution; }, (s,p,l,v) => { VehicleRestitution = v; } ), new ParameterDefn("VehicleGroundGravityFudge", "Factor to multiple gravity if a ground vehicle is probably on the ground (0.0 - 1.0)", 1.0f, (s,cf,p,v) => { VehicleGroundGravityFudge = cf.GetFloat(p, v); }, (s) => { return VehicleGroundGravityFudge; }, (s,p,l,v) => { VehicleGroundGravityFudge = v; } ), new ParameterDefn("VehicleDebuggingEnable", "Turn on/off vehicle debugging", ConfigurationParameters.numericFalse, (s,cf,p,v) => { VehicleDebuggingEnabled = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return VehicleDebuggingEnabled; }, (s,p,l,v) => { VehicleDebuggingEnabled = v; } ), new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)", 0f, (s,cf,p,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].maxPersistantManifoldPoolSize; }, (s,p,l,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ), new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)", 0f, (s,cf,p,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize; }, (s,p,l,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ), new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count", ConfigurationParameters.numericFalse, (s,cf,p,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation; }, (s,p,l,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ), new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step", ConfigurationParameters.numericFalse, (s,cf,p,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return s.UnmanagedParams[0].shouldForceUpdateAllAabbs; }, (s,p,l,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ), new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction", ConfigurationParameters.numericTrue, (s,cf,p,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return s.UnmanagedParams[0].shouldRandomizeSolverOrder; }, (s,p,l,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ), new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands", ConfigurationParameters.numericTrue, (s,cf,p,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return s.UnmanagedParams[0].shouldSplitSimulationIslands; }, (s,p,l,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ), new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching", ConfigurationParameters.numericTrue, (s,cf,p,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return s.UnmanagedParams[0].shouldEnableFrictionCaching; }, (s,p,l,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ), new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)", 0f, // zero says use Bullet default (s,cf,p,v) => { s.UnmanagedParams[0].numberOfSolverIterations = cf.GetFloat(p, v); }, (s) => { return s.UnmanagedParams[0].numberOfSolverIterations; }, (s,p,l,v) => { s.UnmanagedParams[0].numberOfSolverIterations = v; } ), new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)", (float)BSLinkset.LinksetImplementation.Compound, (s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); }, (s) => { return LinksetImplementation; }, (s,p,l,v) => { LinksetImplementation = v; } ), new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.", ConfigurationParameters.numericFalse, (s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return LinkConstraintUseFrameOffset; }, (s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ), new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints", ConfigurationParameters.numericTrue, (s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, (s) => { return LinkConstraintEnableTransMotor; }, (s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ), new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints", 5.0f, (s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); }, (s) => { return LinkConstraintTransMotorMaxVel; }, (s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ), new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints", 0.1f, (s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); }, (s) => { return LinkConstraintTransMotorMaxForce; }, (s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ), new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1", 0.1f, (s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); }, (s) => { return LinkConstraintCFM; }, (s,p,l,v) => { LinkConstraintCFM = v; } ), new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2", 0.1f, (s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); }, (s) => { return LinkConstraintERP; }, (s,p,l,v) => { LinkConstraintERP = v; } ), new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)", 40, (s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); }, (s) => { return LinkConstraintSolverIterations; }, (s,p,l,v) => { LinkConstraintSolverIterations = v; } ), new ParameterDefn("PhysicsMetricFrames", "Frames between outputting detailed phys metrics. (0 is off)", 0f, (s,cf,p,v) => { s.PhysicsMetricDumpFrames = cf.GetFloat(p, (int)v); }, (s) => { return (float)s.PhysicsMetricDumpFrames; }, (s,p,l,v) => { s.PhysicsMetricDumpFrames = (int)v; } ), new ParameterDefn("ResetBroadphasePool", "Setting this is any value resets the broadphase collision pool", 0f, (s,cf,p,v) => { ; }, (s) => { return 0f; }, (s,p,l,v) => { BSParam.ResetBroadphasePoolTainted(s, v); } ), new ParameterDefn("ResetConstraintSolver", "Setting this is any value resets the constraint solver", 0f, (s,cf,p,v) => { ; }, (s) => { return 0f; }, (s,p,l,v) => { BSParam.ResetConstraintSolverTainted(s, v); } ), }; // Convert a boolean to our numeric true and false values public static float NumericBool(bool b) { return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse); } // Convert numeric true and false values to a boolean public static bool BoolNumeric(float b) { return (b == ConfigurationParameters.numericTrue ? true : false); } private static void ResetBroadphasePoolTainted(BSScene pPhysScene, float v) { BSScene physScene = pPhysScene; physScene.TaintedObject("BSParam.ResetBroadphasePoolTainted", delegate() { physScene.PE.ResetBroadphasePool(physScene.World); }); } private static void ResetConstraintSolverTainted(BSScene pPhysScene, float v) { BSScene physScene = pPhysScene; physScene.TaintedObject("BSParam.ResetConstraintSolver", delegate() { physScene.PE.ResetConstraintSolver(physScene.World); }); } // Search through the parameter definitions and return the matching // ParameterDefn structure. // Case does not matter as names are compared after converting to lower case. // Returns 'false' if the parameter is not found. internal static bool TryGetParameter(string paramName, out ParameterDefn defn) { bool ret = false; ParameterDefn foundDefn = new ParameterDefn(); string pName = paramName.ToLower(); foreach (ParameterDefn parm in ParameterDefinitions) { if (pName == parm.name.ToLower()) { foundDefn = parm; ret = true; break; } } defn = foundDefn; return ret; } // Pass through the settable parameters and set the default values internal static void SetParameterDefaultValues(BSScene physicsScene) { foreach (ParameterDefn parm in ParameterDefinitions) { parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue); } } // Get user set values out of the ini file. internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg) { foreach (ParameterDefn parm in ParameterDefinitions) { parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue); } } internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1]; // This creates an array in the correct format for returning the list of // parameters. This is used by the 'list' option of the 'physics' command. internal static void BuildParameterTable() { if (SettableParameters.Length < ParameterDefinitions.Length) { List entries = new List(); for (int ii = 0; ii < ParameterDefinitions.Length; ii++) { ParameterDefn pd = ParameterDefinitions[ii]; entries.Add(new PhysParameterEntry(pd.name, pd.desc)); } // make the list alphabetical for estetic reasons entries.Sort((ppe1, ppe2) => { return ppe1.name.CompareTo(ppe2.name); }); SettableParameters = entries.ToArray(); } } } }