/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * /* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to * call the BulletSim system. */ /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. */ using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using log4net; using OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.BulletSPlugin { public sealed class BSDynamics { private static string LogHeader = "[BULLETSIM VEHICLE]"; private BSScene PhysicsScene { get; set; } // the prim this dynamic controller belongs to private BSPrim Prim { get; set; } // mass of the vehicle fetched each time we're calles private float m_vehicleMass; // Vehicle properties public Vehicle Type { get; set; } // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: // HOVER_TERRAIN_ONLY // HOVER_GLOBAL_HEIGHT // NO_DEFLECTION_UP // HOVER_WATER_ONLY // HOVER_UP_ONLY // LIMIT_MOTOR_UP // LIMIT_ROLL_ONLY private Vector3 m_BlockingEndPoint = Vector3.Zero; private Quaternion m_RollreferenceFrame = Quaternion.Identity; private Quaternion m_referenceFrame = Quaternion.Identity; // Linear properties private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body private Vector3 m_linearFrictionTimescale = Vector3.Zero; private float m_linearMotorDecayTimescale = 0; private float m_linearMotorTimescale = 0; private Vector3 m_lastLinearVelocityVector = Vector3.Zero; private Vector3 m_lastPositionVector = Vector3.Zero; // private bool m_LinearMotorSetLastFrame = false; // private Vector3 m_linearMotorOffset = Vector3.Zero; //Angular properties private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor // private int m_angularMotorApply = 0; // application frame counter private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body //Deflection properties private float m_angularDeflectionEfficiency = 0; private float m_angularDeflectionTimescale = 0; private float m_linearDeflectionEfficiency = 0; private float m_linearDeflectionTimescale = 0; //Banking properties private float m_bankingEfficiency = 0; private float m_bankingMix = 0; private float m_bankingTimescale = 0; //Hover and Buoyancy properties private float m_VhoverHeight = 0f; private float m_VhoverEfficiency = 0f; private float m_VhoverTimescale = 0f; private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. //Attractor properties private float m_verticalAttractionEfficiency = 1.0f; // damped private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. public BSDynamics(BSScene myScene, BSPrim myPrim) { PhysicsScene = myScene; Prim = myPrim; Type = Vehicle.TYPE_NONE; } // Return 'true' if this vehicle is doing vehicle things public bool IsActive { get { return Type != Vehicle.TYPE_NONE; } } internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) { VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f); break; case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.ANGULAR_MOTOR_TIMESCALE: m_angularMotorTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.BANKING_EFFICIENCY: m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); break; case Vehicle.BANKING_MIX: m_bankingMix = Math.Max(pValue, 0.01f); break; case Vehicle.BANKING_TIMESCALE: m_bankingTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.BUOYANCY: m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); break; case Vehicle.HOVER_EFFICIENCY: m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); break; case Vehicle.HOVER_HEIGHT: m_VhoverHeight = pValue; break; case Vehicle.HOVER_TIMESCALE: m_VhoverTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f); break; case Vehicle.LINEAR_DEFLECTION_TIMESCALE: m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.LINEAR_MOTOR_TIMESCALE: m_linearMotorTimescale = Math.Max(pValue, 0.01f); break; case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f)); break; case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); break; // These are vector properties but the engine lets you use a single float value to // set all of the components to the same value case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue, pValue, pValue); // m_angularMotorApply = 100; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue, pValue, pValue); m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_OFFSET: m_linearMotorOffset = new Vector3(pValue, pValue, pValue); break; } }//end ProcessFloatVehicleParam internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) { VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: // Limit requested angular speed to 2 rps= 4 pi rads/sec pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f)); pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // m_angularMotorApply = 100; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_OFFSET: m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.BLOCK_EXIT: m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); break; } }//end ProcessVectorVehicleParam internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) { VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.REFERENCE_FRAME: m_referenceFrame = pValue; break; case Vehicle.ROLL_FRAME: m_RollreferenceFrame = pValue; break; } }//end ProcessRotationVehicleParam internal void ProcessVehicleFlags(int pParam, bool remove) { VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove); VehicleFlag parm = (VehicleFlag)pParam; if (pParam == -1) m_flags = (VehicleFlag)0; else { if (remove) m_flags &= ~parm; else m_flags |= parm; } } internal void ProcessTypeChange(Vehicle pType) { VDetailLog("{0},ProcessTypeChange,type={1}", Prim.LocalID, pType); // Set Defaults For Type Type = pType; switch (pType) { case Vehicle.TYPE_NONE: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 0; m_linearMotorDecayTimescale = 0; m_linearFrictionTimescale = new Vector3(0, 0, 0); m_angularMotorDirection = Vector3.Zero; m_angularMotorDecayTimescale = 0; m_angularMotorTimescale = 0; m_angularFrictionTimescale = new Vector3(0, 0, 0); m_VhoverHeight = 0; m_VhoverEfficiency = 0; m_VhoverTimescale = 0; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 1; m_linearDeflectionTimescale = 1; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 1000; m_verticalAttractionEfficiency = 0; m_verticalAttractionTimescale = 0; m_bankingEfficiency = 0; m_bankingTimescale = 1000; m_bankingMix = 1; m_referenceFrame = Quaternion.Identity; m_flags = (VehicleFlag)0; break; case Vehicle.TYPE_SLED: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 1000; m_linearMotorDecayTimescale = 120; m_linearFrictionTimescale = new Vector3(30, 1, 1000); m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1000; m_angularMotorDecayTimescale = 120; m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_VhoverHeight = 0; m_VhoverEfficiency = 10; // TODO: this looks wrong!! m_VhoverTimescale = 10; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 1; m_linearDeflectionTimescale = 1; m_angularDeflectionEfficiency = 1; m_angularDeflectionTimescale = 1000; m_verticalAttractionEfficiency = 0; m_verticalAttractionTimescale = 0; m_bankingEfficiency = 0; m_bankingTimescale = 10; m_bankingMix = 1; m_referenceFrame = Quaternion.Identity; m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); break; case Vehicle.TYPE_CAR: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 1; m_linearMotorDecayTimescale = 60; m_linearFrictionTimescale = new Vector3(100, 2, 1000); m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1; m_angularMotorDecayTimescale = 0.8f; m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_VhoverHeight = 0; m_VhoverEfficiency = 0; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 1; m_linearDeflectionTimescale = 2; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 10; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 10f; m_bankingEfficiency = -0.2f; m_bankingMix = 1; m_bankingTimescale = 1; m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY); break; case Vehicle.TYPE_BOAT: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60; m_linearFrictionTimescale = new Vector3(10, 3, 2); m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_angularFrictionTimescale = new Vector3(10,10,10); m_VhoverHeight = 0; m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 2; m_VehicleBuoyancy = 1; m_linearDeflectionEfficiency = 0.5f; m_linearDeflectionTimescale = 3; m_angularDeflectionEfficiency = 0.5f; m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 0.5f; m_verticalAttractionTimescale = 5f; m_bankingEfficiency = -0.3f; m_bankingMix = 0.8f; m_bankingTimescale = 1; m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_WATER_ONLY); break; case Vehicle.TYPE_AIRPLANE: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 2; m_linearMotorDecayTimescale = 60; m_linearFrictionTimescale = new Vector3(200, 10, 5); m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_angularFrictionTimescale = new Vector3(20, 20, 20); m_VhoverHeight = 0; m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; m_linearDeflectionEfficiency = 0.5f; m_linearDeflectionTimescale = 3; m_angularDeflectionEfficiency = 1; m_angularDeflectionTimescale = 2; m_verticalAttractionEfficiency = 0.9f; m_verticalAttractionTimescale = 2f; m_bankingEfficiency = 1; m_bankingMix = 0.7f; m_bankingTimescale = 2; m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); break; case Vehicle.TYPE_BALLOON: m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 5; m_linearFrictionTimescale = new Vector3(5, 5, 5); m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 6; m_angularFrictionTimescale = new Vector3(10, 10, 10); m_angularMotorDecayTimescale = 10; m_VhoverHeight = 5; m_VhoverEfficiency = 0.8f; m_VhoverTimescale = 10; m_VehicleBuoyancy = 1; m_linearDeflectionEfficiency = 0; m_linearDeflectionTimescale = 5; m_angularDeflectionEfficiency = 0; m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 100f; m_bankingEfficiency = 0; m_bankingMix = 0.7f; m_bankingTimescale = 5; m_referenceFrame = Quaternion.Identity; m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); break; } } // Some of the properties of this prim may have changed. // Do any updating needed for a vehicle public void Refresh() { if (IsActive) { // Friction effects are handled by this vehicle code BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f); BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f); // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f); VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID); } } public bool RemoveBodyDependencies(BSPhysObject prim) { // If active, we need to add our properties back when the body is rebuilt. return IsActive; } public void RestoreBodyDependencies(BSPhysObject prim) { if (Prim.LocalID != prim.LocalID) { // The call should be on us by our prim. Error if not. PhysicsScene.Logger.ErrorFormat("{0} RestoreBodyDependencies: called by not my prim. passedLocalID={1}, vehiclePrimLocalID={2}", LogHeader, prim.LocalID, Prim.LocalID); return; } Refresh(); } // One step of the vehicle properties for the next 'pTimestep' seconds. internal void Step(float pTimestep) { if (!IsActive) return; // DEBUG // Because Bullet does apply forces to the vehicle, our last computed // linear and angular velocities are not what is happening now. // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity; // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep; // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG: // END DEBUG m_vehicleMass = Prim.Linkset.LinksetMass; MoveLinear(pTimestep); // Commented out for debug MoveAngular(pTimestep); // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG LimitRotation(pTimestep); // remember the position so next step we can limit absolute movement effects m_lastPositionVector = Prim.ForcePosition; VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG Prim.LocalID, BulletSimAPI.GetFriction2(Prim.PhysBody.ptr), BulletSimAPI.GetGravity2(Prim.PhysBody.ptr), Prim.Inertia, m_vehicleMass ); VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity); }// end Step // Apply the effect of the linear motor. // Also does hover and float. private void MoveLinear(float pTimestep) { // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates // m_lastLinearVelocityVector is the current speed we are moving in that direction if (m_linearMotorDirection.LengthSquared() > 0.001f) { Vector3 origDir = m_linearMotorDirection; // DEBUG Vector3 origVel = m_lastLinearVelocityVector; // DEBUG // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep; m_lastLinearVelocityVector += addAmount; float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep; m_linearMotorDirection *= (1f - decayFactor); // Rotate new object velocity from vehicle relative to world coordinates m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation; // Apply friction for next time Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep; m_lastLinearVelocityVector *= (Vector3.One - frictionFactor); VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}", Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity); } else { // if what remains of direction is very small, zero it. m_linearMotorDirection = Vector3.Zero; m_lastLinearVelocityVector = Vector3.Zero; m_newVelocity = Vector3.Zero; VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID); } // m_newVelocity is velocity computed from linear motor in world coordinates // Gravity and Buoyancy // There is some gravity, make a gravity force vector that is applied after object velocity. // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy); /* * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ... // Preserve the current Z velocity Vector3 vel_now = m_prim.Velocity; m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity */ Vector3 pos = Prim.ForcePosition; // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); // If below the terrain, move us above the ground a little. float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset. // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass. // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation; // if (rotatedSize.Z < terrainHeight) if (pos.Z < terrainHeight) { pos.Z = terrainHeight + 2; Prim.ForcePosition = pos; VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos); } // Check if hovering // m_VhoverEfficiency: 0=bouncy, 1=totally damped // m_VhoverTimescale: time to achieve height if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) { // We should hover, get the target height if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) { m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight; } if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) { m_VhoverTargetHeight = terrainHeight + m_VhoverHeight; } if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) { m_VhoverTargetHeight = m_VhoverHeight; } if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) { // If body is already heigher, use its height as target height if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; } if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) { if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f) { pos.Z = m_VhoverTargetHeight; Prim.ForcePosition = pos; } } else { float verticalError = pos.Z - m_VhoverTargetHeight; // RA: where does the 50 come from? float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale); // Replace Vertical speed with correction figure if significant if (Math.Abs(verticalError) > 0.01f) { m_newVelocity.Z += verticalCorrectionVelocity; //KF: m_VhoverEfficiency is not yet implemented } else if (verticalError < -0.01) { m_newVelocity.Z -= verticalCorrectionVelocity; } else { m_newVelocity.Z = 0f; } } VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight); } Vector3 posChange = pos - m_lastPositionVector; if (m_BlockingEndPoint != Vector3.Zero) { bool changed = false; if (pos.X >= (m_BlockingEndPoint.X - (float)1)) { pos.X -= posChange.X + 1; changed = true; } if (pos.Y >= (m_BlockingEndPoint.Y - (float)1)) { pos.Y -= posChange.Y + 1; changed = true; } if (pos.Z >= (m_BlockingEndPoint.Z - (float)1)) { pos.Z -= posChange.Z + 1; changed = true; } if (pos.X <= 0) { pos.X += posChange.X + 1; changed = true; } if (pos.Y <= 0) { pos.Y += posChange.Y + 1; changed = true; } if (changed) { Prim.ForcePosition = pos; VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", Prim.LocalID, m_BlockingEndPoint, posChange, pos); } } #region downForce Vector3 downForce = Vector3.Zero; if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) { // If the vehicle is motoring into the sky, get it going back down. // Is this an angular force or both linear and angular?? float distanceAboveGround = pos.Z - terrainHeight; if (distanceAboveGround > 2f) { // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep); // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); downForce = new Vector3(0, 0, -distanceAboveGround); } // TODO: this calculation is all wrong. From the description at // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce // has a decay factor. This says this force should // be computed with a motor. VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}", Prim.LocalID, distanceAboveGround, downForce); } #endregion // downForce // If not changing some axis, reduce out velocity if ((m_flags & (VehicleFlag.NO_X)) != 0) m_newVelocity.X = 0; if ((m_flags & (VehicleFlag.NO_Y)) != 0) m_newVelocity.Y = 0; if ((m_flags & (VehicleFlag.NO_Z)) != 0) m_newVelocity.Z = 0; // Clamp REALLY high or low velocities if (m_newVelocity.LengthSquared() > 1e6f) { m_newVelocity /= m_newVelocity.Length(); m_newVelocity *= 1000f; } else if (m_newVelocity.LengthSquared() < 1e-6f) m_newVelocity = Vector3.Zero; // Stuff new linear velocity into the vehicle Prim.ForceVelocity = m_newVelocity; // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG Vector3 totalDownForce = downForce + grav; if (totalDownForce != Vector3.Zero) { Prim.AddForce(totalDownForce * m_vehicleMass, false); // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false); } VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}", Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce); } // end MoveLinear() // ======================================================================= // Apply the effect of the angular motor. private void MoveAngular(float pTimestep) { // m_angularMotorDirection // angular velocity requested by LSL motor // m_angularMotorApply // application frame counter // m_angularMotorVelocity // current angular motor velocity (ramps up and down) // m_angularMotorTimescale // motor angular velocity ramp up rate // m_angularMotorDecayTimescale // motor angular velocity decay rate // m_angularFrictionTimescale // body angular velocity decay rate // m_lastAngularVelocity // what was last applied to body if (m_angularMotorDirection.LengthSquared() > 0.0001) { Vector3 origVel = m_angularMotorVelocity; Vector3 origDir = m_angularMotorDirection; // new velocity += error / ( time to get there / step interval) // requested direction - current vehicle direction m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep); // decay requested direction m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale)); VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}", Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity); } else { m_angularMotorVelocity = Vector3.Zero; } #region Vertical attactor Vector3 vertattr = Vector3.Zero; Vector3 deflection = Vector3.Zero; Vector3 banking = Vector3.Zero; // If vertical attaction timescale is reasonable and we applied an angular force last time... if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero) { float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale; if (Prim.IsColliding) VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale); VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); // Create a vector of the vehicle "up" in world coordinates Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation; // verticalError.X and .Y are the World error amounts. They are 0 when there is no // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be // modulated to prevent a stable inverted body. // Error is 0 (no error) to +/- 2 (max error) if (verticalError.Z < 0.0f) { verticalError.X = 2.0f - verticalError.X; verticalError.Y = 2.0f - verticalError.Y; } // scale it by VAservo (timestep and timescale) verticalError = verticalError * VAservo; // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y // then .X increases, so change Body angular velocity X based on Y, and Y based on X. // Z is not changed. vertattr.X = verticalError.Y; vertattr.Y = - verticalError.X; vertattr.Z = 0f; // scaling appears better usingsquare-law Vector3 angularVelocity = Prim.ForceRotationalVelocity; float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); vertattr.X += bounce * angularVelocity.X; vertattr.Y += bounce * angularVelocity.Y; VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}", Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr); } #endregion // Vertical attactor #region Deflection if (m_angularDeflectionEfficiency != 0) { // Compute a scaled vector that points in the preferred axis (X direction) Vector3 scaledDefaultDirection = new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0); // Adding the current vehicle orientation and reference frame displaces the orientation to the frame. // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point. Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame); // Scale by efficiency and timescale deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep; VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}", Prim.LocalID, preferredAxisOfMotion, deflection); // This deflection computation is not correct. deflection = Vector3.Zero; } #endregion #region Banking if (m_bankingEfficiency != 0) { Vector3 dir = Vector3.One * Prim.ForceOrientation; float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1); //Changes which way it banks in and out of turns //Use the square of the efficiency, as it looks much more how SL banking works float effSquared = (m_bankingEfficiency*m_bankingEfficiency); if (m_bankingEfficiency < 0) effSquared *= -1; //Keep the negative! float mix = Math.Abs(m_bankingMix); if (m_angularMotorVelocity.X == 0) { /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f)) { Vector3 axisAngle; float angle; parent.Orientation.GetAxisAngle(out axisAngle, out angle); Vector3 rotatedVel = parent.Velocity * parent.Orientation; if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0)) m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10; else m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10; }*/ } else banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4; if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix) //If they are colliding, we probably shouldn't shove the prim around... probably { float angVelZ = m_angularMotorVelocity.X*-1; /*if(angVelZ > mix) angVelZ = mix; else if(angVelZ < -mix) angVelZ = -mix;*/ //This controls how fast and how far the banking occurs Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0); if (bankingRot.X > 3) bankingRot.X = 3; else if (bankingRot.X < -3) bankingRot.X = -3; bankingRot *= Prim.ForceOrientation; banking += bankingRot; } m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency; VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}", Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking); } #endregion m_lastVertAttractor = vertattr; // Sum velocities m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection; #region Linear Motor Offset //Offset section if (m_linearMotorOffset != Vector3.Zero) { //Offset of linear velocity doesn't change the linear velocity, // but causes a torque to be applied, for example... // // IIIII >>> IIIII // IIIII >>> IIIII // IIIII >>> IIIII // ^ // | Applying a force at the arrow will cause the object to move forward, but also rotate // // // The torque created is the linear velocity crossed with the offset // NOTE: this computation does should be in the linear section // because there we know the impulse being applied. Vector3 torqueFromOffset = Vector3.Zero; // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); if (float.IsNaN(torqueFromOffset.X)) torqueFromOffset.X = 0; if (float.IsNaN(torqueFromOffset.Y)) torqueFromOffset.Y = 0; if (float.IsNaN(torqueFromOffset.Z)) torqueFromOffset.Z = 0; torqueFromOffset *= m_vehicleMass; Prim.ApplyTorqueImpulse(torqueFromOffset, true); VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); } #endregion if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) { m_lastAngularVelocity.X = 0; m_lastAngularVelocity.Y = 0; VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); } if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) { m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. Prim.ZeroAngularMotion(true); VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); } else { // Apply to the body. // The above calculates the absolute angular velocity needed. Angular velocity is massless. // Since we are stuffing the angular velocity directly into the object, the computed // velocity needs to be scaled by the timestep. Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); Prim.ForceRotationalVelocity = applyAngularForce; // Decay the angular movement for next time Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; m_lastAngularVelocity *= Vector3.One - decayamount; VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}", Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity); } } //end MoveAngular internal void LimitRotation(float timestep) { Quaternion rotq = Prim.ForceOrientation; Quaternion m_rot = rotq; if (m_RollreferenceFrame != Quaternion.Identity) { if (rotq.X >= m_RollreferenceFrame.X) { m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2); } if (rotq.Y >= m_RollreferenceFrame.Y) { m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); } if (rotq.X <= -m_RollreferenceFrame.X) { m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2); } if (rotq.Y <= -m_RollreferenceFrame.Y) { m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); } } if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) { m_rot.X = 0; m_rot.Y = 0; } if (rotq != m_rot) { Prim.ForceOrientation = m_rot; VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); } } // Invoke the detailed logger and output something if it's enabled. private void VDetailLog(string msg, params Object[] args) { if (Prim.PhysicsScene.VehicleLoggingEnabled) Prim.PhysicsScene.DetailLog(msg, args); } } }