/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to * call the BulletSim system. */ /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. */ using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using log4net; using OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.BulletSPlugin { public class BSDynamics { private int frcount = 0; // Used to limit dynamics debug output to // every 100th frame private BSPrim m_prim; // the prim this dynamic controller belongs to // Vehicle properties private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind public Vehicle Type { get { return m_type; } } // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: // HOVER_TERRAIN_ONLY // HOVER_GLOBAL_HEIGHT // NO_DEFLECTION_UP // HOVER_WATER_ONLY // HOVER_UP_ONLY // LIMIT_MOTOR_UP // LIMIT_ROLL_ONLY private VehicleFlag m_Hoverflags = (VehicleFlag)0; private Vector3 m_BlockingEndPoint = Vector3.Zero; private Quaternion m_RollreferenceFrame = Quaternion.Identity; // Linear properties private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL private Vector3 m_dir = Vector3.Zero; // velocity applied to body private Vector3 m_linearFrictionTimescale = Vector3.Zero; private float m_linearMotorDecayTimescale = 0; private float m_linearMotorTimescale = 0; private Vector3 m_lastLinearVelocityVector = Vector3.Zero; private Vector3 m_lastPositionVector = Vector3.Zero; // private bool m_LinearMotorSetLastFrame = false; // private Vector3 m_linearMotorOffset = Vector3.Zero; //Angular properties private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor private int m_angularMotorApply = 0; // application frame counter private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body //Deflection properties // private float m_angularDeflectionEfficiency = 0; // private float m_angularDeflectionTimescale = 0; // private float m_linearDeflectionEfficiency = 0; // private float m_linearDeflectionTimescale = 0; //Banking properties // private float m_bankingEfficiency = 0; // private float m_bankingMix = 0; // private float m_bankingTimescale = 0; //Hover and Buoyancy properties private float m_VhoverHeight = 0f; // private float m_VhoverEfficiency = 0f; private float m_VhoverTimescale = 0f; private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. //Attractor properties private float m_verticalAttractionEfficiency = 1.0f; // damped private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. public BSDynamics(BSPrim myPrim) { m_prim = myPrim; m_type = Vehicle.TYPE_NONE; } internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue, float timestep) { DetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_angularDeflectionEfficiency = pValue; break; case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_angularDeflectionTimescale = pValue; break; case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_angularMotorDecayTimescale = pValue; break; case Vehicle.ANGULAR_MOTOR_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_angularMotorTimescale = pValue; break; case Vehicle.BANKING_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_bankingEfficiency = pValue; break; case Vehicle.BANKING_MIX: if (pValue < 0.01f) pValue = 0.01f; // m_bankingMix = pValue; break; case Vehicle.BANKING_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_bankingTimescale = pValue; break; case Vehicle.BUOYANCY: if (pValue < -1f) pValue = -1f; if (pValue > 1f) pValue = 1f; m_VehicleBuoyancy = pValue; break; // case Vehicle.HOVER_EFFICIENCY: // if (pValue < 0f) pValue = 0f; // if (pValue > 1f) pValue = 1f; // m_VhoverEfficiency = pValue; // break; case Vehicle.HOVER_HEIGHT: m_VhoverHeight = pValue; break; case Vehicle.HOVER_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_VhoverTimescale = pValue; break; case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_linearDeflectionEfficiency = pValue; break; case Vehicle.LINEAR_DEFLECTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_linearDeflectionTimescale = pValue; break; case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_linearMotorDecayTimescale = pValue; break; case Vehicle.LINEAR_MOTOR_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_linearMotorTimescale = pValue; break; case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable if (pValue > 1.0f) pValue = 1.0f; m_verticalAttractionEfficiency = pValue; break; case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_verticalAttractionTimescale = pValue; break; // These are vector properties but the engine lets you use a single float value to // set all of the components to the same value case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue, pValue, pValue); m_angularMotorApply = 10; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue, pValue, pValue); m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_OFFSET: // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); break; } }//end ProcessFloatVehicleParam internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue, float timestep) { DetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // Limit requested angular speed to 2 rps= 4 pi rads/sec if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; m_angularMotorApply = 10; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_OFFSET: // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.BLOCK_EXIT: m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); break; } }//end ProcessVectorVehicleParam internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) { DetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); switch (pParam) { case Vehicle.REFERENCE_FRAME: // m_referenceFrame = pValue; break; case Vehicle.ROLL_FRAME: m_RollreferenceFrame = pValue; break; } }//end ProcessRotationVehicleParam internal void ProcessVehicleFlags(int pParam, bool remove) { DetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", m_prim.LocalID, pParam, remove); if (remove) { if (pParam == -1) { m_flags = (VehicleFlag)0; m_Hoverflags = (VehicleFlag)0; return; } if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) { if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != (VehicleFlag)0) m_Hoverflags &= ~(VehicleFlag.HOVER_GLOBAL_HEIGHT); } if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY) { if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != (VehicleFlag)0) m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY); } if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY) { if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != (VehicleFlag)0) m_Hoverflags &= ~(VehicleFlag.HOVER_UP_ONLY); } if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY) { if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != (VehicleFlag)0) m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY); } if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP) { if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.LIMIT_MOTOR_UP); } if ((pParam & (int)VehicleFlag.LIMIT_ROLL_ONLY) == (int)VehicleFlag.LIMIT_ROLL_ONLY) { if ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY); } if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK) { if ((m_flags & VehicleFlag.MOUSELOOK_BANK) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.MOUSELOOK_BANK); } if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER) { if ((m_flags & VehicleFlag.MOUSELOOK_STEER) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.MOUSELOOK_STEER); } if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP) { if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP); } if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED) { if ((m_flags & VehicleFlag.CAMERA_DECOUPLED) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.CAMERA_DECOUPLED); } if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X) { if ((m_flags & VehicleFlag.NO_X) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.NO_X); } if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y) { if ((m_flags & VehicleFlag.NO_Y) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.NO_Y); } if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z) { if ((m_flags & VehicleFlag.NO_Z) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.NO_Z); } if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT) { if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != (VehicleFlag)0) m_Hoverflags &= ~(VehicleFlag.LOCK_HOVER_HEIGHT); } if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION) { if ((m_flags & VehicleFlag.NO_DEFLECTION) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.NO_DEFLECTION); } if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION) { if ((m_flags & VehicleFlag.LOCK_ROTATION) != (VehicleFlag)0) m_flags &= ~(VehicleFlag.LOCK_ROTATION); } } else { if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) { m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT | m_flags); } if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY) { m_Hoverflags |= (VehicleFlag.HOVER_TERRAIN_ONLY | m_flags); } if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY) { m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY | m_flags); } if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY) { m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY | m_flags); } if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP) { m_flags |= (VehicleFlag.LIMIT_MOTOR_UP | m_flags); } if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK) { m_flags |= (VehicleFlag.MOUSELOOK_BANK | m_flags); } if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER) { m_flags |= (VehicleFlag.MOUSELOOK_STEER | m_flags); } if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP) { m_flags |= (VehicleFlag.NO_DEFLECTION_UP | m_flags); } if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED) { m_flags |= (VehicleFlag.CAMERA_DECOUPLED | m_flags); } if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X) { m_flags |= (VehicleFlag.NO_X); } if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y) { m_flags |= (VehicleFlag.NO_Y); } if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z) { m_flags |= (VehicleFlag.NO_Z); } if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT) { m_Hoverflags |= (VehicleFlag.LOCK_HOVER_HEIGHT); } if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION) { m_flags |= (VehicleFlag.NO_DEFLECTION); } if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION) { m_flags |= (VehicleFlag.LOCK_ROTATION); } } }//end ProcessVehicleFlags internal void ProcessTypeChange(Vehicle pType) { DetailLog("{0},ProcessTypeChange,type={1}", m_prim.LocalID, pType); // Set Defaults For Type m_type = pType; switch (pType) { case Vehicle.TYPE_NONE: m_linearFrictionTimescale = new Vector3(0, 0, 0); m_angularFrictionTimescale = new Vector3(0, 0, 0); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 0; m_linearMotorDecayTimescale = 0; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 0; m_angularMotorDecayTimescale = 0; m_VhoverHeight = 0; m_VhoverTimescale = 0; m_VehicleBuoyancy = 0; m_flags = (VehicleFlag)0; break; case Vehicle.TYPE_SLED: m_linearFrictionTimescale = new Vector3(30, 1, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 1000; m_linearMotorDecayTimescale = 120; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1000; m_angularMotorDecayTimescale = 120; m_VhoverHeight = 0; // m_VhoverEfficiency = 1; m_VhoverTimescale = 10; m_VehicleBuoyancy = 0; // m_linearDeflectionEfficiency = 1; // m_linearDeflectionTimescale = 1; // m_angularDeflectionEfficiency = 1; // m_angularDeflectionTimescale = 1000; // m_bankingEfficiency = 0; // m_bankingMix = 1; // m_bankingTimescale = 10; // m_referenceFrame = Quaternion.Identity; m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); break; case Vehicle.TYPE_CAR: m_linearFrictionTimescale = new Vector3(100, 2, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 1; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1; m_angularMotorDecayTimescale = 0.8f; m_VhoverHeight = 0; // m_VhoverEfficiency = 0; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; // // m_linearDeflectionEfficiency = 1; // // m_linearDeflectionTimescale = 2; // // m_angularDeflectionEfficiency = 0; // m_angularDeflectionTimescale = 10; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 10f; // m_bankingEfficiency = -0.2f; // m_bankingMix = 1; // m_bankingTimescale = 1; // m_referenceFrame = Quaternion.Identity; m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY); break; case Vehicle.TYPE_BOAT: m_linearFrictionTimescale = new Vector3(10, 3, 2); m_angularFrictionTimescale = new Vector3(10,10,10); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_VhoverHeight = 0; // m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 2; m_VehicleBuoyancy = 1; // m_linearDeflectionEfficiency = 0.5f; // m_linearDeflectionTimescale = 3; // m_angularDeflectionEfficiency = 0.5f; // m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 0.5f; m_verticalAttractionTimescale = 5f; // m_bankingEfficiency = -0.3f; // m_bankingMix = 0.8f; // m_bankingTimescale = 1; // m_referenceFrame = Quaternion.Identity; m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY); break; case Vehicle.TYPE_AIRPLANE: m_linearFrictionTimescale = new Vector3(200, 10, 5); m_angularFrictionTimescale = new Vector3(20, 20, 20); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 2; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_VhoverHeight = 0; // m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; // m_linearDeflectionEfficiency = 0.5f; // m_linearDeflectionTimescale = 3; // m_angularDeflectionEfficiency = 1; // m_angularDeflectionTimescale = 2; m_verticalAttractionEfficiency = 0.9f; m_verticalAttractionTimescale = 2f; // m_bankingEfficiency = 1; // m_bankingMix = 0.7f; // m_bankingTimescale = 2; // m_referenceFrame = Quaternion.Identity; m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); break; case Vehicle.TYPE_BALLOON: m_linearFrictionTimescale = new Vector3(5, 5, 5); m_angularFrictionTimescale = new Vector3(10, 10, 10); m_linearMotorDirection = Vector3.Zero; m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 6; m_angularMotorDecayTimescale = 10; m_VhoverHeight = 5; // m_VhoverEfficiency = 0.8f; m_VhoverTimescale = 10; m_VehicleBuoyancy = 1; // m_linearDeflectionEfficiency = 0; // m_linearDeflectionTimescale = 5; // m_angularDeflectionEfficiency = 0; // m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 100f; // m_bankingEfficiency = 0; // m_bankingMix = 0.7f; // m_bankingTimescale = 5; // m_referenceFrame = Quaternion.Identity; m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_UP_ONLY); m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT); break; } }//end SetDefaultsForType internal void Step(float pTimestep) { if (m_type == Vehicle.TYPE_NONE) return; frcount++; // used to limit debug comment output if (frcount > 100) frcount = 0; MoveLinear(pTimestep); MoveAngular(pTimestep); LimitRotation(pTimestep); DetailLog("{0},Dynamics,done,pos={1},force={2},velocity={3},angvel={4}", m_prim.LocalID, m_prim.Position, m_prim.Force, m_prim.Velocity, m_prim.RotationalVelocity); }// end Step private void MoveLinear(float pTimestep) { // requested m_linearMotorDirection is significant // if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) if (m_linearMotorDirection.LengthSquared() > 0.0001f) { Vector3 origDir = m_linearMotorDirection; Vector3 origVel = m_lastLinearVelocityVector; // add drive to body // Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep); Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale); // lastLinearVelocityVector is the current body velocity vector? // RA: Not sure what the *10 is for. A correction for pTimestep? // m_lastLinearVelocityVector += (addAmount*10); m_lastLinearVelocityVector += addAmount; // This will work temporarily, but we really need to compare speed on an axis // KF: Limit body velocity to applied velocity? // Limit the velocity vector to less than the last set linear motor direction if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X)) m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X; if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y)) m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y; if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z)) m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z; // decay applied velocity Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep))); m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f; /* Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/m_linearMotorTimescale; m_lastLinearVelocityVector += addAmount; float decayfraction = (1.0f - 1.0f / m_linearMotorDecayTimescale); m_linearMotorDirection *= decayfraction; */ DetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},decay={4},dir={5},vel={6}", m_prim.LocalID, origDir, origVel, addAmount, decayfraction, m_linearMotorDirection, m_lastLinearVelocityVector); } else { // if what remains of applied is small, zero it. // if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f)) // m_lastLinearVelocityVector = Vector3.Zero; m_linearMotorDirection = Vector3.Zero; m_lastLinearVelocityVector = Vector3.Zero; } // convert requested object velocity to world-referenced vector Quaternion rotq = m_prim.Orientation; m_dir = m_lastLinearVelocityVector * rotq; // Add the various forces into m_dir which will be our new direction vector (velocity) // add Gravity and Buoyancy // KF: So far I have found no good method to combine a script-requested // .Z velocity and gravity. Therefore only 0g will used script-requested // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only. Vector3 grav = Vector3.Zero; // There is some gravity, make a gravity force vector that is applied after object velocity. // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; grav.Z = m_prim.Scene.DefaultGravity.Z * m_prim.Mass * (1f - m_VehicleBuoyancy); // Preserve the current Z velocity Vector3 vel_now = m_prim.Velocity; m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity Vector3 pos = m_prim.Position; Vector3 posChange = pos; // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); double Zchange = Math.Abs(posChange.Z); if (m_BlockingEndPoint != Vector3.Zero) { bool changed = false; if (pos.X >= (m_BlockingEndPoint.X - (float)1)) { pos.X -= posChange.X + 1; changed = true; } if (pos.Y >= (m_BlockingEndPoint.Y - (float)1)) { pos.Y -= posChange.Y + 1; changed = true; } if (pos.Z >= (m_BlockingEndPoint.Z - (float)1)) { pos.Z -= posChange.Z + 1; changed = true; } if (pos.X <= 0) { pos.X += posChange.X + 1; changed = true; } if (pos.Y <= 0) { pos.Y += posChange.Y + 1; changed = true; } if (changed) { m_prim.Position = pos; DetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", m_prim.LocalID, m_BlockingEndPoint, posChange, pos); } } // If below the terrain, move us above the ground a little. if (pos.Z < m_prim.Scene.GetTerrainHeightAtXYZ(pos)) { pos.Z = m_prim.Scene.GetTerrainHeightAtXYZ(pos) + 2; m_prim.Position = pos; DetailLog("{0},MoveLinear,terrainHeight,pos={1}", m_prim.LocalID, pos); } // Check if hovering if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) { // We should hover, get the target height if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0) { m_VhoverTargetHeight = m_prim.Scene.GetWaterLevel() + m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) { m_VhoverTargetHeight = m_prim.Scene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) { m_VhoverTargetHeight = m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0) { // If body is aready heigher, use its height as target height if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; } if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) { if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2) { m_prim.Position = pos; } } else { float herr0 = pos.Z - m_VhoverTargetHeight; // Replace Vertical speed with correction figure if significant if (Math.Abs(herr0) > 0.01f) { m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale); //KF: m_VhoverEfficiency is not yet implemented } else { m_dir.Z = 0f; } } DetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", m_prim.LocalID, pos, m_dir, m_VhoverHeight, m_VhoverTargetHeight); // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped // m_VhoverTimescale = 0f; // time to acheive height // pTimestep is time since last frame,in secs } if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) { //Start Experimental Values if (Zchange > .3) { grav.Z = (float)(grav.Z * 3); } if (Zchange > .15) { grav.Z = (float)(grav.Z * 2); } if (Zchange > .75) { grav.Z = (float)(grav.Z * 1.5); } if (Zchange > .05) { grav.Z = (float)(grav.Z * 1.25); } if (Zchange > .025) { grav.Z = (float)(grav.Z * 1.125); } float terraintemp = m_prim.Scene.GetTerrainHeightAtXYZ(pos); float postemp = (pos.Z - terraintemp); if (postemp > 2.5f) { grav.Z = (float)(grav.Z * 1.037125); } DetailLog("{0},MoveLinear,limitMotorUp,grav={1}", m_prim.LocalID, grav); //End Experimental Values } if ((m_flags & (VehicleFlag.NO_X)) != 0) { m_dir.X = 0; } if ((m_flags & (VehicleFlag.NO_Y)) != 0) { m_dir.Y = 0; } if ((m_flags & (VehicleFlag.NO_Z)) != 0) { m_dir.Z = 0; } m_lastPositionVector = m_prim.Position; // Apply velocity m_prim.Velocity = m_dir; // apply gravity force // Why is this set here? The physics engine already does gravity. // m_prim.AddForce(grav, false); // m_prim.Force = grav; // Apply friction Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep); m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount; DetailLog("{0},MoveLinear,done,pos={1},vel={2},force={3},decay={4}", m_prim.LocalID, m_lastPositionVector, m_dir, grav, decayamount); } // end MoveLinear() private void MoveAngular(float pTimestep) { // m_angularMotorDirection // angular velocity requested by LSL motor // m_angularMotorApply // application frame counter // m_angularMotorVelocity // current angular motor velocity (ramps up and down) // m_angularMotorTimescale // motor angular velocity ramp up rate // m_angularMotorDecayTimescale // motor angular velocity decay rate // m_angularFrictionTimescale // body angular velocity decay rate // m_lastAngularVelocity // what was last applied to body // Get what the body is doing, this includes 'external' influences Vector3 angularVelocity = m_prim.RotationalVelocity; if (m_angularMotorApply > 0) { // Rather than snapping the angular motor velocity from the old value to // a newly set velocity, this routine steps the value from the previous // value (m_angularMotorVelocity) to the requested value (m_angularMotorDirection). // There are m_angularMotorApply steps. Vector3 origAngularVelocity = m_angularMotorVelocity; // ramp up to new value // current velocity += error / (time to get there / step interval) // requested speed - last motor speed m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); DetailLog("{0},MoveAngular,angularMotorApply,apply={1},origvel={2},dir={3},vel={4}", m_prim.LocalID,m_angularMotorApply,origAngularVelocity, m_angularMotorDirection, m_angularMotorVelocity); m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected // velocity may still be acheived. } else { // No motor recently applied, keep the body velocity // and decay the velocity m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); } // end motor section // Vertical attractor section Vector3 vertattr = Vector3.Zero; if (m_verticalAttractionTimescale < 300) { float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep); // get present body rotation Quaternion rotq = m_prim.Orientation; // make a vector pointing up Vector3 verterr = Vector3.Zero; verterr.Z = 1.0f; // rotate it to Body Angle verterr = verterr * rotq; // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. if (verterr.Z < 0.0f) { verterr.X = 2.0f - verterr.X; verterr.Y = 2.0f - verterr.Y; } // Error is 0 (no error) to +/- 2 (max error) // scale it by VAservo verterr = verterr * VAservo; // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. vertattr.X = verterr.Y; vertattr.Y = - verterr.X; vertattr.Z = 0f; // scaling appears better usingsquare-law float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); vertattr.X += bounce * angularVelocity.X; vertattr.Y += bounce * angularVelocity.Y; DetailLog("{0},MoveAngular,verticalAttraction,verterr={1},bounce={2},vertattr={3}", m_prim.LocalID, verterr, bounce, vertattr); } // else vertical attractor is off // m_lastVertAttractor = vertattr; // Bank section tba // Deflection section tba // Sum velocities m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) { m_lastAngularVelocity.X = 0; m_lastAngularVelocity.Y = 0; DetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity); } if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) { m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. DetailLog("{0},MoveAngular,zeroSmallValues,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity); } // apply friction Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep); m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; // Apply to the body m_prim.RotationalVelocity = m_lastAngularVelocity; DetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", m_prim.LocalID, decayamount, m_lastAngularVelocity); } //end MoveAngular internal void LimitRotation(float timestep) { Quaternion rotq = m_prim.Orientation; Quaternion m_rot = rotq; bool changed = false; if (m_RollreferenceFrame != Quaternion.Identity) { if (rotq.X >= m_RollreferenceFrame.X) { m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2); changed = true; } if (rotq.Y >= m_RollreferenceFrame.Y) { m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); changed = true; } if (rotq.X <= -m_RollreferenceFrame.X) { m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2); changed = true; } if (rotq.Y <= -m_RollreferenceFrame.Y) { m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); changed = true; } changed = true; } if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) { m_rot.X = 0; m_rot.Y = 0; changed = true; } if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) { m_rot.X = 0; m_rot.Y = 0; changed = true; } if (changed) m_prim.Orientation = m_rot; DetailLog("{0},LimitRotation,done,changed={1},orig={2},new={3}", m_prim.LocalID, changed, rotq, m_rot); } // Invoke the detailed logger and output something if it's enabled. private void DetailLog(string msg, params Object[] args) { if (m_prim.Scene.VehicleLoggingEnabled) m_prim.Scene.PhysicsLogging.Write(msg, args); } } }