/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.IO; using System.Runtime.InteropServices; using System.Security; using System.Text; using BulletXNA; using OpenMetaverse; using BulletXNA.LinearMath; using BulletXNA.BulletCollision; using BulletXNA.BulletDynamics; using BulletXNA.BulletCollision.CollisionDispatch; using OpenSim.Framework; namespace OpenSim.Region.Physics.BulletSNPlugin { // Classes to allow some type checking for the API // These hold pointers to allocated objects in the unmanaged space. // Constraint type values as defined by Bullet public enum ConstraintType : int { POINT2POINT_CONSTRAINT_TYPE = 3, HINGE_CONSTRAINT_TYPE, CONETWIST_CONSTRAINT_TYPE, D6_CONSTRAINT_TYPE, SLIDER_CONSTRAINT_TYPE, CONTACT_CONSTRAINT_TYPE, D6_SPRING_CONSTRAINT_TYPE, MAX_CONSTRAINT_TYPE } // =============================================================================== [StructLayout(LayoutKind.Sequential)] public struct ConvexHull { Vector3 Offset; int VertexCount; Vector3[] Vertices; } public enum BSPhysicsShapeType { SHAPE_UNKNOWN = 0, SHAPE_CAPSULE = 1, SHAPE_BOX = 2, SHAPE_CONE = 3, SHAPE_CYLINDER = 4, SHAPE_SPHERE = 5, SHAPE_MESH = 6, SHAPE_HULL = 7, // following defined by BulletSim SHAPE_GROUNDPLANE = 20, SHAPE_TERRAIN = 21, SHAPE_COMPOUND = 22, SHAPE_HEIGHTMAP = 23, }; // The native shapes have predefined shape hash keys public enum FixedShapeKey : ulong { KEY_NONE = 0, KEY_BOX = 1, KEY_SPHERE = 2, KEY_CONE = 3, KEY_CYLINDER = 4, KEY_CAPSULE = 5, } [StructLayout(LayoutKind.Sequential)] public struct ShapeData { public uint ID; public BSPhysicsShapeType Type; public Vector3 Position; public Quaternion Rotation; public Vector3 Velocity; public Vector3 Scale; public float Mass; public float Buoyancy; public System.UInt64 HullKey; public System.UInt64 MeshKey; public float Friction; public float Restitution; public float Collidable; // true of things bump into this public float Static; // true if a static object. Otherwise gravity, etc. public float Solid; // true if object cannot be passed through public Vector3 Size; // note that bools are passed as floats since bool size changes by language and architecture public const float numericTrue = 1f; public const float numericFalse = 0f; } [StructLayout(LayoutKind.Sequential)] public struct SweepHit { public uint ID; public float Fraction; public Vector3 Normal; public Vector3 Point; } [StructLayout(LayoutKind.Sequential)] public struct RaycastHit { public uint ID; public float Fraction; public Vector3 Normal; } [StructLayout(LayoutKind.Sequential)] public struct CollisionDesc { public uint aID; public uint bID; public Vector3 point; public Vector3 normal; } [StructLayout(LayoutKind.Sequential)] public struct EntityProperties { public uint ID; public Vector3 Position; public Quaternion Rotation; public Vector3 Velocity; public Vector3 Acceleration; public Vector3 RotationalVelocity; public override string ToString() { return string.Format("ID:{0}, Pos:<{1:F},{2:F},{3:F}>, Rot:<{4:F},{5:F},{6:F},{7:F}>, LVel:<{8:F},{9:F},{10:F}>, AVel:<{11:F},{12:F},{13:F}>", ID.ToString(), Position.X,Position.Y,Position.Z, Rotation.X,Rotation.Y,Rotation.Z,Rotation.W, Velocity.X,Velocity.Y,Velocity.Z, RotationalVelocity.X,RotationalVelocity.Y,RotationalVelocity.Z ); } } // Format of this structure must match the definition in the C++ code // NOTE: adding the X causes compile breaks if used. These are unused symbols // that can be removed from both here and the unmanaged definition of this structure. [StructLayout(LayoutKind.Sequential)] public struct ConfigurationParameters { public float defaultFriction; public float defaultDensity; public float defaultRestitution; public float collisionMargin; public float gravity; public float XlinearDamping; public float XangularDamping; public float XdeactivationTime; public float XlinearSleepingThreshold; public float XangularSleepingThreshold; public float XccdMotionThreshold; public float XccdSweptSphereRadius; public float XcontactProcessingThreshold; public float XterrainImplementation; public float XterrainFriction; public float XterrainHitFraction; public float XterrainRestitution; public float XterrainCollisionMargin; public float XavatarFriction; public float XavatarStandingFriction; public float XavatarDensity; public float XavatarRestitution; public float XavatarCapsuleWidth; public float XavatarCapsuleDepth; public float XavatarCapsuleHeight; public float XavatarContactProcessingThreshold; public float XvehicleAngularDamping; public float maxPersistantManifoldPoolSize; public float maxCollisionAlgorithmPoolSize; public float shouldDisableContactPoolDynamicAllocation; public float shouldForceUpdateAllAabbs; public float shouldRandomizeSolverOrder; public float shouldSplitSimulationIslands; public float shouldEnableFrictionCaching; public float numberOfSolverIterations; public float XlinksetImplementation; public float XlinkConstraintUseFrameOffset; public float XlinkConstraintEnableTransMotor; public float XlinkConstraintTransMotorMaxVel; public float XlinkConstraintTransMotorMaxForce; public float XlinkConstraintERP; public float XlinkConstraintCFM; public float XlinkConstraintSolverIterations; public float physicsLoggingFrames; public const float numericTrue = 1f; public const float numericFalse = 0f; } // The states a bullet collision object can have public enum ActivationState : uint { UNDEFINED = 0, ACTIVE_TAG = 1, ISLAND_SLEEPING = 2, WANTS_DEACTIVATION = 3, DISABLE_DEACTIVATION = 4, DISABLE_SIMULATION = 5, } public enum CollisionObjectTypes : int { CO_COLLISION_OBJECT = 1 << 0, CO_RIGID_BODY = 1 << 1, CO_GHOST_OBJECT = 1 << 2, CO_SOFT_BODY = 1 << 3, CO_HF_FLUID = 1 << 4, CO_USER_TYPE = 1 << 5, } // Values used by Bullet and BulletSim to control object properties. // Bullet's "CollisionFlags" has more to do with operations on the // object (if collisions happen, if gravity effects it, ...). [Flags] public enum CollisionFlags : uint { CF_STATIC_OBJECT = 1 << 0, CF_KINEMATIC_OBJECT = 1 << 1, CF_NO_CONTACT_RESPONSE = 1 << 2, CF_CUSTOM_MATERIAL_CALLBACK = 1 << 3, CF_CHARACTER_OBJECT = 1 << 4, CF_DISABLE_VISUALIZE_OBJECT = 1 << 5, CF_DISABLE_SPU_COLLISION_PROCESS = 1 << 6, // Following used by BulletSim to control collisions and updates BS_SUBSCRIBE_COLLISION_EVENTS = 1 << 10, BS_FLOATS_ON_WATER = 1 << 11, BS_VEHICLE_COLLISIONS = 1 << 12, BS_NONE = 0, BS_ALL = 0xFFFFFFFF, // These are the collision flags switched depending on physical state. // The other flags are used for other things and should not be fooled with. BS_ACTIVE = CF_STATIC_OBJECT | CF_KINEMATIC_OBJECT | CF_NO_CONTACT_RESPONSE }; // Values for collisions groups and masks public enum CollisionFilterGroups : uint { // Don't use the bit definitions!! Define the use in a // filter/mask definition below. This way collision interactions // are more easily debugged. BNoneGroup = 0, BDefaultGroup = 1 << 0, BStaticGroup = 1 << 1, BKinematicGroup = 1 << 2, BDebrisGroup = 1 << 3, BSensorTrigger = 1 << 4, BCharacterGroup = 1 << 5, BAllGroup = 0xFFFFFFFF, // Filter groups defined by BulletSim BGroundPlaneGroup = 1 << 10, BTerrainGroup = 1 << 11, BRaycastGroup = 1 << 12, BSolidGroup = 1 << 13, // BLinksetGroup = xx // a linkset proper is either static or dynamic BLinksetChildGroup = 1 << 14, // The collsion filters and masked are defined in one place -- don't want them scattered AvatarGroup = BCharacterGroup, AvatarMask = BAllGroup, ObjectGroup = BSolidGroup, ObjectMask = BAllGroup, StaticObjectGroup = BStaticGroup, StaticObjectMask = AvatarGroup | ObjectGroup, // static things don't interact with much LinksetGroup = BLinksetChildGroup, LinksetMask = BAllGroup & ~BLinksetChildGroup, // linkset objects don't collide with each other VolumeDetectGroup = BSensorTrigger, VolumeDetectMask = ~BSensorTrigger, TerrainGroup = BTerrainGroup, TerrainMask = BAllGroup & ~BStaticGroup, // static objects on the ground don't collide GroundPlaneGroup = BGroundPlaneGroup, GroundPlaneMask = BAllGroup }; // CFM controls the 'hardness' of the constraint. 0=fixed, 0..1=violatable. Default=0 // ERP controls amount of correction per tick. Usable range=0.1..0.8. Default=0.2. public enum ConstraintParams : int { BT_CONSTRAINT_ERP = 1, // this one is not used in Bullet as of 20120730 BT_CONSTRAINT_STOP_ERP, BT_CONSTRAINT_CFM, BT_CONSTRAINT_STOP_CFM, }; public enum ConstraintParamAxis : int { AXIS_LINEAR_X = 0, AXIS_LINEAR_Y, AXIS_LINEAR_Z, AXIS_ANGULAR_X, AXIS_ANGULAR_Y, AXIS_ANGULAR_Z, AXIS_LINEAR_ALL = 20, // these last three added by BulletSim so we don't have to do zillions of calls AXIS_ANGULAR_ALL, AXIS_ALL }; // =============================================================================== static class BulletSimAPI { private static int m_collisionsThisFrame; public delegate void DebugLogCallback(string msg); /// /// /// /// /// internal static bool RemoveObjectFromWorld2(object pWorld, object pBody) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; RigidBody body = pBody as RigidBody; world.RemoveRigidBody(body); return true; } internal static void SetRestitution2(object pBody, float pRestitution) { RigidBody body = pBody as RigidBody; body.SetRestitution(pRestitution); } internal static void SetMargin2(object pShape, float pMargin) { CollisionShape shape = pShape as CollisionShape; shape.SetMargin(pMargin); } internal static void SetLocalScaling2(object pShape, Vector3 pScale) { CollisionShape shape = pShape as CollisionShape; IndexedVector3 vec = new IndexedVector3(pScale.X, pScale.Y, pScale.Z); shape.SetLocalScaling(ref vec); } internal static void SetContactProcessingThreshold2(object pBody, float contactprocessingthreshold) { RigidBody body = pBody as RigidBody; body.SetContactProcessingThreshold(contactprocessingthreshold); } internal static void SetCcdMotionThreshold2(object pBody, float pccdMotionThreashold) { RigidBody body = pBody as RigidBody; body.SetCcdMotionThreshold(pccdMotionThreashold); } internal static void SetCcdSweptSphereRadius2(object pBody, float pCcdSweptSphereRadius) { RigidBody body = pBody as RigidBody; body.SetCcdSweptSphereRadius(pCcdSweptSphereRadius); } internal static void SetAngularFactorV2(object pBody, Vector3 pAngularFactor) { RigidBody body = pBody as RigidBody; body.SetAngularFactor(new IndexedVector3(pAngularFactor.X, pAngularFactor.Y, pAngularFactor.Z)); } internal static CollisionFlags AddToCollisionFlags2(object pBody, CollisionFlags pcollisionFlags) { CollisionObject body = pBody as CollisionObject; CollisionFlags existingcollisionFlags = (CollisionFlags)(uint)body.GetCollisionFlags(); existingcollisionFlags |= pcollisionFlags; body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags)(uint)existingcollisionFlags); return (CollisionFlags) (uint) existingcollisionFlags; } internal static void AddObjectToWorld2(object pWorld, object pBody) { RigidBody body = pBody as RigidBody; DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; //if (!(body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.STATIC_PLANE_PROXYTYPE && body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.TERRAIN_SHAPE_PROXYTYPE)) world.AddRigidBody(body); //if (body.GetBroadphaseHandle() != null) // world.UpdateSingleAabb(body); } internal static void AddObjectToWorld2(object pWorld, object pBody, Vector3 _position, Quaternion _orientation) { RigidBody body = pBody as RigidBody; DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; //if (!(body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.STATIC_PLANE_PROXYTYPE && body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.TERRAIN_SHAPE_PROXYTYPE)) world.AddRigidBody(body); IndexedVector3 vposition = new IndexedVector3(_position.X, _position.Y, _position.Z); IndexedQuaternion vquaternion = new IndexedQuaternion(_orientation.X, _orientation.Y, _orientation.Z, _orientation.W); IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(vquaternion); mat._origin = vposition; body.SetWorldTransform(mat); //if (body.GetBroadphaseHandle() != null) // world.UpdateSingleAabb(body); } internal static void ForceActivationState2(object pBody, ActivationState pActivationState) { CollisionObject body = pBody as CollisionObject; body.ForceActivationState((BulletXNA.BulletCollision.ActivationState)(uint)pActivationState); } internal static void UpdateSingleAabb2(object pWorld, object pBody) { CollisionObject body = pBody as CollisionObject; DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; world.UpdateSingleAabb(body); } internal static bool SetCollisionGroupMask2(object pBody, uint pGroup, uint pMask) { RigidBody body = pBody as RigidBody; body.GetBroadphaseHandle().m_collisionFilterGroup = (BulletXNA.BulletCollision.CollisionFilterGroups) pGroup; body.GetBroadphaseHandle().m_collisionFilterGroup = (BulletXNA.BulletCollision.CollisionFilterGroups) pGroup; if ((uint) body.GetBroadphaseHandle().m_collisionFilterGroup == 0) return false; return true; } internal static void ClearAllForces2(object pBody) { CollisionObject body = pBody as CollisionObject; IndexedVector3 zeroVector = new IndexedVector3(0, 0, 0); body.SetInterpolationLinearVelocity(ref zeroVector); body.SetInterpolationAngularVelocity(ref zeroVector); IndexedMatrix bodytransform = body.GetWorldTransform(); body.SetInterpolationWorldTransform(ref bodytransform); if (body is RigidBody) { RigidBody rigidbody = body as RigidBody; rigidbody.SetLinearVelocity(zeroVector); rigidbody.SetAngularVelocity(zeroVector); rigidbody.ClearForces(); } } internal static void SetInterpolationAngularVelocity2(object pBody, Vector3 pVector3) { RigidBody body = pBody as RigidBody; IndexedVector3 vec = new IndexedVector3(pVector3.X, pVector3.Y, pVector3.Z); body.SetInterpolationAngularVelocity(ref vec); } internal static void SetAngularVelocity2(object pBody, Vector3 pVector3) { RigidBody body = pBody as RigidBody; IndexedVector3 vec = new IndexedVector3(pVector3.X, pVector3.Y, pVector3.Z); body.SetAngularVelocity(ref vec); } internal static void ClearForces2(object pBody) { RigidBody body = pBody as RigidBody; body.ClearForces(); } internal static void SetTranslation2(object pBody, Vector3 _position, Quaternion _orientation) { RigidBody body = pBody as RigidBody; IndexedVector3 vposition = new IndexedVector3(_position.X, _position.Y, _position.Z); IndexedQuaternion vquaternion = new IndexedQuaternion(_orientation.X, _orientation.Y, _orientation.Z, _orientation.W); IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(vquaternion); mat._origin = vposition; body.SetWorldTransform(mat); } internal static Vector3 GetPosition2(object pBody) { RigidBody body = pBody as RigidBody; IndexedVector3 pos = body.GetInterpolationWorldTransform()._origin; return new Vector3(pos.X, pos.Y, pos.Z); } internal static Vector3 CalculateLocalInertia2(object pShape, float pphysMass) { CollisionShape shape = pShape as CollisionShape; IndexedVector3 inertia = IndexedVector3.Zero; shape.CalculateLocalInertia(pphysMass, out inertia); return new Vector3(inertia.X, inertia.Y, inertia.Z); } internal static void SetMassProps2(object pBody, float pphysMass, Vector3 plocalInertia) { RigidBody body = pBody as RigidBody; IndexedVector3 inertia = new IndexedVector3(plocalInertia.X, plocalInertia.Y, plocalInertia.Z); body.SetMassProps(pphysMass, inertia); } internal static void SetObjectForce2(object pBody, Vector3 _force) { RigidBody body = pBody as RigidBody; IndexedVector3 force = new IndexedVector3(_force.X, _force.Y, _force.Z); body.SetTotalForce(ref force); } internal static void SetFriction2(object pBody, float _currentFriction) { RigidBody body = pBody as RigidBody; body.SetFriction(_currentFriction); } internal static void SetLinearVelocity2(object pBody, Vector3 _velocity) { RigidBody body = pBody as RigidBody; IndexedVector3 velocity = new IndexedVector3(_velocity.X, _velocity.Y, _velocity.Z); body.SetLinearVelocity(velocity); } internal static void Activate2(object pBody, bool pforceactivation) { RigidBody body = pBody as RigidBody; body.Activate(pforceactivation); } internal static Quaternion GetOrientation2(object pBody) { RigidBody body = pBody as RigidBody; IndexedQuaternion mat = body.GetInterpolationWorldTransform().GetRotation(); return new Quaternion(mat.X, mat.Y, mat.Z, mat.W); } internal static CollisionFlags RemoveFromCollisionFlags2(object pBody, CollisionFlags pcollisionFlags) { RigidBody body = pBody as RigidBody; CollisionFlags existingcollisionFlags = (CollisionFlags)(uint)body.GetCollisionFlags(); existingcollisionFlags &= ~pcollisionFlags; body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags)(uint)existingcollisionFlags); return (CollisionFlags)(uint)existingcollisionFlags; } internal static void SetGravity2(object pBody, Vector3 pGravity) { RigidBody body = pBody as RigidBody; IndexedVector3 gravity = new IndexedVector3(pGravity.X, pGravity.Y, pGravity.Z); body.SetGravity(gravity); } internal static bool DestroyConstraint2(object pBody, object pConstraint) { RigidBody body = pBody as RigidBody; TypedConstraint constraint = pConstraint as TypedConstraint; body.RemoveConstraintRef(constraint); return true; } internal static bool SetLinearLimits2(object pConstraint, Vector3 low, Vector3 high) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; IndexedVector3 lowlimit = new IndexedVector3(low.X, low.Y, low.Z); IndexedVector3 highlimit = new IndexedVector3(high.X, high.Y, high.Z); constraint.SetLinearLowerLimit(lowlimit); constraint.SetLinearUpperLimit(highlimit); return true; } internal static bool SetAngularLimits2(object pConstraint, Vector3 low, Vector3 high) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; IndexedVector3 lowlimit = new IndexedVector3(low.X, low.Y, low.Z); IndexedVector3 highlimit = new IndexedVector3(high.X, high.Y, high.Z); constraint.SetAngularLowerLimit(lowlimit); constraint.SetAngularUpperLimit(highlimit); return true; } internal static void SetConstraintNumSolverIterations2(object pConstraint, float cnt) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; constraint.SetOverrideNumSolverIterations((int)cnt); } internal static void CalculateTransforms2(object pConstraint) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; constraint.CalculateTransforms(); } internal static void SetConstraintEnable2(object pConstraint, float p_2) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; constraint.SetEnabled((p_2 == 0) ? false : true); } //BulletSimAPI.Create6DofConstraint2(m_world.ptr, m_body1.ptr, m_body2.ptr,frame1, frame1rot,frame2, frame2rot,useLinearReferenceFrameA, disableCollisionsBetweenLinkedBodies)); internal static object Create6DofConstraint2(object pWorld, object pBody1, object pBody2, Vector3 pframe1, Quaternion pframe1rot, Vector3 pframe2, Quaternion pframe2rot, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; RigidBody body1 = pBody1 as RigidBody; RigidBody body2 = pBody2 as RigidBody; IndexedVector3 frame1v = new IndexedVector3(pframe1.X, pframe1.Y, pframe1.Z); IndexedQuaternion frame1rot = new IndexedQuaternion(pframe1rot.X, pframe1rot.Y, pframe1rot.Z, pframe1rot.W); IndexedMatrix frame1 = IndexedMatrix.CreateFromQuaternion(frame1rot); frame1._origin = frame1v; IndexedVector3 frame2v = new IndexedVector3(pframe2.X, pframe2.Y, pframe2.Z); IndexedQuaternion frame2rot = new IndexedQuaternion(pframe2rot.X, pframe2rot.Y, pframe2rot.Z, pframe2rot.W); IndexedMatrix frame2 = IndexedMatrix.CreateFromQuaternion(frame2rot); frame2._origin = frame1v; Generic6DofConstraint consttr = new Generic6DofConstraint(body1, body2, ref frame1, ref frame2, puseLinearReferenceFrameA); consttr.CalculateTransforms(); world.AddConstraint(consttr,pdisableCollisionsBetweenLinkedBodies); return consttr; } /// /// /// /// /// /// /// /// /// /// internal static object Create6DofConstraintToPoint2(object pWorld, object pBody1, object pBody2, Vector3 pjoinPoint, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; RigidBody body1 = pBody1 as RigidBody; RigidBody body2 = pBody2 as RigidBody; IndexedMatrix frame1 = new IndexedMatrix(IndexedBasisMatrix.Identity, new IndexedVector3(0, 0, 0)); IndexedMatrix frame2 = new IndexedMatrix(IndexedBasisMatrix.Identity, new IndexedVector3(0, 0, 0)); IndexedVector3 joinPoint = new IndexedVector3(pjoinPoint.X, pjoinPoint.Y, pjoinPoint.Z); IndexedMatrix mat = IndexedMatrix.Identity; mat._origin = new IndexedVector3(pjoinPoint.X, pjoinPoint.Y, pjoinPoint.Z); frame1._origin = body1.GetWorldTransform().Inverse()*joinPoint; frame2._origin = body2.GetWorldTransform().Inverse()*joinPoint; Generic6DofConstraint consttr = new Generic6DofConstraint(body1, body2, ref frame1, ref frame2, puseLinearReferenceFrameA); consttr.CalculateTransforms(); world.AddConstraint(consttr, pdisableCollisionsBetweenLinkedBodies); return consttr; } //SetFrames2(m_constraint.ptr, frameA, frameArot, frameB, frameBrot); internal static void SetFrames2(object pConstraint, Vector3 pframe1, Quaternion pframe1rot, Vector3 pframe2, Quaternion pframe2rot) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; IndexedVector3 frame1v = new IndexedVector3(pframe1.X, pframe1.Y, pframe1.Z); IndexedQuaternion frame1rot = new IndexedQuaternion(pframe1rot.X, pframe1rot.Y, pframe1rot.Z, pframe1rot.W); IndexedMatrix frame1 = IndexedMatrix.CreateFromQuaternion(frame1rot); frame1._origin = frame1v; IndexedVector3 frame2v = new IndexedVector3(pframe2.X, pframe2.Y, pframe2.Z); IndexedQuaternion frame2rot = new IndexedQuaternion(pframe2rot.X, pframe2rot.Y, pframe2rot.Z, pframe2rot.W); IndexedMatrix frame2 = IndexedMatrix.CreateFromQuaternion(frame2rot); frame2._origin = frame1v; constraint.SetFrames(ref frame1, ref frame2); } internal static bool IsInWorld2(object pWorld, object pShapeObj) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; CollisionObject shape = pShapeObj as CollisionObject; return world.IsInWorld(shape); } internal static void SetInterpolationLinearVelocity2(object pBody, Vector3 VehicleVelocity) { RigidBody body = pBody as RigidBody; IndexedVector3 velocity = new IndexedVector3(VehicleVelocity.X, VehicleVelocity.Y, VehicleVelocity.Z); body.SetInterpolationLinearVelocity(ref velocity); } internal static bool UseFrameOffset2(object pConstraint, float onOff) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; constraint.SetUseFrameOffset((onOff == 0) ? false : true); return true; } //SetBreakingImpulseThreshold2(m_constraint.ptr, threshold); internal static bool SetBreakingImpulseThreshold2(object pConstraint, float threshold) { Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint; constraint.SetBreakingImpulseThreshold(threshold); return true; } //BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, angularDamping); internal static void SetAngularDamping2(object pBody, float angularDamping) { RigidBody body = pBody as RigidBody; float lineardamping = body.GetLinearDamping(); body.SetDamping(lineardamping, angularDamping); } internal static void UpdateInertiaTensor2(object pBody) { RigidBody body = pBody as RigidBody; body.UpdateInertiaTensor(); } internal static void RecalculateCompoundShapeLocalAabb2( object pCompoundShape) { CompoundShape shape = pCompoundShape as CompoundShape; shape.RecalculateLocalAabb(); } //BulletSimAPI.GetCollisionFlags2(PhysBody.ptr) internal static CollisionFlags GetCollisionFlags2(object pBody) { RigidBody body = pBody as RigidBody; uint flags = (uint)body.GetCollisionFlags(); return (CollisionFlags) flags; } internal static void SetDamping2(object pBody, float pLinear, float pAngular) { RigidBody body = pBody as RigidBody; body.SetDamping(pLinear, pAngular); } //PhysBody.ptr, PhysicsScene.Params.deactivationTime); internal static void SetDeactivationTime2(object pBody, float pDeactivationTime) { RigidBody body = pBody as RigidBody; body.SetDeactivationTime(pDeactivationTime); } //SetSleepingThresholds2(PhysBody.ptr, PhysicsScene.Params.linearSleepingThreshold, PhysicsScene.Params.angularSleepingThreshold); internal static void SetSleepingThresholds2(object pBody, float plinearSleepingThreshold, float pangularSleepingThreshold) { RigidBody body = pBody as RigidBody; body.SetSleepingThresholds(plinearSleepingThreshold, pangularSleepingThreshold); } internal static CollisionObjectTypes GetBodyType2(object pBody) { RigidBody body = pBody as RigidBody; return (CollisionObjectTypes)(int) body.GetInternalType(); } //BulletSimAPI.ApplyCentralForce2(PhysBody.ptr, fSum); internal static void ApplyCentralForce2(object pBody, Vector3 pfSum) { RigidBody body = pBody as RigidBody; IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z); body.ApplyCentralForce(ref fSum); } internal static void ApplyCentralImpulse2(object pBody, Vector3 pfSum) { RigidBody body = pBody as RigidBody; IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z); body.ApplyCentralImpulse(ref fSum); } internal static void ApplyTorque2(object pBody, Vector3 pfSum) { RigidBody body = pBody as RigidBody; IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z); body.ApplyTorque(ref fSum); } internal static void ApplyTorqueImpulse2(object pBody, Vector3 pfSum) { RigidBody body = pBody as RigidBody; IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z); body.ApplyTorqueImpulse(ref fSum); } internal static void DumpRigidBody2(object p, object p_2) { //TODO: } internal static void DumpCollisionShape2(object p, object p_2) { //TODO: } internal static void DestroyObject2(object p, object p_2) { //TODO: } internal static void Shutdown2(object pWorld) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; world.Cleanup(); } internal static void DeleteCollisionShape2(object p, object p_2) { //TODO: } //(sim.ptr, shape.ptr, prim.LocalID, prim.RawPosition, prim.RawOrientation); internal static object CreateBodyFromShape2(object pWorld, object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation) { CollisionWorld world = pWorld as CollisionWorld; IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(new IndexedQuaternion(pRawOrientation.X, pRawOrientation.Y, pRawOrientation.Z, pRawOrientation.W)); mat._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z); CollisionShape shape = pShape as CollisionShape; //UpdateSingleAabb2(world, shape); // TODO: Feed Update array into null RigidBody body = new RigidBody(0,new SimMotionState(world,pLocalID,mat,null),shape,IndexedVector3.Zero); body.SetUserPointer(pLocalID); return body; } internal static object CreateBodyWithDefaultMotionState2( object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation) { IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(new IndexedQuaternion(pRawOrientation.X, pRawOrientation.Y, pRawOrientation.Z, pRawOrientation.W)); mat._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z); CollisionShape shape = pShape as CollisionShape; // TODO: Feed Update array into null RigidBody body = new RigidBody(0, new DefaultMotionState( mat, IndexedMatrix.Identity), shape, IndexedVector3.Zero); body.SetWorldTransform(mat); body.SetUserPointer(pLocalID); return body; } //(m_mapInfo.terrainBody.ptr, CollisionFlags.CF_STATIC_OBJECT); internal static void SetCollisionFlags2(object pBody, CollisionFlags collisionFlags) { RigidBody body = pBody as RigidBody; body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags) (uint) collisionFlags); } //(m_mapInfo.terrainBody.ptr, PhysicsScene.Params.terrainHitFraction); internal static void SetHitFraction2(object pBody, float pHitFraction) { RigidBody body = pBody as RigidBody; body.SetHitFraction(pHitFraction); } //BuildCapsuleShape2(physicsScene.World.ptr, 1f, 1f, prim.Scale); internal static object BuildCapsuleShape2(object pWorld, float pRadius, float pHeight, Vector3 pScale) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; IndexedVector3 scale = new IndexedVector3(pScale.X, pScale.Y, pScale.Z); CapsuleShapeZ capsuleShapeZ = new CapsuleShapeZ(pRadius, pHeight); capsuleShapeZ.SetMargin(world.WorldSettings.Params.collisionMargin); capsuleShapeZ.SetLocalScaling(ref scale); return capsuleShapeZ; } public static object Initialize2(Vector3 worldExtent, ConfigurationParameters[] o, int mMaxCollisionsPerFrame, ref List collisionArray, int mMaxUpdatesPerFrame, ref List updateArray, object mDebugLogCallbackHandle) { CollisionWorld.WorldData.ParamData p = new CollisionWorld.WorldData.ParamData(); p.angularDamping = o[0].XangularDamping; p.defaultFriction = o[0].defaultFriction; p.defaultFriction = o[0].defaultFriction; p.defaultDensity = o[0].defaultDensity; p.defaultRestitution = o[0].defaultRestitution; p.collisionMargin = o[0].collisionMargin; p.gravity = o[0].gravity; p.linearDamping = o[0].XlinearDamping; p.angularDamping = o[0].XangularDamping; p.deactivationTime = o[0].XdeactivationTime; p.linearSleepingThreshold = o[0].XlinearSleepingThreshold; p.angularSleepingThreshold = o[0].XangularSleepingThreshold; p.ccdMotionThreshold = o[0].XccdMotionThreshold; p.ccdSweptSphereRadius = o[0].XccdSweptSphereRadius; p.contactProcessingThreshold = o[0].XcontactProcessingThreshold; p.terrainImplementation = o[0].XterrainImplementation; p.terrainFriction = o[0].XterrainFriction; p.terrainHitFraction = o[0].XterrainHitFraction; p.terrainRestitution = o[0].XterrainRestitution; p.terrainCollisionMargin = o[0].XterrainCollisionMargin; p.avatarFriction = o[0].XavatarFriction; p.avatarStandingFriction = o[0].XavatarStandingFriction; p.avatarDensity = o[0].XavatarDensity; p.avatarRestitution = o[0].XavatarRestitution; p.avatarCapsuleWidth = o[0].XavatarCapsuleWidth; p.avatarCapsuleDepth = o[0].XavatarCapsuleDepth; p.avatarCapsuleHeight = o[0].XavatarCapsuleHeight; p.avatarContactProcessingThreshold = o[0].XavatarContactProcessingThreshold; p.vehicleAngularDamping = o[0].XvehicleAngularDamping; p.maxPersistantManifoldPoolSize = o[0].maxPersistantManifoldPoolSize; p.maxCollisionAlgorithmPoolSize = o[0].maxCollisionAlgorithmPoolSize; p.shouldDisableContactPoolDynamicAllocation = o[0].shouldDisableContactPoolDynamicAllocation; p.shouldForceUpdateAllAabbs = o[0].shouldForceUpdateAllAabbs; p.shouldRandomizeSolverOrder = o[0].shouldRandomizeSolverOrder; p.shouldSplitSimulationIslands = o[0].shouldSplitSimulationIslands; p.shouldEnableFrictionCaching = o[0].shouldEnableFrictionCaching; p.numberOfSolverIterations = o[0].numberOfSolverIterations; p.linksetImplementation = o[0].XlinksetImplementation; p.linkConstraintUseFrameOffset = o[0].XlinkConstraintUseFrameOffset; p.linkConstraintEnableTransMotor = o[0].XlinkConstraintEnableTransMotor; p.linkConstraintTransMotorMaxVel = o[0].XlinkConstraintTransMotorMaxVel; p.linkConstraintTransMotorMaxForce = o[0].XlinkConstraintTransMotorMaxForce; p.linkConstraintERP = o[0].XlinkConstraintERP; p.linkConstraintCFM = o[0].XlinkConstraintCFM; p.linkConstraintSolverIterations = o[0].XlinkConstraintSolverIterations; p.physicsLoggingFrames = o[0].physicsLoggingFrames; DefaultCollisionConstructionInfo ccci = new DefaultCollisionConstructionInfo(); DefaultCollisionConfiguration cci = new DefaultCollisionConfiguration(); CollisionDispatcher m_dispatcher = new CollisionDispatcher(cci); if (p.maxPersistantManifoldPoolSize > 0) cci.m_persistentManifoldPoolSize = (int)p.maxPersistantManifoldPoolSize; if (p.shouldDisableContactPoolDynamicAllocation !=0) m_dispatcher.SetDispatcherFlags(DispatcherFlags.CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION); //if (p.maxCollisionAlgorithmPoolSize >0 ) DbvtBroadphase m_broadphase = new DbvtBroadphase(); //IndexedVector3 aabbMin = new IndexedVector3(0, 0, 0); //IndexedVector3 aabbMax = new IndexedVector3(256, 256, 256); //AxisSweep3Internal m_broadphase2 = new AxisSweep3Internal(ref aabbMin, ref aabbMax, Convert.ToInt32(0xfffe), 0xffff, ushort.MaxValue/2, null, true); m_broadphase.GetOverlappingPairCache().SetInternalGhostPairCallback(new GhostPairCallback()); SequentialImpulseConstraintSolver m_solver = new SequentialImpulseConstraintSolver(); DiscreteDynamicsWorld world = new DiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, cci); world.UpdatedObjects = updateArray; world.UpdatedCollisions = collisionArray; world.WorldSettings.Params = p; world.SetForceUpdateAllAabbs(p.shouldForceUpdateAllAabbs != 0); world.GetSolverInfo().m_solverMode = SolverMode.SOLVER_USE_WARMSTARTING | SolverMode.SOLVER_SIMD; if (p.shouldRandomizeSolverOrder != 0) world.GetSolverInfo().m_solverMode |= SolverMode.SOLVER_RANDMIZE_ORDER; world.GetSimulationIslandManager().SetSplitIslands(p.shouldSplitSimulationIslands != 0); //world.GetDispatchInfo().m_enableSatConvex Not implemented in C# port if (p.shouldEnableFrictionCaching != 0) world.GetSolverInfo().m_solverMode |= SolverMode.SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; if (p.numberOfSolverIterations > 0) world.GetSolverInfo().m_numIterations = (int) p.numberOfSolverIterations; world.GetSolverInfo().m_damping = world.WorldSettings.Params.linearDamping; world.GetSolverInfo().m_restitution = world.WorldSettings.Params.defaultRestitution; world.GetSolverInfo().m_globalCfm = 0.0f; world.GetSolverInfo().m_tau = 0.6f; world.GetSolverInfo().m_friction = 0.3f; world.GetSolverInfo().m_maxErrorReduction = 20f; world.GetSolverInfo().m_numIterations = 10; world.GetSolverInfo().m_erp = 0.2f; world.GetSolverInfo().m_erp2 = 0.1f; world.GetSolverInfo().m_sor = 1.0f; world.GetSolverInfo().m_splitImpulse = false; world.GetSolverInfo().m_splitImpulsePenetrationThreshold = -0.02f; world.GetSolverInfo().m_linearSlop = 0.0f; world.GetSolverInfo().m_warmstartingFactor = 0.85f; world.GetSolverInfo().m_restingContactRestitutionThreshold = 2; world.SetForceUpdateAllAabbs(true); world.SetGravity(new IndexedVector3(0,0,p.gravity)); return world; } //m_constraint.ptr, ConstraintParams.BT_CONSTRAINT_STOP_CFM, cfm, ConstraintParamAxis.AXIS_ALL internal static bool SetConstraintParam2(object pConstraint, ConstraintParams paramIndex, float paramvalue, ConstraintParamAxis axis) { Generic6DofConstraint constrain = pConstraint as Generic6DofConstraint; if (axis == ConstraintParamAxis.AXIS_LINEAR_ALL || axis == ConstraintParamAxis.AXIS_ALL) { constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 0); constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 1); constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 2); } if (axis == ConstraintParamAxis.AXIS_ANGULAR_ALL || axis == ConstraintParamAxis.AXIS_ALL) { constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 3); constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 4); constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 5); } if (axis == ConstraintParamAxis.AXIS_LINEAR_ALL) { constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, (int)axis); } return true; } internal static bool PushUpdate2(object pCollisionObject) { bool ret = false; RigidBody rb = pCollisionObject as RigidBody; if (rb != null) { SimMotionState sms = rb.GetMotionState() as SimMotionState; if (sms != null) { IndexedMatrix wt = IndexedMatrix.Identity; sms.GetWorldTransform(out wt); sms.SetWorldTransform(ref wt, true); ret = true; } } return ret; } internal static bool IsCompound2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsCompound(); } internal static bool IsPloyhedral2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsPolyhedral(); } internal static bool IsConvex2d2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsConvex2d(); } internal static bool IsConvex2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsConvex(); } internal static bool IsNonMoving2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsNonMoving(); } internal static bool IsConcave2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsConcave(); } internal static bool IsInfinite2(object pShape) { CollisionShape shape = pShape as CollisionShape; return shape.IsInfinite(); } internal static bool IsNativeShape2(object pShape) { CollisionShape shape = pShape as CollisionShape; bool ret; switch (shape.GetShapeType()) { case BroadphaseNativeTypes.BOX_SHAPE_PROXYTYPE: case BroadphaseNativeTypes.CONE_SHAPE_PROXYTYPE: case BroadphaseNativeTypes.SPHERE_SHAPE_PROXYTYPE: case BroadphaseNativeTypes.CYLINDER_SHAPE_PROXYTYPE: ret = true; break; default: ret = false; break; } return ret; } //sim.ptr, shape.ptr,prim.LocalID, prim.RawPosition, prim.RawOrientation internal static object CreateGhostFromShape2(object pWorld, object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation) { IndexedMatrix bodyTransform = new IndexedMatrix(); bodyTransform._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z); bodyTransform.SetRotation(new IndexedQuaternion(pRawOrientation.X,pRawOrientation.Y,pRawOrientation.Z,pRawOrientation.W)); GhostObject gObj = new PairCachingGhostObject(); gObj.SetWorldTransform(bodyTransform); CollisionShape shape = pShape as CollisionShape; gObj.SetCollisionShape(shape); gObj.SetUserPointer(pLocalID); // TODO: Add to Special CollisionObjects! return gObj; } public static void SetCollisionShape2(object pWorld, object pObj, object pShape) { var world = pWorld as DiscreteDynamicsWorld; var obj = pObj as CollisionObject; var shape = pShape as CollisionShape; obj.SetCollisionShape(shape); } //(PhysicsScene.World.ptr, nativeShapeData) internal static object BuildNativeShape2(object pWorld, ShapeData pShapeData) { var world = pWorld as DiscreteDynamicsWorld; CollisionShape shape = null; switch (pShapeData.Type) { case BSPhysicsShapeType.SHAPE_BOX: shape = new BoxShape(new IndexedVector3(0.5f,0.5f,0.5f)); break; case BSPhysicsShapeType.SHAPE_CONE: shape = new ConeShapeZ(0.5f, 1.0f); break; case BSPhysicsShapeType.SHAPE_CYLINDER: shape = new CylinderShapeZ(new IndexedVector3(0.5f, 0.5f, 0.5f)); break; case BSPhysicsShapeType.SHAPE_SPHERE: shape = new SphereShape(0.5f); break; } if (shape != null) { IndexedVector3 scaling = new IndexedVector3(pShapeData.Scale.X, pShapeData.Scale.Y, pShapeData.Scale.Z); shape.SetMargin(world.WorldSettings.Params.collisionMargin); shape.SetLocalScaling(ref scaling); } return shape; } //PhysicsScene.World.ptr, false internal static object CreateCompoundShape2(object pWorld, bool enableDynamicAabbTree) { return new CompoundShape(enableDynamicAabbTree); } internal static int GetNumberOfCompoundChildren2(object pCompoundShape) { var compoundshape = pCompoundShape as CompoundShape; return compoundshape.GetNumChildShapes(); } //LinksetRoot.PhysShape.ptr, newShape.ptr, displacementPos, displacementRot internal static void AddChildShapeToCompoundShape2(object pCShape, object paddShape, Vector3 displacementPos, Quaternion displacementRot) { IndexedMatrix relativeTransform = new IndexedMatrix(); var compoundshape = pCShape as CompoundShape; var addshape = paddShape as CollisionShape; relativeTransform._origin = new IndexedVector3(displacementPos.X, displacementPos.Y, displacementPos.Z); relativeTransform.SetRotation(new IndexedQuaternion(displacementRot.X,displacementRot.Y,displacementRot.Z,displacementRot.W)); compoundshape.AddChildShape(ref relativeTransform, addshape); } internal static object RemoveChildShapeFromCompoundShapeIndex2(object pCShape, int pii) { var compoundshape = pCShape as CompoundShape; CollisionShape ret = null; ret = compoundshape.GetChildShape(pii); compoundshape.RemoveChildShapeByIndex(pii); return ret; } internal static object CreateGroundPlaneShape2(uint pLocalId, float pheight, float pcollisionMargin) { StaticPlaneShape m_planeshape = new StaticPlaneShape(new IndexedVector3(0,0,1),(int)pheight ); m_planeshape.SetMargin(pcollisionMargin); m_planeshape.SetUserPointer(pLocalId); return m_planeshape; } internal static object CreateHingeConstraint2(object pWorld, object pBody1, object ppBody2, Vector3 ppivotInA, Vector3 ppivotInB, Vector3 paxisInA, Vector3 paxisInB, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies) { HingeConstraint constrain = null; var rb1 = pBody1 as RigidBody; var rb2 = ppBody2 as RigidBody; if (rb1 != null && rb2 != null) { IndexedVector3 pivotInA = new IndexedVector3(ppivotInA.X, ppivotInA.Y, ppivotInA.Z); IndexedVector3 pivotInB = new IndexedVector3(ppivotInB.X, ppivotInB.Y, ppivotInB.Z); IndexedVector3 axisInA = new IndexedVector3(paxisInA.X, paxisInA.Y, paxisInA.Z); IndexedVector3 axisInB = new IndexedVector3(paxisInB.X, paxisInB.Y, paxisInB.Z); var world = pWorld as DiscreteDynamicsWorld; world.AddConstraint(constrain, pdisableCollisionsBetweenLinkedBodies); } return constrain; } internal static bool ReleaseHeightMapInfo2(object pMapInfo) { if (pMapInfo != null) { BulletHeightMapInfo mapinfo = pMapInfo as BulletHeightMapInfo; if (mapinfo.heightMap != null) mapinfo.heightMap = null; } return true; } internal static object CreateHullShape2(object pWorld, int pHullCount, float[] pConvHulls) { CompoundShape compoundshape = new CompoundShape(false); var world = pWorld as DiscreteDynamicsWorld; compoundshape.SetMargin(world.WorldSettings.Params.collisionMargin); int ii = 1; for (int i = 0; i < pHullCount; i++) { int vertexCount = (int) pConvHulls[ii]; IndexedVector3 centroid = new IndexedVector3(pConvHulls[ii + 1], pConvHulls[ii + 2], pConvHulls[ii + 3]); IndexedMatrix childTrans = IndexedMatrix.Identity; childTrans._origin = centroid; List virts = new List(); int ender = ((ii + 4) + (vertexCount*3)); for (int iii = ii + 4; iii < ender; iii+=3) { virts.Add(new IndexedVector3(pConvHulls[iii], pConvHulls[iii + 1], pConvHulls[iii +2])); } ConvexHullShape convexShape = new ConvexHullShape(virts, vertexCount); convexShape.SetMargin(world.WorldSettings.Params.collisionMargin); compoundshape.AddChildShape(ref childTrans, convexShape); ii += (vertexCount*3 + 4); } return compoundshape; } internal static object CreateMeshShape2(object pWorld, int pIndicesCount, int[] indices, int pVerticesCount, float[] verticesAsFloats) { //DumpRaw(indices,verticesAsFloats,pIndicesCount,pVerticesCount); for (int iter = 0; iter < pVerticesCount; iter++) { if (verticesAsFloats[iter] > 0 && verticesAsFloats[iter] < 0.0001) verticesAsFloats[iter] = 0; if (verticesAsFloats[iter] < 0 && verticesAsFloats[iter] > -0.0001) verticesAsFloats[iter] = 0; } ObjectArray indicesarr = new ObjectArray(indices); ObjectArray vertices = new ObjectArray(verticesAsFloats); DumpRaw(indicesarr,vertices,pIndicesCount,pVerticesCount); var world = pWorld as DiscreteDynamicsWorld; IndexedMesh mesh = new IndexedMesh(); mesh.m_indexType = PHY_ScalarType.PHY_INTEGER; mesh.m_numTriangles = pIndicesCount/3; mesh.m_numVertices = pVerticesCount; mesh.m_triangleIndexBase = indicesarr; mesh.m_vertexBase = vertices; mesh.m_vertexStride = 3; mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT; mesh.m_triangleIndexStride = 3; TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray(); tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER); BvhTriangleMeshShape meshShape = new BvhTriangleMeshShape(tribuilder, true,true); meshShape.SetMargin(world.WorldSettings.Params.collisionMargin); // world.UpdateSingleAabb(meshShape); return meshShape; } public static void DumpRaw(ObjectArrayindices, ObjectArray vertices, int pIndicesCount,int pVerticesCount ) { String fileName = "objTest3.raw"; String completePath = System.IO.Path.Combine(Util.configDir(), fileName); StreamWriter sw = new StreamWriter(completePath); IndexedMesh mesh = new IndexedMesh(); mesh.m_indexType = PHY_ScalarType.PHY_INTEGER; mesh.m_numTriangles = pIndicesCount / 3; mesh.m_numVertices = pVerticesCount; mesh.m_triangleIndexBase = indices; mesh.m_vertexBase = vertices; mesh.m_vertexStride = 3; mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT; mesh.m_triangleIndexStride = 3; TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray(); tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER); for (int i = 0; i < pVerticesCount; i++) { string s = vertices[indices[i * 3]].ToString("0.0000"); s += " " + vertices[indices[i * 3 + 1]].ToString("0.0000"); s += " " + vertices[indices[i * 3 + 2]].ToString("0.0000"); sw.Write(s + "\n"); } sw.Close(); } public static void DumpRaw(int[] indices, float[] vertices, int pIndicesCount, int pVerticesCount) { String fileName = "objTest6.raw"; String completePath = System.IO.Path.Combine(Util.configDir(), fileName); StreamWriter sw = new StreamWriter(completePath); IndexedMesh mesh = new IndexedMesh(); mesh.m_indexType = PHY_ScalarType.PHY_INTEGER; mesh.m_numTriangles = pIndicesCount / 3; mesh.m_numVertices = pVerticesCount; mesh.m_triangleIndexBase = indices; mesh.m_vertexBase = vertices; mesh.m_vertexStride = 3; mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT; mesh.m_triangleIndexStride = 3; TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray(); tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER); sw.WriteLine("Indices"); sw.WriteLine(string.Format("int[] indices = new int[{0}];",pIndicesCount)); for (int iter = 0; iter < indices.Length; iter++) { sw.WriteLine(string.Format("indices[{0}]={1};",iter,indices[iter])); } sw.WriteLine("VerticesFloats"); sw.WriteLine(string.Format("float[] vertices = new float[{0}];", pVerticesCount)); for (int iter = 0; iter < vertices.Length; iter++) { sw.WriteLine(string.Format("Vertices[{0}]={1};", iter, vertices[iter].ToString("0.0000"))); } // for (int i = 0; i < pVerticesCount; i++) // { // // string s = vertices[indices[i * 3]].ToString("0.0000"); // s += " " + vertices[indices[i * 3 + 1]].ToString("0.0000"); // s += " " + vertices[indices[i * 3 + 2]].ToString("0.0000"); // // sw.Write(s + "\n"); //} sw.Close(); } //PhysicsScene.World.ptr, m_mapInfo.ID, m_mapInfo.minCoords, m_mapInfo.maxCoords, m_mapInfo.heightMap, PhysicsScene.Params.terrainCollisionMargin internal static object CreateHeightMapInfo2(object pWorld, uint pId, Vector3 pminCoords, Vector3 pmaxCoords, float[] pheightMap, float pCollisionMargin) { BulletHeightMapInfo mapInfo = new BulletHeightMapInfo(pId, pheightMap, null); mapInfo.heightMap = null; mapInfo.minCoords = pminCoords; mapInfo.maxCoords = pmaxCoords; mapInfo.sizeX = (int) (pmaxCoords.X - pminCoords.X); mapInfo.sizeY = (int) (pmaxCoords.Y - pminCoords.Y); mapInfo.ID = pId; mapInfo.minZ = pminCoords.Z; mapInfo.maxZ = pmaxCoords.Z; mapInfo.collisionMargin = pCollisionMargin; if (mapInfo.minZ == mapInfo.maxZ) mapInfo.minZ -= 0.2f; mapInfo.heightMap = pheightMap; return mapInfo; } internal static object CreateTerrainShape2(object pMapInfo) { BulletHeightMapInfo mapinfo = pMapInfo as BulletHeightMapInfo; const int upAxis = 2; const float scaleFactor = 1.0f; HeightfieldTerrainShape terrainShape = new HeightfieldTerrainShape((int)mapinfo.sizeX, (int)mapinfo.sizeY, mapinfo.heightMap, scaleFactor, mapinfo.minZ, mapinfo.maxZ, upAxis, false); terrainShape.SetMargin(mapinfo.collisionMargin + 0.5f); terrainShape.SetUseDiamondSubdivision(true); terrainShape.SetUserPointer(mapinfo.ID); return terrainShape; } internal static bool TranslationalLimitMotor2(object pConstraint, float ponOff, float targetVelocity, float maxMotorForce) { TypedConstraint tconstrain = pConstraint as TypedConstraint; bool onOff = ponOff != 0; bool ret = false; switch (tconstrain.GetConstraintType()) { case TypedConstraintType.D6_CONSTRAINT_TYPE: Generic6DofConstraint constrain = pConstraint as Generic6DofConstraint; constrain.GetTranslationalLimitMotor().m_enableMotor[0] = onOff; constrain.GetTranslationalLimitMotor().m_targetVelocity[0] = targetVelocity; constrain.GetTranslationalLimitMotor().m_maxMotorForce[0] = maxMotorForce; ret = true; break; } return ret; } internal static int PhysicsStep2(object pWorld, float timeStep, int m_maxSubSteps, float m_fixedTimeStep, out int updatedEntityCount, out List updatedEntities, out int collidersCount, out Listcolliders) { int epic = PhysicsStepint2(pWorld, timeStep, m_maxSubSteps, m_fixedTimeStep, out updatedEntityCount, out updatedEntities, out collidersCount, out colliders); return epic; } private static int PhysicsStepint2(object pWorld,float timeStep, int m_maxSubSteps, float m_fixedTimeStep, out int updatedEntityCount, out List updatedEntities, out int collidersCount, out List colliders) { int numSimSteps = 0; //if (updatedEntities is null) // updatedEntities = new List(); //if (colliders is null) // colliders = new List(); if (pWorld is DiscreteDynamicsWorld) { DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; numSimSteps = world.StepSimulation(timeStep, m_maxSubSteps, m_fixedTimeStep); int updates = 0; updatedEntityCount = world.UpdatedObjects.Count; updatedEntities = new List(world.UpdatedObjects); updatedEntityCount = updatedEntities.Count; world.UpdatedObjects.Clear(); collidersCount = world.UpdatedCollisions.Count; colliders = new List(world.UpdatedCollisions); world.UpdatedCollisions.Clear(); m_collisionsThisFrame = 0; int numManifolds = world.GetDispatcher().GetNumManifolds(); for (int j = 0; j < numManifolds; j++) { PersistentManifold contactManifold = world.GetDispatcher().GetManifoldByIndexInternal(j); int numContacts = contactManifold.GetNumContacts(); if (numContacts == 0) continue; CollisionObject objA = contactManifold.GetBody0() as CollisionObject; CollisionObject objB = contactManifold.GetBody1() as CollisionObject; ManifoldPoint manifoldPoint = contactManifold.GetContactPoint(0); IndexedVector3 contactPoint = manifoldPoint.GetPositionWorldOnB(); IndexedVector3 contactNormal = -manifoldPoint.m_normalWorldOnB; // make relative to A RecordCollision(world, objA, objB, contactPoint, contactNormal); m_collisionsThisFrame ++; if (m_collisionsThisFrame >= 9999999) break; } } else { //if (updatedEntities is null) updatedEntities = new List(); updatedEntityCount = 0; //if (colliders is null) colliders = new List(); collidersCount = 0; } return numSimSteps; } private static void RecordCollision(CollisionWorld world,CollisionObject objA, CollisionObject objB, IndexedVector3 contact, IndexedVector3 norm) { IndexedVector3 contactNormal = norm; if ((objA.GetCollisionFlags() & BulletXNA.BulletCollision.CollisionFlags.BS_WANTS_COLLISIONS) == 0 && (objB.GetCollisionFlags() & BulletXNA.BulletCollision.CollisionFlags.BS_WANTS_COLLISIONS) == 0) { return; } uint idA = (uint)objA.GetUserPointer(); uint idB = (uint)objB.GetUserPointer(); if (idA > idB) { uint temp = idA; idA = idB; idB = temp; contactNormal = -contactNormal; } ulong collisionID = ((ulong) idA << 32) | idB; BulletXNA.CollisionDesc cDesc = new BulletXNA.CollisionDesc() { aID = idA, bID = idB, point = contact, normal = contactNormal }; world.UpdatedCollisions.Add(cDesc); m_collisionsThisFrame++; } private static EntityProperties GetDebugProperties(object pWorld, object pBody) { EntityProperties ent = new EntityProperties(); DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld; RigidBody body = pBody as RigidBody; IndexedMatrix transform = body.GetWorldTransform(); IndexedVector3 LinearVelocity = body.GetInterpolationLinearVelocity(); IndexedVector3 AngularVelocity = body.GetInterpolationAngularVelocity(); IndexedQuaternion rotation = transform.GetRotation(); ent.Acceleration = Vector3.Zero; ent.ID = (uint)body.GetUserPointer(); ent.Position = new Vector3(transform._origin.X,transform._origin.Y,transform._origin.Z); ent.Rotation = new Quaternion(rotation.X,rotation.Y,rotation.Z,rotation.W); ent.Velocity = new Vector3(LinearVelocity.X, LinearVelocity.Y, LinearVelocity.Z); ent.RotationalVelocity = new Vector3(AngularVelocity.X, AngularVelocity.Y, AngularVelocity.Z); return ent; } internal static Vector3 GetLocalScaling2(object pBody) { CollisionShape shape = pBody as CollisionShape; IndexedVector3 scale = shape.GetLocalScaling(); return new Vector3(scale.X,scale.Y,scale.Z); } internal static bool RayCastGround(object pWorld, Vector3 _RayOrigin, float pRayHeight, object NotMe) { DynamicsWorld world = pWorld as DynamicsWorld; if (world != null) { if (NotMe is CollisionObject || NotMe is RigidBody) { CollisionObject AvoidBody = NotMe as CollisionObject; IndexedVector3 rOrigin = new IndexedVector3(_RayOrigin.X, _RayOrigin.Y, _RayOrigin.Z); IndexedVector3 rEnd = new IndexedVector3(_RayOrigin.X, _RayOrigin.Y, _RayOrigin.Z - pRayHeight); using ( ClosestNotMeRayResultCallback rayCallback = new ClosestNotMeRayResultCallback(rOrigin, rEnd, AvoidBody) ) { world.RayTest(ref rOrigin, ref rEnd, rayCallback); if (rayCallback.HasHit()) { IndexedVector3 hitLocation = rayCallback.m_hitPointWorld; } return rayCallback.HasHit(); } } } return false; } } }