/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.InteropServices;
using System.Security;
using System.Text;
using BulletXNA;
using OpenMetaverse;
using BulletXNA.LinearMath;
using BulletXNA.BulletCollision;
using BulletXNA.BulletDynamics;
using BulletXNA.BulletCollision.CollisionDispatch;
using OpenSim.Framework;
namespace OpenSim.Region.Physics.BulletSNPlugin {
// Classes to allow some type checking for the API
// These hold pointers to allocated objects in the unmanaged space.
// Constraint type values as defined by Bullet
public enum ConstraintType : int
{
POINT2POINT_CONSTRAINT_TYPE = 3,
HINGE_CONSTRAINT_TYPE,
CONETWIST_CONSTRAINT_TYPE,
D6_CONSTRAINT_TYPE,
SLIDER_CONSTRAINT_TYPE,
CONTACT_CONSTRAINT_TYPE,
D6_SPRING_CONSTRAINT_TYPE,
MAX_CONSTRAINT_TYPE
}
// ===============================================================================
[StructLayout(LayoutKind.Sequential)]
public struct ConvexHull
{
Vector3 Offset;
int VertexCount;
Vector3[] Vertices;
}
public enum BSPhysicsShapeType
{
SHAPE_UNKNOWN = 0,
SHAPE_CAPSULE = 1,
SHAPE_BOX = 2,
SHAPE_CONE = 3,
SHAPE_CYLINDER = 4,
SHAPE_SPHERE = 5,
SHAPE_MESH = 6,
SHAPE_HULL = 7,
// following defined by BulletSim
SHAPE_GROUNDPLANE = 20,
SHAPE_TERRAIN = 21,
SHAPE_COMPOUND = 22,
SHAPE_HEIGHTMAP = 23,
};
// The native shapes have predefined shape hash keys
public enum FixedShapeKey : ulong
{
KEY_NONE = 0,
KEY_BOX = 1,
KEY_SPHERE = 2,
KEY_CONE = 3,
KEY_CYLINDER = 4,
KEY_CAPSULE = 5,
}
[StructLayout(LayoutKind.Sequential)]
public struct ShapeData
{
public uint ID;
public BSPhysicsShapeType Type;
public Vector3 Position;
public Quaternion Rotation;
public Vector3 Velocity;
public Vector3 Scale;
public float Mass;
public float Buoyancy;
public System.UInt64 HullKey;
public System.UInt64 MeshKey;
public float Friction;
public float Restitution;
public float Collidable; // true of things bump into this
public float Static; // true if a static object. Otherwise gravity, etc.
public float Solid; // true if object cannot be passed through
public Vector3 Size;
// note that bools are passed as floats since bool size changes by language and architecture
public const float numericTrue = 1f;
public const float numericFalse = 0f;
}
[StructLayout(LayoutKind.Sequential)]
public struct SweepHit
{
public uint ID;
public float Fraction;
public Vector3 Normal;
public Vector3 Point;
}
[StructLayout(LayoutKind.Sequential)]
public struct RaycastHit
{
public uint ID;
public float Fraction;
public Vector3 Normal;
}
[StructLayout(LayoutKind.Sequential)]
public struct CollisionDesc
{
public uint aID;
public uint bID;
public Vector3 point;
public Vector3 normal;
}
[StructLayout(LayoutKind.Sequential)]
public struct EntityProperties
{
public uint ID;
public Vector3 Position;
public Quaternion Rotation;
public Vector3 Velocity;
public Vector3 Acceleration;
public Vector3 RotationalVelocity;
public override string ToString()
{
return string.Format("ID:{0}, Pos:<{1:F},{2:F},{3:F}>, Rot:<{4:F},{5:F},{6:F},{7:F}>, LVel:<{8:F},{9:F},{10:F}>, AVel:<{11:F},{12:F},{13:F}>",
ID.ToString(),
Position.X,Position.Y,Position.Z,
Rotation.X,Rotation.Y,Rotation.Z,Rotation.W,
Velocity.X,Velocity.Y,Velocity.Z,
RotationalVelocity.X,RotationalVelocity.Y,RotationalVelocity.Z
);
}
}
// Format of this structure must match the definition in the C++ code
// NOTE: adding the X causes compile breaks if used. These are unused symbols
// that can be removed from both here and the unmanaged definition of this structure.
[StructLayout(LayoutKind.Sequential)]
public struct ConfigurationParameters
{
public float defaultFriction;
public float defaultDensity;
public float defaultRestitution;
public float collisionMargin;
public float gravity;
public float XlinearDamping;
public float XangularDamping;
public float XdeactivationTime;
public float XlinearSleepingThreshold;
public float XangularSleepingThreshold;
public float XccdMotionThreshold;
public float XccdSweptSphereRadius;
public float XcontactProcessingThreshold;
public float XterrainImplementation;
public float XterrainFriction;
public float XterrainHitFraction;
public float XterrainRestitution;
public float XterrainCollisionMargin;
public float XavatarFriction;
public float XavatarStandingFriction;
public float XavatarDensity;
public float XavatarRestitution;
public float XavatarCapsuleWidth;
public float XavatarCapsuleDepth;
public float XavatarCapsuleHeight;
public float XavatarContactProcessingThreshold;
public float XvehicleAngularDamping;
public float maxPersistantManifoldPoolSize;
public float maxCollisionAlgorithmPoolSize;
public float shouldDisableContactPoolDynamicAllocation;
public float shouldForceUpdateAllAabbs;
public float shouldRandomizeSolverOrder;
public float shouldSplitSimulationIslands;
public float shouldEnableFrictionCaching;
public float numberOfSolverIterations;
public float XlinksetImplementation;
public float XlinkConstraintUseFrameOffset;
public float XlinkConstraintEnableTransMotor;
public float XlinkConstraintTransMotorMaxVel;
public float XlinkConstraintTransMotorMaxForce;
public float XlinkConstraintERP;
public float XlinkConstraintCFM;
public float XlinkConstraintSolverIterations;
public float physicsLoggingFrames;
public const float numericTrue = 1f;
public const float numericFalse = 0f;
}
// The states a bullet collision object can have
public enum ActivationState : uint
{
UNDEFINED = 0,
ACTIVE_TAG = 1,
ISLAND_SLEEPING = 2,
WANTS_DEACTIVATION = 3,
DISABLE_DEACTIVATION = 4,
DISABLE_SIMULATION = 5,
}
public enum CollisionObjectTypes : int
{
CO_COLLISION_OBJECT = 1 << 0,
CO_RIGID_BODY = 1 << 1,
CO_GHOST_OBJECT = 1 << 2,
CO_SOFT_BODY = 1 << 3,
CO_HF_FLUID = 1 << 4,
CO_USER_TYPE = 1 << 5,
}
// Values used by Bullet and BulletSim to control object properties.
// Bullet's "CollisionFlags" has more to do with operations on the
// object (if collisions happen, if gravity effects it, ...).
[Flags]
public enum CollisionFlags : uint
{
CF_STATIC_OBJECT = 1 << 0,
CF_KINEMATIC_OBJECT = 1 << 1,
CF_NO_CONTACT_RESPONSE = 1 << 2,
CF_CUSTOM_MATERIAL_CALLBACK = 1 << 3,
CF_CHARACTER_OBJECT = 1 << 4,
CF_DISABLE_VISUALIZE_OBJECT = 1 << 5,
CF_DISABLE_SPU_COLLISION_PROCESS = 1 << 6,
// Following used by BulletSim to control collisions and updates
BS_SUBSCRIBE_COLLISION_EVENTS = 1 << 10,
BS_FLOATS_ON_WATER = 1 << 11,
BS_VEHICLE_COLLISIONS = 1 << 12,
BS_NONE = 0,
BS_ALL = 0xFFFFFFFF,
// These are the collision flags switched depending on physical state.
// The other flags are used for other things and should not be fooled with.
BS_ACTIVE = CF_STATIC_OBJECT
| CF_KINEMATIC_OBJECT
| CF_NO_CONTACT_RESPONSE
};
// Values for collisions groups and masks
public enum CollisionFilterGroups : uint
{
// Don't use the bit definitions!! Define the use in a
// filter/mask definition below. This way collision interactions
// are more easily debugged.
BNoneGroup = 0,
BDefaultGroup = 1 << 0,
BStaticGroup = 1 << 1,
BKinematicGroup = 1 << 2,
BDebrisGroup = 1 << 3,
BSensorTrigger = 1 << 4,
BCharacterGroup = 1 << 5,
BAllGroup = 0xFFFFFFFF,
// Filter groups defined by BulletSim
BGroundPlaneGroup = 1 << 10,
BTerrainGroup = 1 << 11,
BRaycastGroup = 1 << 12,
BSolidGroup = 1 << 13,
// BLinksetGroup = xx // a linkset proper is either static or dynamic
BLinksetChildGroup = 1 << 14,
// The collsion filters and masked are defined in one place -- don't want them scattered
AvatarGroup = BCharacterGroup,
AvatarMask = BAllGroup,
ObjectGroup = BSolidGroup,
ObjectMask = BAllGroup,
StaticObjectGroup = BStaticGroup,
StaticObjectMask = AvatarGroup | ObjectGroup, // static things don't interact with much
LinksetGroup = BLinksetChildGroup,
LinksetMask = BAllGroup & ~BLinksetChildGroup, // linkset objects don't collide with each other
VolumeDetectGroup = BSensorTrigger,
VolumeDetectMask = ~BSensorTrigger,
TerrainGroup = BTerrainGroup,
TerrainMask = BAllGroup & ~BStaticGroup, // static objects on the ground don't collide
GroundPlaneGroup = BGroundPlaneGroup,
GroundPlaneMask = BAllGroup
};
// CFM controls the 'hardness' of the constraint. 0=fixed, 0..1=violatable. Default=0
// ERP controls amount of correction per tick. Usable range=0.1..0.8. Default=0.2.
public enum ConstraintParams : int
{
BT_CONSTRAINT_ERP = 1, // this one is not used in Bullet as of 20120730
BT_CONSTRAINT_STOP_ERP,
BT_CONSTRAINT_CFM,
BT_CONSTRAINT_STOP_CFM,
};
public enum ConstraintParamAxis : int
{
AXIS_LINEAR_X = 0,
AXIS_LINEAR_Y,
AXIS_LINEAR_Z,
AXIS_ANGULAR_X,
AXIS_ANGULAR_Y,
AXIS_ANGULAR_Z,
AXIS_LINEAR_ALL = 20, // these last three added by BulletSim so we don't have to do zillions of calls
AXIS_ANGULAR_ALL,
AXIS_ALL
};
// ===============================================================================
static class BulletSimAPI {
private static int m_collisionsThisFrame;
public delegate void DebugLogCallback(string msg);
///
///
///
///
///
internal static bool RemoveObjectFromWorld2(object pWorld, object pBody)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
RigidBody body = pBody as RigidBody;
world.RemoveRigidBody(body);
return true;
}
internal static void SetRestitution2(object pBody, float pRestitution)
{
RigidBody body = pBody as RigidBody;
body.SetRestitution(pRestitution);
}
internal static void SetMargin2(object pShape, float pMargin)
{
CollisionShape shape = pShape as CollisionShape;
shape.SetMargin(pMargin);
}
internal static void SetLocalScaling2(object pShape, Vector3 pScale)
{
CollisionShape shape = pShape as CollisionShape;
IndexedVector3 vec = new IndexedVector3(pScale.X, pScale.Y, pScale.Z);
shape.SetLocalScaling(ref vec);
}
internal static void SetContactProcessingThreshold2(object pBody, float contactprocessingthreshold)
{
RigidBody body = pBody as RigidBody;
body.SetContactProcessingThreshold(contactprocessingthreshold);
}
internal static void SetCcdMotionThreshold2(object pBody, float pccdMotionThreashold)
{
RigidBody body = pBody as RigidBody;
body.SetCcdMotionThreshold(pccdMotionThreashold);
}
internal static void SetCcdSweptSphereRadius2(object pBody, float pCcdSweptSphereRadius)
{
RigidBody body = pBody as RigidBody;
body.SetCcdSweptSphereRadius(pCcdSweptSphereRadius);
}
internal static void SetAngularFactorV2(object pBody, Vector3 pAngularFactor)
{
RigidBody body = pBody as RigidBody;
body.SetAngularFactor(new IndexedVector3(pAngularFactor.X, pAngularFactor.Y, pAngularFactor.Z));
}
internal static CollisionFlags AddToCollisionFlags2(object pBody, CollisionFlags pcollisionFlags)
{
CollisionObject body = pBody as CollisionObject;
CollisionFlags existingcollisionFlags = (CollisionFlags)(uint)body.GetCollisionFlags();
existingcollisionFlags |= pcollisionFlags;
body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags)(uint)existingcollisionFlags);
return (CollisionFlags) (uint) existingcollisionFlags;
}
internal static void AddObjectToWorld2(object pWorld, object pBody)
{
RigidBody body = pBody as RigidBody;
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
//if (!(body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.STATIC_PLANE_PROXYTYPE && body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.TERRAIN_SHAPE_PROXYTYPE))
world.AddRigidBody(body);
//if (body.GetBroadphaseHandle() != null)
// world.UpdateSingleAabb(body);
}
internal static void AddObjectToWorld2(object pWorld, object pBody, Vector3 _position, Quaternion _orientation)
{
RigidBody body = pBody as RigidBody;
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
//if (!(body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.STATIC_PLANE_PROXYTYPE && body.GetCollisionShape().GetShapeType() == BroadphaseNativeTypes.TERRAIN_SHAPE_PROXYTYPE))
world.AddRigidBody(body);
IndexedVector3 vposition = new IndexedVector3(_position.X, _position.Y, _position.Z);
IndexedQuaternion vquaternion = new IndexedQuaternion(_orientation.X, _orientation.Y, _orientation.Z,
_orientation.W);
IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(vquaternion);
mat._origin = vposition;
body.SetWorldTransform(mat);
//if (body.GetBroadphaseHandle() != null)
// world.UpdateSingleAabb(body);
}
internal static void ForceActivationState2(object pBody, ActivationState pActivationState)
{
CollisionObject body = pBody as CollisionObject;
body.ForceActivationState((BulletXNA.BulletCollision.ActivationState)(uint)pActivationState);
}
internal static void UpdateSingleAabb2(object pWorld, object pBody)
{
CollisionObject body = pBody as CollisionObject;
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
world.UpdateSingleAabb(body);
}
internal static bool SetCollisionGroupMask2(object pBody, uint pGroup, uint pMask)
{
RigidBody body = pBody as RigidBody;
body.GetBroadphaseHandle().m_collisionFilterGroup = (BulletXNA.BulletCollision.CollisionFilterGroups) pGroup;
body.GetBroadphaseHandle().m_collisionFilterGroup = (BulletXNA.BulletCollision.CollisionFilterGroups) pGroup;
if ((uint) body.GetBroadphaseHandle().m_collisionFilterGroup == 0)
return false;
return true;
}
internal static void ClearAllForces2(object pBody)
{
CollisionObject body = pBody as CollisionObject;
IndexedVector3 zeroVector = new IndexedVector3(0, 0, 0);
body.SetInterpolationLinearVelocity(ref zeroVector);
body.SetInterpolationAngularVelocity(ref zeroVector);
IndexedMatrix bodytransform = body.GetWorldTransform();
body.SetInterpolationWorldTransform(ref bodytransform);
if (body is RigidBody)
{
RigidBody rigidbody = body as RigidBody;
rigidbody.SetLinearVelocity(zeroVector);
rigidbody.SetAngularVelocity(zeroVector);
rigidbody.ClearForces();
}
}
internal static void SetInterpolationAngularVelocity2(object pBody, Vector3 pVector3)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 vec = new IndexedVector3(pVector3.X, pVector3.Y, pVector3.Z);
body.SetInterpolationAngularVelocity(ref vec);
}
internal static void SetAngularVelocity2(object pBody, Vector3 pVector3)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 vec = new IndexedVector3(pVector3.X, pVector3.Y, pVector3.Z);
body.SetAngularVelocity(ref vec);
}
internal static void ClearForces2(object pBody)
{
RigidBody body = pBody as RigidBody;
body.ClearForces();
}
internal static void SetTranslation2(object pBody, Vector3 _position, Quaternion _orientation)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 vposition = new IndexedVector3(_position.X, _position.Y, _position.Z);
IndexedQuaternion vquaternion = new IndexedQuaternion(_orientation.X, _orientation.Y, _orientation.Z,
_orientation.W);
IndexedMatrix mat = IndexedMatrix.CreateFromQuaternion(vquaternion);
mat._origin = vposition;
body.SetWorldTransform(mat);
}
internal static Vector3 GetPosition2(object pBody)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 pos = body.GetInterpolationWorldTransform()._origin;
return new Vector3(pos.X, pos.Y, pos.Z);
}
internal static Vector3 CalculateLocalInertia2(object pShape, float pphysMass)
{
CollisionShape shape = pShape as CollisionShape;
IndexedVector3 inertia = IndexedVector3.Zero;
shape.CalculateLocalInertia(pphysMass, out inertia);
return new Vector3(inertia.X, inertia.Y, inertia.Z);
}
internal static void SetMassProps2(object pBody, float pphysMass, Vector3 plocalInertia)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 inertia = new IndexedVector3(plocalInertia.X, plocalInertia.Y, plocalInertia.Z);
body.SetMassProps(pphysMass, inertia);
}
internal static void SetObjectForce2(object pBody, Vector3 _force)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 force = new IndexedVector3(_force.X, _force.Y, _force.Z);
body.SetTotalForce(ref force);
}
internal static void SetFriction2(object pBody, float _currentFriction)
{
RigidBody body = pBody as RigidBody;
body.SetFriction(_currentFriction);
}
internal static void SetLinearVelocity2(object pBody, Vector3 _velocity)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 velocity = new IndexedVector3(_velocity.X, _velocity.Y, _velocity.Z);
body.SetLinearVelocity(velocity);
}
internal static void Activate2(object pBody, bool pforceactivation)
{
RigidBody body = pBody as RigidBody;
body.Activate(pforceactivation);
}
internal static Quaternion GetOrientation2(object pBody)
{
RigidBody body = pBody as RigidBody;
IndexedQuaternion mat = body.GetInterpolationWorldTransform().GetRotation();
return new Quaternion(mat.X, mat.Y, mat.Z, mat.W);
}
internal static CollisionFlags RemoveFromCollisionFlags2(object pBody, CollisionFlags pcollisionFlags)
{
RigidBody body = pBody as RigidBody;
CollisionFlags existingcollisionFlags = (CollisionFlags)(uint)body.GetCollisionFlags();
existingcollisionFlags &= ~pcollisionFlags;
body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags)(uint)existingcollisionFlags);
return (CollisionFlags)(uint)existingcollisionFlags;
}
internal static void SetGravity2(object pBody, Vector3 pGravity)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 gravity = new IndexedVector3(pGravity.X, pGravity.Y, pGravity.Z);
body.SetGravity(gravity);
}
internal static bool DestroyConstraint2(object pBody, object pConstraint)
{
RigidBody body = pBody as RigidBody;
TypedConstraint constraint = pConstraint as TypedConstraint;
body.RemoveConstraintRef(constraint);
return true;
}
internal static bool SetLinearLimits2(object pConstraint, Vector3 low, Vector3 high)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
IndexedVector3 lowlimit = new IndexedVector3(low.X, low.Y, low.Z);
IndexedVector3 highlimit = new IndexedVector3(high.X, high.Y, high.Z);
constraint.SetLinearLowerLimit(lowlimit);
constraint.SetLinearUpperLimit(highlimit);
return true;
}
internal static bool SetAngularLimits2(object pConstraint, Vector3 low, Vector3 high)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
IndexedVector3 lowlimit = new IndexedVector3(low.X, low.Y, low.Z);
IndexedVector3 highlimit = new IndexedVector3(high.X, high.Y, high.Z);
constraint.SetAngularLowerLimit(lowlimit);
constraint.SetAngularUpperLimit(highlimit);
return true;
}
internal static void SetConstraintNumSolverIterations2(object pConstraint, float cnt)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
constraint.SetOverrideNumSolverIterations((int)cnt);
}
internal static void CalculateTransforms2(object pConstraint)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
constraint.CalculateTransforms();
}
internal static void SetConstraintEnable2(object pConstraint, float p_2)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
constraint.SetEnabled((p_2 == 0) ? false : true);
}
//BulletSimAPI.Create6DofConstraint2(m_world.ptr, m_body1.ptr, m_body2.ptr,frame1, frame1rot,frame2, frame2rot,useLinearReferenceFrameA, disableCollisionsBetweenLinkedBodies));
internal static object Create6DofConstraint2(object pWorld, object pBody1, object pBody2, Vector3 pframe1, Quaternion pframe1rot, Vector3 pframe2, Quaternion pframe2rot, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
RigidBody body1 = pBody1 as RigidBody;
RigidBody body2 = pBody2 as RigidBody;
IndexedVector3 frame1v = new IndexedVector3(pframe1.X, pframe1.Y, pframe1.Z);
IndexedQuaternion frame1rot = new IndexedQuaternion(pframe1rot.X, pframe1rot.Y, pframe1rot.Z, pframe1rot.W);
IndexedMatrix frame1 = IndexedMatrix.CreateFromQuaternion(frame1rot);
frame1._origin = frame1v;
IndexedVector3 frame2v = new IndexedVector3(pframe2.X, pframe2.Y, pframe2.Z);
IndexedQuaternion frame2rot = new IndexedQuaternion(pframe2rot.X, pframe2rot.Y, pframe2rot.Z, pframe2rot.W);
IndexedMatrix frame2 = IndexedMatrix.CreateFromQuaternion(frame2rot);
frame2._origin = frame1v;
Generic6DofConstraint consttr = new Generic6DofConstraint(body1, body2, ref frame1, ref frame2,
puseLinearReferenceFrameA);
consttr.CalculateTransforms();
world.AddConstraint(consttr,pdisableCollisionsBetweenLinkedBodies);
return consttr;
}
///
///
///
///
///
///
///
///
///
///
internal static object Create6DofConstraintToPoint2(object pWorld, object pBody1, object pBody2, Vector3 pjoinPoint, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
RigidBody body1 = pBody1 as RigidBody;
RigidBody body2 = pBody2 as RigidBody;
IndexedMatrix frame1 = new IndexedMatrix(IndexedBasisMatrix.Identity, new IndexedVector3(0, 0, 0));
IndexedMatrix frame2 = new IndexedMatrix(IndexedBasisMatrix.Identity, new IndexedVector3(0, 0, 0));
IndexedVector3 joinPoint = new IndexedVector3(pjoinPoint.X, pjoinPoint.Y, pjoinPoint.Z);
IndexedMatrix mat = IndexedMatrix.Identity;
mat._origin = new IndexedVector3(pjoinPoint.X, pjoinPoint.Y, pjoinPoint.Z);
frame1._origin = body1.GetWorldTransform().Inverse()*joinPoint;
frame2._origin = body2.GetWorldTransform().Inverse()*joinPoint;
Generic6DofConstraint consttr = new Generic6DofConstraint(body1, body2, ref frame1, ref frame2, puseLinearReferenceFrameA);
consttr.CalculateTransforms();
world.AddConstraint(consttr, pdisableCollisionsBetweenLinkedBodies);
return consttr;
}
//SetFrames2(m_constraint.ptr, frameA, frameArot, frameB, frameBrot);
internal static void SetFrames2(object pConstraint, Vector3 pframe1, Quaternion pframe1rot, Vector3 pframe2, Quaternion pframe2rot)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
IndexedVector3 frame1v = new IndexedVector3(pframe1.X, pframe1.Y, pframe1.Z);
IndexedQuaternion frame1rot = new IndexedQuaternion(pframe1rot.X, pframe1rot.Y, pframe1rot.Z, pframe1rot.W);
IndexedMatrix frame1 = IndexedMatrix.CreateFromQuaternion(frame1rot);
frame1._origin = frame1v;
IndexedVector3 frame2v = new IndexedVector3(pframe2.X, pframe2.Y, pframe2.Z);
IndexedQuaternion frame2rot = new IndexedQuaternion(pframe2rot.X, pframe2rot.Y, pframe2rot.Z, pframe2rot.W);
IndexedMatrix frame2 = IndexedMatrix.CreateFromQuaternion(frame2rot);
frame2._origin = frame1v;
constraint.SetFrames(ref frame1, ref frame2);
}
internal static bool IsInWorld2(object pWorld, object pShapeObj)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
CollisionObject shape = pShapeObj as CollisionObject;
return world.IsInWorld(shape);
}
internal static void SetInterpolationLinearVelocity2(object pBody, Vector3 VehicleVelocity)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 velocity = new IndexedVector3(VehicleVelocity.X, VehicleVelocity.Y, VehicleVelocity.Z);
body.SetInterpolationLinearVelocity(ref velocity);
}
internal static bool UseFrameOffset2(object pConstraint, float onOff)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
constraint.SetUseFrameOffset((onOff == 0) ? false : true);
return true;
}
//SetBreakingImpulseThreshold2(m_constraint.ptr, threshold);
internal static bool SetBreakingImpulseThreshold2(object pConstraint, float threshold)
{
Generic6DofConstraint constraint = pConstraint as Generic6DofConstraint;
constraint.SetBreakingImpulseThreshold(threshold);
return true;
}
//BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, angularDamping);
internal static void SetAngularDamping2(object pBody, float angularDamping)
{
RigidBody body = pBody as RigidBody;
float lineardamping = body.GetLinearDamping();
body.SetDamping(lineardamping, angularDamping);
}
internal static void UpdateInertiaTensor2(object pBody)
{
RigidBody body = pBody as RigidBody;
body.UpdateInertiaTensor();
}
internal static void RecalculateCompoundShapeLocalAabb2( object pCompoundShape)
{
CompoundShape shape = pCompoundShape as CompoundShape;
shape.RecalculateLocalAabb();
}
//BulletSimAPI.GetCollisionFlags2(PhysBody.ptr)
internal static CollisionFlags GetCollisionFlags2(object pBody)
{
RigidBody body = pBody as RigidBody;
uint flags = (uint)body.GetCollisionFlags();
return (CollisionFlags) flags;
}
internal static void SetDamping2(object pBody, float pLinear, float pAngular)
{
RigidBody body = pBody as RigidBody;
body.SetDamping(pLinear, pAngular);
}
//PhysBody.ptr, PhysicsScene.Params.deactivationTime);
internal static void SetDeactivationTime2(object pBody, float pDeactivationTime)
{
RigidBody body = pBody as RigidBody;
body.SetDeactivationTime(pDeactivationTime);
}
//SetSleepingThresholds2(PhysBody.ptr, PhysicsScene.Params.linearSleepingThreshold, PhysicsScene.Params.angularSleepingThreshold);
internal static void SetSleepingThresholds2(object pBody, float plinearSleepingThreshold, float pangularSleepingThreshold)
{
RigidBody body = pBody as RigidBody;
body.SetSleepingThresholds(plinearSleepingThreshold, pangularSleepingThreshold);
}
internal static CollisionObjectTypes GetBodyType2(object pBody)
{
RigidBody body = pBody as RigidBody;
return (CollisionObjectTypes)(int) body.GetInternalType();
}
//BulletSimAPI.ApplyCentralForce2(PhysBody.ptr, fSum);
internal static void ApplyCentralForce2(object pBody, Vector3 pfSum)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z);
body.ApplyCentralForce(ref fSum);
}
internal static void ApplyCentralImpulse2(object pBody, Vector3 pfSum)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z);
body.ApplyCentralImpulse(ref fSum);
}
internal static void ApplyTorque2(object pBody, Vector3 pfSum)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z);
body.ApplyTorque(ref fSum);
}
internal static void ApplyTorqueImpulse2(object pBody, Vector3 pfSum)
{
RigidBody body = pBody as RigidBody;
IndexedVector3 fSum = new IndexedVector3(pfSum.X, pfSum.Y, pfSum.Z);
body.ApplyTorqueImpulse(ref fSum);
}
internal static void DumpRigidBody2(object p, object p_2)
{
//TODO:
}
internal static void DumpCollisionShape2(object p, object p_2)
{
//TODO:
}
internal static void DestroyObject2(object p, object p_2)
{
//TODO:
}
internal static void Shutdown2(object pWorld)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
world.Cleanup();
}
internal static void DeleteCollisionShape2(object p, object p_2)
{
//TODO:
}
//(sim.ptr, shape.ptr, prim.LocalID, prim.RawPosition, prim.RawOrientation);
internal static object CreateBodyFromShape2(object pWorld, object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation)
{
CollisionWorld world = pWorld as CollisionWorld;
IndexedMatrix mat =
IndexedMatrix.CreateFromQuaternion(new IndexedQuaternion(pRawOrientation.X, pRawOrientation.Y,
pRawOrientation.Z, pRawOrientation.W));
mat._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z);
CollisionShape shape = pShape as CollisionShape;
//UpdateSingleAabb2(world, shape);
// TODO: Feed Update array into null
RigidBody body = new RigidBody(0,new SimMotionState(world,pLocalID,mat,null),shape,IndexedVector3.Zero);
body.SetUserPointer(pLocalID);
return body;
}
internal static object CreateBodyWithDefaultMotionState2( object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation)
{
IndexedMatrix mat =
IndexedMatrix.CreateFromQuaternion(new IndexedQuaternion(pRawOrientation.X, pRawOrientation.Y,
pRawOrientation.Z, pRawOrientation.W));
mat._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z);
CollisionShape shape = pShape as CollisionShape;
// TODO: Feed Update array into null
RigidBody body = new RigidBody(0, new DefaultMotionState( mat, IndexedMatrix.Identity), shape, IndexedVector3.Zero);
body.SetWorldTransform(mat);
body.SetUserPointer(pLocalID);
return body;
}
//(m_mapInfo.terrainBody.ptr, CollisionFlags.CF_STATIC_OBJECT);
internal static void SetCollisionFlags2(object pBody, CollisionFlags collisionFlags)
{
RigidBody body = pBody as RigidBody;
body.SetCollisionFlags((BulletXNA.BulletCollision.CollisionFlags) (uint) collisionFlags);
}
//(m_mapInfo.terrainBody.ptr, PhysicsScene.Params.terrainHitFraction);
internal static void SetHitFraction2(object pBody, float pHitFraction)
{
RigidBody body = pBody as RigidBody;
body.SetHitFraction(pHitFraction);
}
//BuildCapsuleShape2(physicsScene.World.ptr, 1f, 1f, prim.Scale);
internal static object BuildCapsuleShape2(object pWorld, float pRadius, float pHeight, Vector3 pScale)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
IndexedVector3 scale = new IndexedVector3(pScale.X, pScale.Y, pScale.Z);
CapsuleShapeZ capsuleShapeZ = new CapsuleShapeZ(pRadius, pHeight);
capsuleShapeZ.SetMargin(world.WorldSettings.Params.collisionMargin);
capsuleShapeZ.SetLocalScaling(ref scale);
return capsuleShapeZ;
}
public static object Initialize2(Vector3 worldExtent, ConfigurationParameters[] o, int mMaxCollisionsPerFrame, ref List collisionArray, int mMaxUpdatesPerFrame, ref List updateArray, object mDebugLogCallbackHandle)
{
CollisionWorld.WorldData.ParamData p = new CollisionWorld.WorldData.ParamData();
p.angularDamping = o[0].XangularDamping;
p.defaultFriction = o[0].defaultFriction;
p.defaultFriction = o[0].defaultFriction;
p.defaultDensity = o[0].defaultDensity;
p.defaultRestitution = o[0].defaultRestitution;
p.collisionMargin = o[0].collisionMargin;
p.gravity = o[0].gravity;
p.linearDamping = o[0].XlinearDamping;
p.angularDamping = o[0].XangularDamping;
p.deactivationTime = o[0].XdeactivationTime;
p.linearSleepingThreshold = o[0].XlinearSleepingThreshold;
p.angularSleepingThreshold = o[0].XangularSleepingThreshold;
p.ccdMotionThreshold = o[0].XccdMotionThreshold;
p.ccdSweptSphereRadius = o[0].XccdSweptSphereRadius;
p.contactProcessingThreshold = o[0].XcontactProcessingThreshold;
p.terrainImplementation = o[0].XterrainImplementation;
p.terrainFriction = o[0].XterrainFriction;
p.terrainHitFraction = o[0].XterrainHitFraction;
p.terrainRestitution = o[0].XterrainRestitution;
p.terrainCollisionMargin = o[0].XterrainCollisionMargin;
p.avatarFriction = o[0].XavatarFriction;
p.avatarStandingFriction = o[0].XavatarStandingFriction;
p.avatarDensity = o[0].XavatarDensity;
p.avatarRestitution = o[0].XavatarRestitution;
p.avatarCapsuleWidth = o[0].XavatarCapsuleWidth;
p.avatarCapsuleDepth = o[0].XavatarCapsuleDepth;
p.avatarCapsuleHeight = o[0].XavatarCapsuleHeight;
p.avatarContactProcessingThreshold = o[0].XavatarContactProcessingThreshold;
p.vehicleAngularDamping = o[0].XvehicleAngularDamping;
p.maxPersistantManifoldPoolSize = o[0].maxPersistantManifoldPoolSize;
p.maxCollisionAlgorithmPoolSize = o[0].maxCollisionAlgorithmPoolSize;
p.shouldDisableContactPoolDynamicAllocation = o[0].shouldDisableContactPoolDynamicAllocation;
p.shouldForceUpdateAllAabbs = o[0].shouldForceUpdateAllAabbs;
p.shouldRandomizeSolverOrder = o[0].shouldRandomizeSolverOrder;
p.shouldSplitSimulationIslands = o[0].shouldSplitSimulationIslands;
p.shouldEnableFrictionCaching = o[0].shouldEnableFrictionCaching;
p.numberOfSolverIterations = o[0].numberOfSolverIterations;
p.linksetImplementation = o[0].XlinksetImplementation;
p.linkConstraintUseFrameOffset = o[0].XlinkConstraintUseFrameOffset;
p.linkConstraintEnableTransMotor = o[0].XlinkConstraintEnableTransMotor;
p.linkConstraintTransMotorMaxVel = o[0].XlinkConstraintTransMotorMaxVel;
p.linkConstraintTransMotorMaxForce = o[0].XlinkConstraintTransMotorMaxForce;
p.linkConstraintERP = o[0].XlinkConstraintERP;
p.linkConstraintCFM = o[0].XlinkConstraintCFM;
p.linkConstraintSolverIterations = o[0].XlinkConstraintSolverIterations;
p.physicsLoggingFrames = o[0].physicsLoggingFrames;
DefaultCollisionConstructionInfo ccci = new DefaultCollisionConstructionInfo();
DefaultCollisionConfiguration cci = new DefaultCollisionConfiguration();
CollisionDispatcher m_dispatcher = new CollisionDispatcher(cci);
if (p.maxPersistantManifoldPoolSize > 0)
cci.m_persistentManifoldPoolSize = (int)p.maxPersistantManifoldPoolSize;
if (p.shouldDisableContactPoolDynamicAllocation !=0)
m_dispatcher.SetDispatcherFlags(DispatcherFlags.CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
//if (p.maxCollisionAlgorithmPoolSize >0 )
DbvtBroadphase m_broadphase = new DbvtBroadphase();
//IndexedVector3 aabbMin = new IndexedVector3(0, 0, 0);
//IndexedVector3 aabbMax = new IndexedVector3(256, 256, 256);
//AxisSweep3Internal m_broadphase2 = new AxisSweep3Internal(ref aabbMin, ref aabbMax, Convert.ToInt32(0xfffe), 0xffff, ushort.MaxValue/2, null, true);
m_broadphase.GetOverlappingPairCache().SetInternalGhostPairCallback(new GhostPairCallback());
SequentialImpulseConstraintSolver m_solver = new SequentialImpulseConstraintSolver();
DiscreteDynamicsWorld world = new DiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, cci);
world.UpdatedObjects = updateArray;
world.UpdatedCollisions = collisionArray;
world.WorldSettings.Params = p;
world.SetForceUpdateAllAabbs(p.shouldForceUpdateAllAabbs != 0);
world.GetSolverInfo().m_solverMode = SolverMode.SOLVER_USE_WARMSTARTING | SolverMode.SOLVER_SIMD;
if (p.shouldRandomizeSolverOrder != 0)
world.GetSolverInfo().m_solverMode |= SolverMode.SOLVER_RANDMIZE_ORDER;
world.GetSimulationIslandManager().SetSplitIslands(p.shouldSplitSimulationIslands != 0);
//world.GetDispatchInfo().m_enableSatConvex Not implemented in C# port
if (p.shouldEnableFrictionCaching != 0)
world.GetSolverInfo().m_solverMode |= SolverMode.SOLVER_ENABLE_FRICTION_DIRECTION_CACHING;
if (p.numberOfSolverIterations > 0)
world.GetSolverInfo().m_numIterations = (int) p.numberOfSolverIterations;
world.GetSolverInfo().m_damping = world.WorldSettings.Params.linearDamping;
world.GetSolverInfo().m_restitution = world.WorldSettings.Params.defaultRestitution;
world.GetSolverInfo().m_globalCfm = 0.0f;
world.GetSolverInfo().m_tau = 0.6f;
world.GetSolverInfo().m_friction = 0.3f;
world.GetSolverInfo().m_maxErrorReduction = 20f;
world.GetSolverInfo().m_numIterations = 10;
world.GetSolverInfo().m_erp = 0.2f;
world.GetSolverInfo().m_erp2 = 0.1f;
world.GetSolverInfo().m_sor = 1.0f;
world.GetSolverInfo().m_splitImpulse = false;
world.GetSolverInfo().m_splitImpulsePenetrationThreshold = -0.02f;
world.GetSolverInfo().m_linearSlop = 0.0f;
world.GetSolverInfo().m_warmstartingFactor = 0.85f;
world.GetSolverInfo().m_restingContactRestitutionThreshold = 2;
world.SetForceUpdateAllAabbs(true);
world.SetGravity(new IndexedVector3(0,0,p.gravity));
return world;
}
//m_constraint.ptr, ConstraintParams.BT_CONSTRAINT_STOP_CFM, cfm, ConstraintParamAxis.AXIS_ALL
internal static bool SetConstraintParam2(object pConstraint, ConstraintParams paramIndex, float paramvalue, ConstraintParamAxis axis)
{
Generic6DofConstraint constrain = pConstraint as Generic6DofConstraint;
if (axis == ConstraintParamAxis.AXIS_LINEAR_ALL || axis == ConstraintParamAxis.AXIS_ALL)
{
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 0);
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 1);
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams) (int) paramIndex, paramvalue, 2);
}
if (axis == ConstraintParamAxis.AXIS_ANGULAR_ALL || axis == ConstraintParamAxis.AXIS_ALL)
{
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 3);
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 4);
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, 5);
}
if (axis == ConstraintParamAxis.AXIS_LINEAR_ALL)
{
constrain.SetParam((BulletXNA.BulletDynamics.ConstraintParams)(int)paramIndex, paramvalue, (int)axis);
}
return true;
}
internal static bool PushUpdate2(object pCollisionObject)
{
bool ret = false;
RigidBody rb = pCollisionObject as RigidBody;
if (rb != null)
{
SimMotionState sms = rb.GetMotionState() as SimMotionState;
if (sms != null)
{
IndexedMatrix wt = IndexedMatrix.Identity;
sms.GetWorldTransform(out wt);
sms.SetWorldTransform(ref wt, true);
ret = true;
}
}
return ret;
}
internal static bool IsCompound2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsCompound();
}
internal static bool IsPloyhedral2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsPolyhedral();
}
internal static bool IsConvex2d2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsConvex2d();
}
internal static bool IsConvex2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsConvex();
}
internal static bool IsNonMoving2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsNonMoving();
}
internal static bool IsConcave2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsConcave();
}
internal static bool IsInfinite2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
return shape.IsInfinite();
}
internal static bool IsNativeShape2(object pShape)
{
CollisionShape shape = pShape as CollisionShape;
bool ret;
switch (shape.GetShapeType())
{
case BroadphaseNativeTypes.BOX_SHAPE_PROXYTYPE:
case BroadphaseNativeTypes.CONE_SHAPE_PROXYTYPE:
case BroadphaseNativeTypes.SPHERE_SHAPE_PROXYTYPE:
case BroadphaseNativeTypes.CYLINDER_SHAPE_PROXYTYPE:
ret = true;
break;
default:
ret = false;
break;
}
return ret;
}
//sim.ptr, shape.ptr,prim.LocalID, prim.RawPosition, prim.RawOrientation
internal static object CreateGhostFromShape2(object pWorld, object pShape, uint pLocalID, Vector3 pRawPosition, Quaternion pRawOrientation)
{
IndexedMatrix bodyTransform = new IndexedMatrix();
bodyTransform._origin = new IndexedVector3(pRawPosition.X, pRawPosition.Y, pRawPosition.Z);
bodyTransform.SetRotation(new IndexedQuaternion(pRawOrientation.X,pRawOrientation.Y,pRawOrientation.Z,pRawOrientation.W));
GhostObject gObj = new PairCachingGhostObject();
gObj.SetWorldTransform(bodyTransform);
CollisionShape shape = pShape as CollisionShape;
gObj.SetCollisionShape(shape);
gObj.SetUserPointer(pLocalID);
// TODO: Add to Special CollisionObjects!
return gObj;
}
public static void SetCollisionShape2(object pWorld, object pObj, object pShape)
{
var world = pWorld as DiscreteDynamicsWorld;
var obj = pObj as CollisionObject;
var shape = pShape as CollisionShape;
obj.SetCollisionShape(shape);
}
//(PhysicsScene.World.ptr, nativeShapeData)
internal static object BuildNativeShape2(object pWorld, ShapeData pShapeData)
{
var world = pWorld as DiscreteDynamicsWorld;
CollisionShape shape = null;
switch (pShapeData.Type)
{
case BSPhysicsShapeType.SHAPE_BOX:
shape = new BoxShape(new IndexedVector3(0.5f,0.5f,0.5f));
break;
case BSPhysicsShapeType.SHAPE_CONE:
shape = new ConeShapeZ(0.5f, 1.0f);
break;
case BSPhysicsShapeType.SHAPE_CYLINDER:
shape = new CylinderShapeZ(new IndexedVector3(0.5f, 0.5f, 0.5f));
break;
case BSPhysicsShapeType.SHAPE_SPHERE:
shape = new SphereShape(0.5f);
break;
}
if (shape != null)
{
IndexedVector3 scaling = new IndexedVector3(pShapeData.Scale.X, pShapeData.Scale.Y, pShapeData.Scale.Z);
shape.SetMargin(world.WorldSettings.Params.collisionMargin);
shape.SetLocalScaling(ref scaling);
}
return shape;
}
//PhysicsScene.World.ptr, false
internal static object CreateCompoundShape2(object pWorld, bool enableDynamicAabbTree)
{
return new CompoundShape(enableDynamicAabbTree);
}
internal static int GetNumberOfCompoundChildren2(object pCompoundShape)
{
var compoundshape = pCompoundShape as CompoundShape;
return compoundshape.GetNumChildShapes();
}
//LinksetRoot.PhysShape.ptr, newShape.ptr, displacementPos, displacementRot
internal static void AddChildShapeToCompoundShape2(object pCShape, object paddShape, Vector3 displacementPos, Quaternion displacementRot)
{
IndexedMatrix relativeTransform = new IndexedMatrix();
var compoundshape = pCShape as CompoundShape;
var addshape = paddShape as CollisionShape;
relativeTransform._origin = new IndexedVector3(displacementPos.X, displacementPos.Y, displacementPos.Z);
relativeTransform.SetRotation(new IndexedQuaternion(displacementRot.X,displacementRot.Y,displacementRot.Z,displacementRot.W));
compoundshape.AddChildShape(ref relativeTransform, addshape);
}
internal static object RemoveChildShapeFromCompoundShapeIndex2(object pCShape, int pii)
{
var compoundshape = pCShape as CompoundShape;
CollisionShape ret = null;
ret = compoundshape.GetChildShape(pii);
compoundshape.RemoveChildShapeByIndex(pii);
return ret;
}
internal static object CreateGroundPlaneShape2(uint pLocalId, float pheight, float pcollisionMargin)
{
StaticPlaneShape m_planeshape = new StaticPlaneShape(new IndexedVector3(0,0,1),(int)pheight );
m_planeshape.SetMargin(pcollisionMargin);
m_planeshape.SetUserPointer(pLocalId);
return m_planeshape;
}
internal static object CreateHingeConstraint2(object pWorld, object pBody1, object ppBody2, Vector3 ppivotInA, Vector3 ppivotInB, Vector3 paxisInA, Vector3 paxisInB, bool puseLinearReferenceFrameA, bool pdisableCollisionsBetweenLinkedBodies)
{
HingeConstraint constrain = null;
var rb1 = pBody1 as RigidBody;
var rb2 = ppBody2 as RigidBody;
if (rb1 != null && rb2 != null)
{
IndexedVector3 pivotInA = new IndexedVector3(ppivotInA.X, ppivotInA.Y, ppivotInA.Z);
IndexedVector3 pivotInB = new IndexedVector3(ppivotInB.X, ppivotInB.Y, ppivotInB.Z);
IndexedVector3 axisInA = new IndexedVector3(paxisInA.X, paxisInA.Y, paxisInA.Z);
IndexedVector3 axisInB = new IndexedVector3(paxisInB.X, paxisInB.Y, paxisInB.Z);
var world = pWorld as DiscreteDynamicsWorld;
world.AddConstraint(constrain, pdisableCollisionsBetweenLinkedBodies);
}
return constrain;
}
internal static bool ReleaseHeightMapInfo2(object pMapInfo)
{
if (pMapInfo != null)
{
BulletHeightMapInfo mapinfo = pMapInfo as BulletHeightMapInfo;
if (mapinfo.heightMap != null)
mapinfo.heightMap = null;
}
return true;
}
internal static object CreateHullShape2(object pWorld, int pHullCount, float[] pConvHulls)
{
CompoundShape compoundshape = new CompoundShape(false);
var world = pWorld as DiscreteDynamicsWorld;
compoundshape.SetMargin(world.WorldSettings.Params.collisionMargin);
int ii = 1;
for (int i = 0; i < pHullCount; i++)
{
int vertexCount = (int) pConvHulls[ii];
IndexedVector3 centroid = new IndexedVector3(pConvHulls[ii + 1], pConvHulls[ii + 2], pConvHulls[ii + 3]);
IndexedMatrix childTrans = IndexedMatrix.Identity;
childTrans._origin = centroid;
List virts = new List();
int ender = ((ii + 4) + (vertexCount*3));
for (int iii = ii + 4; iii < ender; iii+=3)
{
virts.Add(new IndexedVector3(pConvHulls[iii], pConvHulls[iii + 1], pConvHulls[iii +2]));
}
ConvexHullShape convexShape = new ConvexHullShape(virts, vertexCount);
convexShape.SetMargin(world.WorldSettings.Params.collisionMargin);
compoundshape.AddChildShape(ref childTrans, convexShape);
ii += (vertexCount*3 + 4);
}
return compoundshape;
}
internal static object CreateMeshShape2(object pWorld, int pIndicesCount, int[] indices, int pVerticesCount, float[] verticesAsFloats)
{
//DumpRaw(indices,verticesAsFloats,pIndicesCount,pVerticesCount);
for (int iter = 0; iter < pVerticesCount; iter++)
{
if (verticesAsFloats[iter] > 0 && verticesAsFloats[iter] < 0.0001) verticesAsFloats[iter] = 0;
if (verticesAsFloats[iter] < 0 && verticesAsFloats[iter] > -0.0001) verticesAsFloats[iter] = 0;
}
ObjectArray indicesarr = new ObjectArray(indices);
ObjectArray vertices = new ObjectArray(verticesAsFloats);
DumpRaw(indicesarr,vertices,pIndicesCount,pVerticesCount);
var world = pWorld as DiscreteDynamicsWorld;
IndexedMesh mesh = new IndexedMesh();
mesh.m_indexType = PHY_ScalarType.PHY_INTEGER;
mesh.m_numTriangles = pIndicesCount/3;
mesh.m_numVertices = pVerticesCount;
mesh.m_triangleIndexBase = indicesarr;
mesh.m_vertexBase = vertices;
mesh.m_vertexStride = 3;
mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT;
mesh.m_triangleIndexStride = 3;
TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray();
tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER);
BvhTriangleMeshShape meshShape = new BvhTriangleMeshShape(tribuilder, true,true);
meshShape.SetMargin(world.WorldSettings.Params.collisionMargin);
// world.UpdateSingleAabb(meshShape);
return meshShape;
}
public static void DumpRaw(ObjectArrayindices, ObjectArray vertices, int pIndicesCount,int pVerticesCount )
{
String fileName = "objTest3.raw";
String completePath = System.IO.Path.Combine(Util.configDir(), fileName);
StreamWriter sw = new StreamWriter(completePath);
IndexedMesh mesh = new IndexedMesh();
mesh.m_indexType = PHY_ScalarType.PHY_INTEGER;
mesh.m_numTriangles = pIndicesCount / 3;
mesh.m_numVertices = pVerticesCount;
mesh.m_triangleIndexBase = indices;
mesh.m_vertexBase = vertices;
mesh.m_vertexStride = 3;
mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT;
mesh.m_triangleIndexStride = 3;
TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray();
tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER);
for (int i = 0; i < pVerticesCount; i++)
{
string s = vertices[indices[i * 3]].ToString("0.0000");
s += " " + vertices[indices[i * 3 + 1]].ToString("0.0000");
s += " " + vertices[indices[i * 3 + 2]].ToString("0.0000");
sw.Write(s + "\n");
}
sw.Close();
}
public static void DumpRaw(int[] indices, float[] vertices, int pIndicesCount, int pVerticesCount)
{
String fileName = "objTest6.raw";
String completePath = System.IO.Path.Combine(Util.configDir(), fileName);
StreamWriter sw = new StreamWriter(completePath);
IndexedMesh mesh = new IndexedMesh();
mesh.m_indexType = PHY_ScalarType.PHY_INTEGER;
mesh.m_numTriangles = pIndicesCount / 3;
mesh.m_numVertices = pVerticesCount;
mesh.m_triangleIndexBase = indices;
mesh.m_vertexBase = vertices;
mesh.m_vertexStride = 3;
mesh.m_vertexType = PHY_ScalarType.PHY_FLOAT;
mesh.m_triangleIndexStride = 3;
TriangleIndexVertexArray tribuilder = new TriangleIndexVertexArray();
tribuilder.AddIndexedMesh(mesh, PHY_ScalarType.PHY_INTEGER);
sw.WriteLine("Indices");
sw.WriteLine(string.Format("int[] indices = new int[{0}];",pIndicesCount));
for (int iter = 0; iter < indices.Length; iter++)
{
sw.WriteLine(string.Format("indices[{0}]={1};",iter,indices[iter]));
}
sw.WriteLine("VerticesFloats");
sw.WriteLine(string.Format("float[] vertices = new float[{0}];", pVerticesCount));
for (int iter = 0; iter < vertices.Length; iter++)
{
sw.WriteLine(string.Format("Vertices[{0}]={1};", iter, vertices[iter].ToString("0.0000")));
}
// for (int i = 0; i < pVerticesCount; i++)
// {
//
// string s = vertices[indices[i * 3]].ToString("0.0000");
// s += " " + vertices[indices[i * 3 + 1]].ToString("0.0000");
// s += " " + vertices[indices[i * 3 + 2]].ToString("0.0000");
//
// sw.Write(s + "\n");
//}
sw.Close();
}
//PhysicsScene.World.ptr, m_mapInfo.ID, m_mapInfo.minCoords, m_mapInfo.maxCoords, m_mapInfo.heightMap, PhysicsScene.Params.terrainCollisionMargin
internal static object CreateHeightMapInfo2(object pWorld, uint pId, Vector3 pminCoords, Vector3 pmaxCoords, float[] pheightMap, float pCollisionMargin)
{
BulletHeightMapInfo mapInfo = new BulletHeightMapInfo(pId, pheightMap, null);
mapInfo.heightMap = null;
mapInfo.minCoords = pminCoords;
mapInfo.maxCoords = pmaxCoords;
mapInfo.sizeX = (int) (pmaxCoords.X - pminCoords.X);
mapInfo.sizeY = (int) (pmaxCoords.Y - pminCoords.Y);
mapInfo.ID = pId;
mapInfo.minZ = pminCoords.Z;
mapInfo.maxZ = pmaxCoords.Z;
mapInfo.collisionMargin = pCollisionMargin;
if (mapInfo.minZ == mapInfo.maxZ)
mapInfo.minZ -= 0.2f;
mapInfo.heightMap = pheightMap;
return mapInfo;
}
internal static object CreateTerrainShape2(object pMapInfo)
{
BulletHeightMapInfo mapinfo = pMapInfo as BulletHeightMapInfo;
const int upAxis = 2;
const float scaleFactor = 1.0f;
HeightfieldTerrainShape terrainShape = new HeightfieldTerrainShape((int)mapinfo.sizeX, (int)mapinfo.sizeY,
mapinfo.heightMap, scaleFactor,
mapinfo.minZ, mapinfo.maxZ, upAxis,
false);
terrainShape.SetMargin(mapinfo.collisionMargin + 0.5f);
terrainShape.SetUseDiamondSubdivision(true);
terrainShape.SetUserPointer(mapinfo.ID);
return terrainShape;
}
internal static bool TranslationalLimitMotor2(object pConstraint, float ponOff, float targetVelocity, float maxMotorForce)
{
TypedConstraint tconstrain = pConstraint as TypedConstraint;
bool onOff = ponOff != 0;
bool ret = false;
switch (tconstrain.GetConstraintType())
{
case TypedConstraintType.D6_CONSTRAINT_TYPE:
Generic6DofConstraint constrain = pConstraint as Generic6DofConstraint;
constrain.GetTranslationalLimitMotor().m_enableMotor[0] = onOff;
constrain.GetTranslationalLimitMotor().m_targetVelocity[0] = targetVelocity;
constrain.GetTranslationalLimitMotor().m_maxMotorForce[0] = maxMotorForce;
ret = true;
break;
}
return ret;
}
internal static int PhysicsStep2(object pWorld, float timeStep, int m_maxSubSteps, float m_fixedTimeStep, out int updatedEntityCount, out List updatedEntities, out int collidersCount, out Listcolliders)
{
int epic = PhysicsStepint2(pWorld, timeStep, m_maxSubSteps, m_fixedTimeStep, out updatedEntityCount, out updatedEntities,
out collidersCount, out colliders);
return epic;
}
private static int PhysicsStepint2(object pWorld,float timeStep, int m_maxSubSteps, float m_fixedTimeStep, out int updatedEntityCount, out List updatedEntities, out int collidersCount, out List colliders)
{
int numSimSteps = 0;
//if (updatedEntities is null)
// updatedEntities = new List();
//if (colliders is null)
// colliders = new List();
if (pWorld is DiscreteDynamicsWorld)
{
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
numSimSteps = world.StepSimulation(timeStep, m_maxSubSteps, m_fixedTimeStep);
int updates = 0;
updatedEntityCount = world.UpdatedObjects.Count;
updatedEntities = new List(world.UpdatedObjects);
updatedEntityCount = updatedEntities.Count;
world.UpdatedObjects.Clear();
collidersCount = world.UpdatedCollisions.Count;
colliders = new List(world.UpdatedCollisions);
world.UpdatedCollisions.Clear();
m_collisionsThisFrame = 0;
int numManifolds = world.GetDispatcher().GetNumManifolds();
for (int j = 0; j < numManifolds; j++)
{
PersistentManifold contactManifold = world.GetDispatcher().GetManifoldByIndexInternal(j);
int numContacts = contactManifold.GetNumContacts();
if (numContacts == 0)
continue;
CollisionObject objA = contactManifold.GetBody0() as CollisionObject;
CollisionObject objB = contactManifold.GetBody1() as CollisionObject;
ManifoldPoint manifoldPoint = contactManifold.GetContactPoint(0);
IndexedVector3 contactPoint = manifoldPoint.GetPositionWorldOnB();
IndexedVector3 contactNormal = -manifoldPoint.m_normalWorldOnB; // make relative to A
RecordCollision(world, objA, objB, contactPoint, contactNormal);
m_collisionsThisFrame ++;
if (m_collisionsThisFrame >= 9999999)
break;
}
}
else
{
//if (updatedEntities is null)
updatedEntities = new List();
updatedEntityCount = 0;
//if (colliders is null)
colliders = new List();
collidersCount = 0;
}
return numSimSteps;
}
private static void RecordCollision(CollisionWorld world,CollisionObject objA, CollisionObject objB, IndexedVector3 contact, IndexedVector3 norm)
{
IndexedVector3 contactNormal = norm;
if ((objA.GetCollisionFlags() & BulletXNA.BulletCollision.CollisionFlags.BS_WANTS_COLLISIONS) == 0 &&
(objB.GetCollisionFlags() & BulletXNA.BulletCollision.CollisionFlags.BS_WANTS_COLLISIONS) == 0)
{
return;
}
uint idA = (uint)objA.GetUserPointer();
uint idB = (uint)objB.GetUserPointer();
if (idA > idB)
{
uint temp = idA;
idA = idB;
idB = temp;
contactNormal = -contactNormal;
}
ulong collisionID = ((ulong) idA << 32) | idB;
BulletXNA.CollisionDesc cDesc = new BulletXNA.CollisionDesc()
{
aID = idA,
bID = idB,
point = contact,
normal = contactNormal
};
world.UpdatedCollisions.Add(cDesc);
m_collisionsThisFrame++;
}
private static EntityProperties GetDebugProperties(object pWorld, object pBody)
{
EntityProperties ent = new EntityProperties();
DiscreteDynamicsWorld world = pWorld as DiscreteDynamicsWorld;
RigidBody body = pBody as RigidBody;
IndexedMatrix transform = body.GetWorldTransform();
IndexedVector3 LinearVelocity = body.GetInterpolationLinearVelocity();
IndexedVector3 AngularVelocity = body.GetInterpolationAngularVelocity();
IndexedQuaternion rotation = transform.GetRotation();
ent.Acceleration = Vector3.Zero;
ent.ID = (uint)body.GetUserPointer();
ent.Position = new Vector3(transform._origin.X,transform._origin.Y,transform._origin.Z);
ent.Rotation = new Quaternion(rotation.X,rotation.Y,rotation.Z,rotation.W);
ent.Velocity = new Vector3(LinearVelocity.X, LinearVelocity.Y, LinearVelocity.Z);
ent.RotationalVelocity = new Vector3(AngularVelocity.X, AngularVelocity.Y, AngularVelocity.Z);
return ent;
}
internal static Vector3 GetLocalScaling2(object pBody)
{
CollisionShape shape = pBody as CollisionShape;
IndexedVector3 scale = shape.GetLocalScaling();
return new Vector3(scale.X,scale.Y,scale.Z);
}
internal static bool RayCastGround(object pWorld, Vector3 _RayOrigin, float pRayHeight, object NotMe)
{
DynamicsWorld world = pWorld as DynamicsWorld;
if (world != null)
{
if (NotMe is CollisionObject || NotMe is RigidBody)
{
CollisionObject AvoidBody = NotMe as CollisionObject;
IndexedVector3 rOrigin = new IndexedVector3(_RayOrigin.X, _RayOrigin.Y, _RayOrigin.Z);
IndexedVector3 rEnd = new IndexedVector3(_RayOrigin.X, _RayOrigin.Y, _RayOrigin.Z - pRayHeight);
using (
ClosestNotMeRayResultCallback rayCallback = new ClosestNotMeRayResultCallback(rOrigin,
rEnd, AvoidBody)
)
{
world.RayTest(ref rOrigin, ref rEnd, rayCallback);
if (rayCallback.HasHit())
{
IndexedVector3 hitLocation = rayCallback.m_hitPointWorld;
}
return rayCallback.HasHit();
}
}
}
return false;
}
}
}