/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Net;
using log4net;
using OpenSim.Framework;
using OpenMetaverse;
using OpenMetaverse.Packets;
namespace OpenSim.Region.ClientStack.LindenUDP
{
#region Delegates
///
/// Fired when updated networking stats are produced for this client
///
/// Number of incoming packets received since this
/// event was last fired
/// Number of outgoing packets sent since this
/// event was last fired
/// Current total number of bytes in packets we
/// are waiting on ACKs for
public delegate void PacketStats(int inPackets, int outPackets, int unAckedBytes);
///
/// Fired when the queue for a packet category is empty. This event can be
/// hooked to put more data on the empty queue
///
/// Category of the packet queue that is empty
public delegate void QueueEmpty(ThrottleOutPacketType category);
#endregion Delegates
///
/// Tracks state for a client UDP connection and provides client-specific methods
///
public sealed class LLUDPClient
{
// TODO: Make this a config setting
/// Percentage of the task throttle category that is allocated to avatar and prim
/// state updates
const float STATE_TASK_PERCENTAGE = 0.8f;
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
/// The number of packet categories to throttle on. If a throttle category is added
/// or removed, this number must also change
const int THROTTLE_CATEGORY_COUNT = 8;
/// Fired when updated networking stats are produced for this client
public event PacketStats OnPacketStats;
/// Fired when the queue for a packet category is empty. This event can be
/// hooked to put more data on the empty queue
public event QueueEmpty OnQueueEmpty;
/// AgentID for this client
public readonly UUID AgentID;
/// The remote address of the connected client
public readonly IPEndPoint RemoteEndPoint;
/// Circuit code that this client is connected on
public readonly uint CircuitCode;
/// Sequence numbers of packets we've received (for duplicate checking)
public readonly IncomingPacketHistoryCollection PacketArchive = new IncomingPacketHistoryCollection(200);
/// Packets we have sent that need to be ACKed by the client
public readonly UnackedPacketCollection NeedAcks = new UnackedPacketCollection();
/// ACKs that are queued up, waiting to be sent to the client
public readonly OpenSim.Framework.LocklessQueue PendingAcks = new OpenSim.Framework.LocklessQueue();
/// Current packet sequence number
public int CurrentSequence;
/// Current ping sequence number
public byte CurrentPingSequence;
/// True when this connection is alive, otherwise false
public bool IsConnected = true;
/// True when this connection is paused, otherwise false
public bool IsPaused = true;
/// Environment.TickCount when the last packet was received for this client
public int TickLastPacketReceived;
/// Timer granularity. This is set to the measured resolution of Environment.TickCount
public readonly float G;
/// Smoothed round-trip time. A smoothed average of the round-trip time for sending a
/// reliable packet to the client and receiving an ACK
public float SRTT;
/// Round-trip time variance. Measures the consistency of round-trip times
public float RTTVAR;
/// Retransmission timeout. Packets that have not been acknowledged in this number of
/// milliseconds or longer will be resent
/// Calculated from and using the
/// guidelines in RFC 2988
public int RTO;
/// Number of bytes received since the last acknowledgement was sent out. This is used
/// to loosely follow the TCP delayed ACK algorithm in RFC 1122 (4.2.3.2)
public int BytesSinceLastACK;
/// Number of packets received from this client
public int PacketsReceived;
/// Number of packets sent to this client
public int PacketsSent;
/// Total byte count of unacked packets sent to this client
public int UnackedBytes;
/// Total number of received packets that we have reported to the OnPacketStats event(s)
private int m_packetsReceivedReported;
/// Total number of sent packets that we have reported to the OnPacketStats event(s)
private int m_packetsSentReported;
/// Throttle bucket for this agent's connection
private readonly TokenBucket m_throttle;
/// Throttle buckets for each packet category
private readonly TokenBucket[] m_throttleCategories;
/// Throttle rate defaults and limits
private readonly ThrottleRates m_defaultThrottleRates;
/// Outgoing queues for throttled packets
private readonly OpenSim.Framework.LocklessQueue[] m_packetOutboxes = new OpenSim.Framework.LocklessQueue[THROTTLE_CATEGORY_COUNT];
/// A container that can hold one packet for each outbox, used to store
/// dequeued packets that are being held for throttling
private readonly OutgoingPacket[] m_nextPackets = new OutgoingPacket[THROTTLE_CATEGORY_COUNT];
/// Flags to prevent queue empty callbacks from stacking up on
/// top of each other
private readonly bool[] m_onQueueEmptyRunning = new bool[THROTTLE_CATEGORY_COUNT];
/// A reference to the LLUDPServer that is managing this client
private readonly LLUDPServer m_udpServer;
///
/// Default constructor
///
/// Reference to the UDP server this client is connected to
/// Default throttling rates and maximum throttle limits
/// Parent HTB (hierarchical token bucket)
/// that the child throttles will be governed by
/// Circuit code for this connection
/// AgentID for the connected agent
/// Remote endpoint for this connection
public LLUDPClient(LLUDPServer server, ThrottleRates rates, TokenBucket parentThrottle, uint circuitCode, UUID agentID, IPEndPoint remoteEndPoint)
{
AgentID = agentID;
RemoteEndPoint = remoteEndPoint;
CircuitCode = circuitCode;
m_udpServer = server;
m_defaultThrottleRates = rates;
// Create a token bucket throttle for this client that has the scene token bucket as a parent
m_throttle = new TokenBucket(parentThrottle, rates.TotalLimit, rates.Total);
// Create an array of token buckets for this clients different throttle categories
m_throttleCategories = new TokenBucket[THROTTLE_CATEGORY_COUNT];
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
ThrottleOutPacketType type = (ThrottleOutPacketType)i;
// Initialize the packet outboxes, where packets sit while they are waiting for tokens
m_packetOutboxes[i] = new OpenSim.Framework.LocklessQueue();
// Initialize the token buckets that control the throttling for each category
m_throttleCategories[i] = new TokenBucket(m_throttle, rates.GetLimit(type), rates.GetRate(type));
}
// Set the granularity variable used for retransmission calculations to
// the measured resolution of Environment.TickCount
G = server.TickCountResolution;
// Default the retransmission timeout to three seconds
RTO = 3000;
// Initialize this to a sane value to prevent early disconnects
TickLastPacketReceived = Environment.TickCount;
}
///
/// Shuts down this client connection
///
public void Shutdown()
{
IsConnected = false;
NeedAcks.Clear();
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
m_packetOutboxes[i].Clear();
m_nextPackets[i] = null;
}
OnPacketStats = null;
OnQueueEmpty = null;
}
///
/// Gets information about this client connection
///
/// Information about the client connection
public ClientInfo GetClientInfo()
{
// TODO: This data structure is wrong in so many ways. Locking and copying the entire lists
// of pending and needed ACKs for every client every time some method wants information about
// this connection is a recipe for poor performance
ClientInfo info = new ClientInfo();
info.pendingAcks = new Dictionary();
info.needAck = new Dictionary();
info.resendThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Resend].DripRate;
info.landThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Land].DripRate;
info.windThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Wind].DripRate;
info.cloudThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Cloud].DripRate;
info.taskThrottle = m_throttleCategories[(int)ThrottleOutPacketType.State].DripRate + m_throttleCategories[(int)ThrottleOutPacketType.Task].DripRate;
info.assetThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Asset].DripRate;
info.textureThrottle = m_throttleCategories[(int)ThrottleOutPacketType.Texture].DripRate;
info.totalThrottle = info.resendThrottle + info.landThrottle + info.windThrottle + info.cloudThrottle +
info.taskThrottle + info.assetThrottle + info.textureThrottle;
return info;
}
///
/// Modifies the UDP throttles
///
/// New throttling values
public void SetClientInfo(ClientInfo info)
{
// TODO: Allowing throttles to be manually set from this function seems like a reasonable
// idea. On the other hand, letting external code manipulate our ACK accounting is not
// going to happen
throw new NotImplementedException();
}
public string GetStats()
{
// TODO: ???
return string.Format("{0,7} {1,7} {2,7} {3,7} {4,7} {5,7} {6,7} {7,7} {8,7} {9,7}",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
public void SendPacketStats()
{
PacketStats callback = OnPacketStats;
if (callback != null)
{
int newPacketsReceived = PacketsReceived - m_packetsReceivedReported;
int newPacketsSent = PacketsSent - m_packetsSentReported;
callback(newPacketsReceived, newPacketsSent, UnackedBytes);
m_packetsReceivedReported += newPacketsReceived;
m_packetsSentReported += newPacketsSent;
}
}
public void SetThrottles(byte[] throttleData)
{
byte[] adjData;
int pos = 0;
if (!BitConverter.IsLittleEndian)
{
byte[] newData = new byte[7 * 4];
Buffer.BlockCopy(throttleData, 0, newData, 0, 7 * 4);
for (int i = 0; i < 7; i++)
Array.Reverse(newData, i * 4, 4);
adjData = newData;
}
else
{
adjData = throttleData;
}
// 0.125f converts from bits to bytes
int resend = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int land = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int wind = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int cloud = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int task = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int texture = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f); pos += 4;
int asset = (int)(BitConverter.ToSingle(adjData, pos) * 0.125f);
// State is a subcategory of task that we allocate a percentage to
int state = (int)((float)task * STATE_TASK_PERCENTAGE);
task -= state;
// Make sure none of the throttles are set below our packet MTU,
// otherwise a throttle could become permanently clogged
resend = Math.Max(resend, LLUDPServer.MTU);
land = Math.Max(land, LLUDPServer.MTU);
wind = Math.Max(wind, LLUDPServer.MTU);
cloud = Math.Max(cloud, LLUDPServer.MTU);
task = Math.Max(task, LLUDPServer.MTU);
texture = Math.Max(texture, LLUDPServer.MTU);
asset = Math.Max(asset, LLUDPServer.MTU);
state = Math.Max(state, LLUDPServer.MTU);
int total = resend + land + wind + cloud + task + texture + asset + state;
m_log.DebugFormat("[LLUDPCLIENT]: {0} is setting throttles. Resend={1}, Land={2}, Wind={3}, Cloud={4}, Task={5}, Texture={6}, Asset={7}, State={8}, Total={9}",
AgentID, resend, land, wind, cloud, task, texture, asset, state, total);
// Update the token buckets with new throttle values
TokenBucket bucket;
bucket = m_throttle;
bucket.MaxBurst = total;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Resend];
bucket.DripRate = bucket.MaxBurst = resend;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Land];
bucket.DripRate = bucket.MaxBurst = land;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Wind];
bucket.DripRate = bucket.MaxBurst = wind;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Cloud];
bucket.DripRate = bucket.MaxBurst = cloud;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Asset];
bucket.DripRate = bucket.MaxBurst = asset;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Task];
bucket.DripRate = task + state + texture;
bucket.MaxBurst = task + state + texture;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.State];
bucket.DripRate = state + texture;
bucket.MaxBurst = state + texture;
bucket = m_throttleCategories[(int)ThrottleOutPacketType.Texture];
bucket.DripRate = texture;
bucket.MaxBurst = texture;
}
public byte[] GetThrottlesPacked()
{
byte[] data = new byte[7 * 4];
int i = 0;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Resend].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Land].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Wind].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Cloud].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)(m_throttleCategories[(int)ThrottleOutPacketType.Task].DripRate) +
m_throttleCategories[(int)ThrottleOutPacketType.State].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Texture].DripRate), 0, data, i, 4); i += 4;
Buffer.BlockCopy(Utils.FloatToBytes((float)m_throttleCategories[(int)ThrottleOutPacketType.Asset].DripRate), 0, data, i, 4); i += 4;
return data;
}
public bool EnqueueOutgoing(OutgoingPacket packet)
{
int category = (int)packet.Category;
if (category >= 0 && category < m_packetOutboxes.Length)
{
OpenSim.Framework.LocklessQueue queue = m_packetOutboxes[category];
TokenBucket bucket = m_throttleCategories[category];
if (m_throttleCategories[category].RemoveTokens(packet.Buffer.DataLength))
{
// Enough tokens were removed from the bucket, the packet will not be queued
return false;
}
else
{
// Not enough tokens in the bucket, queue this packet
queue.Enqueue(packet);
return true;
}
}
else
{
// We don't have a token bucket for this category, so it will not be queued
return false;
}
}
///
/// Loops through all of the packet queues for this client and tries to send
/// any outgoing packets, obeying the throttling bucket limits
///
/// This function is only called from a synchronous loop in the
/// UDPServer so we don't need to bother making this thread safe
/// True if any packets were sent, otherwise false
public bool DequeueOutgoing()
{
OutgoingPacket packet;
OpenSim.Framework.LocklessQueue queue;
TokenBucket bucket;
bool packetSent = false;
//string queueDebugOutput = String.Empty; // Serious debug business
for (int i = 0; i < THROTTLE_CATEGORY_COUNT; i++)
{
bucket = m_throttleCategories[i];
//queueDebugOutput += m_packetOutboxes[i].Count + " "; // Serious debug business
if (m_nextPackets[i] != null)
{
// This bucket was empty the last time we tried to send a packet,
// leaving a dequeued packet still waiting to be sent out. Try to
// send it again
OutgoingPacket nextPacket = m_nextPackets[i];
if (bucket.RemoveTokens(nextPacket.Buffer.DataLength))
{
// Send the packet
m_udpServer.SendPacketFinal(nextPacket);
m_nextPackets[i] = null;
packetSent = true;
}
}
else
{
// No dequeued packet waiting to be sent, try to pull one off
// this queue
queue = m_packetOutboxes[i];
if (queue.Dequeue(out packet))
{
// A packet was pulled off the queue. See if we have
// enough tokens in the bucket to send it out
if (bucket.RemoveTokens(packet.Buffer.DataLength))
{
// Send the packet
m_udpServer.SendPacketFinal(packet);
packetSent = true;
}
else
{
// Save the dequeued packet for the next iteration
m_nextPackets[i] = packet;
}
// If the queue is empty after this dequeue, fire the queue
// empty callback now so it has a chance to fill before we
// get back here
if (queue.Count == 0)
BeginFireQueueEmpty(i);
}
else
{
// No packets in this queue. Fire the queue empty callback
// if it has not been called recently
BeginFireQueueEmpty(i);
}
}
}
//m_log.Info("[LLUDPCLIENT]: Queues: " + queueDebugOutput); // Serious debug business
return packetSent;
}
///
/// Called when an ACK packet is received and a round-trip time for a
/// packet is calculated. This is used to calculate the smoothed
/// round-trip time, round trip time variance, and finally the
/// retransmission timeout
///
/// Round-trip time of a single packet and its
/// acknowledgement
public void UpdateRoundTrip(float r)
{
const float ALPHA = 0.125f;
const float BETA = 0.25f;
const float K = 4.0f;
if (RTTVAR == 0.0f)
{
// First RTT measurement
SRTT = r;
RTTVAR = r * 0.5f;
}
else
{
// Subsequence RTT measurement
RTTVAR = (1.0f - BETA) * RTTVAR + BETA * Math.Abs(SRTT - r);
SRTT = (1.0f - ALPHA) * SRTT + ALPHA * r;
}
// Always round retransmission timeout up to two seconds
RTO = Math.Max(2000, (int)(SRTT + Math.Max(G, K * RTTVAR)));
//m_log.Debug("[LLUDPCLIENT]: Setting agent " + this.Agent.FullName + "'s RTO to " + RTO + "ms with an RTTVAR of " +
// RTTVAR + " based on new RTT of " + r + "ms");
}
///
/// Does an early check to see if this queue empty callback is already
/// running, then asynchronously firing the event
///
/// Throttle category to fire the callback
/// for
private void BeginFireQueueEmpty(int throttleIndex)
{
// Unknown is -1 and Resend is 0. Make sure we are only firing the
// callback for categories other than those
if (throttleIndex > 0)
{
if (!m_onQueueEmptyRunning[throttleIndex])
Util.FireAndForget(FireQueueEmpty, throttleIndex);
}
}
///
/// Checks to see if this queue empty callback is already running,
/// then firing the event
///
/// Throttle category to fire the callback for, stored
/// as an object to match the WaitCallback delegate signature
private void FireQueueEmpty(object o)
{
int i = (int)o;
ThrottleOutPacketType type = (ThrottleOutPacketType)i;
QueueEmpty callback = OnQueueEmpty;
if (callback != null)
{
if (!m_onQueueEmptyRunning[i])
{
m_onQueueEmptyRunning[i] = true;
try { callback(type); }
catch (Exception e) { m_log.Error("[LLUDPCLIENT]: OnQueueEmpty(" + type + ") threw an exception: " + e.Message, e); }
m_onQueueEmptyRunning[i] = false;
}
}
}
}
}