From fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd Mon Sep 17 00:00:00 2001 From: dan miller Date: Fri, 19 Oct 2007 05:20:07 +0000 Subject: dont ask --- libraries/ode-0.9/ode/src/scrapbook.cpp | 485 -------------------------------- 1 file changed, 485 deletions(-) delete mode 100644 libraries/ode-0.9/ode/src/scrapbook.cpp (limited to 'libraries/ode-0.9/ode/src/scrapbook.cpp') diff --git a/libraries/ode-0.9/ode/src/scrapbook.cpp b/libraries/ode-0.9/ode/src/scrapbook.cpp deleted file mode 100644 index 2621814..0000000 --- a/libraries/ode-0.9/ode/src/scrapbook.cpp +++ /dev/null @@ -1,485 +0,0 @@ - -/* - -this is code that was once useful but has now been obseleted. - -this file should not be compiled as part of ODE! - -*/ - -//*************************************************************************** -// intersect a line segment with a plane - -extern "C" int dClipLineToBox (const dVector3 p1, const dVector3 p2, - const dVector3 p, const dMatrix3 R, - const dVector3 side) -{ - // compute the start and end of the line (p1 and p2) relative to the box. - // we will do all subsequent computations in this box-relative coordinate - // system. we have to do a translation and rotation for each point. - dVector3 tmp,s,e; - tmp[0] = p1[0] - p[0]; - tmp[1] = p1[1] - p[1]; - tmp[2] = p1[2] - p[2]; - dMULTIPLY1_331 (s,R,tmp); - tmp[0] = p2[0] - p[0]; - tmp[1] = p2[1] - p[1]; - tmp[2] = p2[2] - p[2]; - dMULTIPLY1_331 (e,R,tmp); - - // compute the vector 'v' from the start point to the end point - dVector3 v; - v[0] = e[0] - s[0]; - v[1] = e[1] - s[1]; - v[2] = e[2] - s[2]; - - // a point on the line is defined by the parameter 't'. t=0 corresponds - // to the start of the line, t=1 corresponds to the end of the line. - // we will clip the line to the box by finding the range of t where a - // point on the line is inside the box. the currently known bounds for - // t and tlo..thi. - dReal tlo=0,thi=1; - - // clip in the X/Y/Z direction - for (int i=0; i<3; i++) { - // first adjust s,e for the current t range. this is redundant for the - // first iteration, but never mind. - e[i] = s[i] + thi*v[i]; - s[i] = s[i] + tlo*v[i]; - // compute where t intersects the positive and negative sides. - dReal tp = ( side[i] - s[i])/v[i]; // @@@ handle case where denom=0 - dReal tm = (-side[i] - s[i])/v[i]; - // handle 9 intersection cases - if (s[i] <= -side[i]) { - tlo = tm; - if (e[i] <= -side[i]) return 0; - else if (e[i] >= side[i]) thi = tp; - } - else if (s[i] <= side[i]) { - if (e[i] <= -side[i]) thi = tm; - else if (e[i] >= side[i]) thi = tp; - } - else { - tlo = tp; - if (e[i] <= -side[i]) thi = tm; - else if (e[i] >= side[i]) return 0; - } - } - - //... @@@ AT HERE @@@ - - return 1; -} - - -//*************************************************************************** -// a nice try at C-B collision. unfortunately it doesn't work. the logic -// for testing for line-box intersection is correct, but unfortunately the -// closest-point distance estimates are often too large. as a result contact -// points are placed incorrectly. - - -int dCollideCB (const dxGeom *o1, const dxGeom *o2, int flags, - dContactGeom *contact, int skip) -{ - int i; - - dIASSERT (skip >= (int)sizeof(dContactGeom)); - dIASSERT (o1->_class->num == dCCylinderClass); - dIASSERT (o2->_class->num == dBoxClass); - contact->g1 = const_cast (o1); - contact->g2 = const_cast (o2); - dxCCylinder *cyl = (dxCCylinder*) CLASSDATA(o1); - dxBox *box = (dxBox*) CLASSDATA(o2); - - // get p1,p2 = cylinder axis endpoints, get radius - dVector3 p1,p2; - dReal clen = cyl->lz * REAL(0.5); - p1[0] = o1->pos[0] + clen * o1->R[2]; - p1[1] = o1->pos[1] + clen * o1->R[6]; - p1[2] = o1->pos[2] + clen * o1->R[10]; - p2[0] = o1->pos[0] - clen * o1->R[2]; - p2[1] = o1->pos[1] - clen * o1->R[6]; - p2[2] = o1->pos[2] - clen * o1->R[10]; - dReal radius = cyl->radius; - - // copy out box center, rotation matrix, and side array - dReal *c = o2->pos; - dReal *R = o2->R; - dReal *side = box->side; - - // compute the start and end of the line (p1 and p2) relative to the box. - // we will do all subsequent computations in this box-relative coordinate - // system. we have to do a translation and rotation for each point. - dVector3 tmp3,s,e; - tmp3[0] = p1[0] - c[0]; - tmp3[1] = p1[1] - c[1]; - tmp3[2] = p1[2] - c[2]; - dMULTIPLY1_331 (s,R,tmp3); - tmp3[0] = p2[0] - c[0]; - tmp3[1] = p2[1] - c[1]; - tmp3[2] = p2[2] - c[2]; - dMULTIPLY1_331 (e,R,tmp3); - - // compute the vector 'v' from the start point to the end point - dVector3 v; - v[0] = e[0] - s[0]; - v[1] = e[1] - s[1]; - v[2] = e[2] - s[2]; - - // compute the half-sides of the box - dReal S0 = side[0] * REAL(0.5); - dReal S1 = side[1] * REAL(0.5); - dReal S2 = side[2] * REAL(0.5); - - // compute the size of the bounding box around the line segment - dReal B0 = dFabs (v[0]); - dReal B1 = dFabs (v[1]); - dReal B2 = dFabs (v[2]); - - // for all 6 separation axes, measure the penetration depth. if any depth is - // less than 0 then the objects don't penetrate at all so we can just - // return 0. find the axis with the smallest depth, and record its normal. - - // note: normalR is set to point to a column of R if that is the smallest - // depth normal so far. otherwise normalR is 0 and normalC is set to a - // vector relative to the box. invert_normal is 1 if the sign of the normal - // should be flipped. - - dReal depth,trial_depth,tmp,length; - const dReal *normalR=0; - dVector3 normalC; - int invert_normal = 0; - int code = 0; // 0=no contact, 1-3=face contact, 4-6=edge contact - - depth = dInfinity; - - // look at face-normal axes - -#undef TEST -#define TEST(center,depth_expr,norm,contact_code) \ - tmp = (center); \ - trial_depth = radius + REAL(0.5) * ((depth_expr) - dFabs(tmp)); \ - if (trial_depth < 0) return 0; \ - if (trial_depth < depth) { \ - depth = trial_depth; \ - normalR = (norm); \ - invert_normal = (tmp < 0); \ - code = contact_code; \ - } - - TEST (s[0]+e[0], side[0] + B0, R+0, 1); - TEST (s[1]+e[1], side[1] + B1, R+1, 2); - TEST (s[2]+e[2], side[2] + B2, R+2, 3); - - // look at v x box-edge axes - -#undef TEST -#define TEST(box_radius,line_offset,nx,ny,nz,contact_code) \ - tmp = (line_offset); \ - trial_depth = (box_radius) - dFabs(tmp); \ - length = dSqrt ((nx)*(nx) + (ny)*(ny) + (nz)*(nz)); \ - if (length > 0) { \ - length = dRecip(length); \ - trial_depth = trial_depth * length + radius; \ - if (trial_depth < 0) return 0; \ - if (trial_depth < depth) { \ - depth = trial_depth; \ - normalR = 0; \ - normalC[0] = (nx)*length; \ - normalC[1] = (ny)*length; \ - normalC[2] = (nz)*length; \ - invert_normal = (tmp < 0); \ - code = contact_code; \ - } \ - } - - TEST (B2*S1+B1*S2,v[1]*s[2]-v[2]*s[1], 0,-v[2],v[1], 4); - TEST (B2*S0+B0*S2,v[2]*s[0]-v[0]*s[2], v[2],0,-v[0], 5); - TEST (B1*S0+B0*S1,v[0]*s[1]-v[1]*s[0], -v[1],v[0],0, 6); - -#undef TEST - - // if we get to this point, the box and ccylinder interpenetrate. - // compute the normal in global coordinates. - dReal *normal = contact[0].normal; - if (normalR) { - normal[0] = normalR[0]; - normal[1] = normalR[4]; - normal[2] = normalR[8]; - } - else { - dMULTIPLY0_331 (normal,R,normalC); - } - if (invert_normal) { - normal[0] = -normal[0]; - normal[1] = -normal[1]; - normal[2] = -normal[2]; - } - - // set the depth - contact[0].depth = depth; - - if (code == 0) { - return 0; // should never get here - } - else if (code >= 4) { - // handle edge contacts - // find an endpoint q1 on the intersecting edge of the box - dVector3 q1; - dReal sign[3]; - for (i=0; i<3; i++) q1[i] = c[i]; - sign[0] = (dDOT14(normal,R+0) > 0) ? REAL(1.0) : REAL(-1.0); - for (i=0; i<3; i++) q1[i] += sign[0] * S0 * R[i*4]; - sign[1] = (dDOT14(normal,R+1) > 0) ? REAL(1.0) : REAL(-1.0); - for (i=0; i<3; i++) q1[i] += sign[1] * S1 * R[i*4+1]; - sign[2] = (dDOT14(normal,R+2) > 0) ? REAL(1.0) : REAL(-1.0); - for (i=0; i<3; i++) q1[i] += sign[2] * S2 * R[i*4+2]; - - // find the other endpoint q2 of the intersecting edge - dVector3 q2; - for (i=0; i<3; i++) - q2[i] = q1[i] - R[code-4 + i*4] * (sign[code-4] * side[code-4]); - - // determine the closest point between the box edge and the line segment - dVector3 cp1,cp2; - dClosestLineSegmentPoints (q1,q2, p1,p2, cp1,cp2); - for (i=0; i<3; i++) contact[0].pos[i] = cp1[i] - REAL(0.5)*normal[i]*depth; - return 1; - } - else { - // handle face contacts. - // @@@ temporary: make deepest vertex on the line the contact point. - // @@@ this kind of works, but we sometimes need two contact points for - // @@@ stability. - - // compute 'v' in global coordinates - dVector3 gv; - for (i=0; i<3; i++) gv[i] = p2[i] - p1[i]; - - if (dDOT (normal,gv) > 0) { - for (i=0; i<3; i++) - contact[0].pos[i] = p1[i] + (depth*REAL(0.5)-radius)*normal[i]; - } - else { - for (i=0; i<3; i++) - contact[0].pos[i] = p2[i] + (depth*REAL(0.5)-radius)*normal[i]; - } - return 1; - } -} - -//*************************************************************************** -// this function works, it's just not being used for anything at the moment: - -// given a box (R,side), `R' is the rotation matrix for the box, and `side' -// is a vector of x/y/z side lengths, return the size of the interval of the -// box projected along the given axis. if the axis has unit length then the -// return value will be the actual diameter, otherwise the result will be -// scaled by the axis length. - -static inline dReal boxDiameter (const dMatrix3 R, const dVector3 side, - const dVector3 axis) -{ - dVector3 q; - dMULTIPLY1_331 (q,R,axis); // transform axis to body-relative - return dFabs(q[0])*side[0] + dFabs(q[1])*side[1] + dFabs(q[2])*side[2]; -} - -//*************************************************************************** -// the old capped cylinder to capped cylinder collision code. this fails to -// detect cap-to-cap contact points when the cylinder axis are aligned, but -// other that that it is pretty robust. - -// this returns at most one contact point when the two cylinder's axes are not -// aligned, and at most two (for stability) when they are aligned. -// the algorithm minimizes the distance between two "sample spheres" that are -// positioned along the cylinder axes according to: -// sphere1 = pos1 + alpha1 * axis1 -// sphere2 = pos2 + alpha2 * axis2 -// alpha1 and alpha2 are limited to +/- half the length of the cylinders. -// the algorithm works by finding a solution that has both alphas free, or -// a solution that has one or both alphas fixed to the ends of the cylinder. - -int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2, - int flags, dContactGeom *contact, int skip) -{ - int i; - const dReal tolerance = REAL(1e-5); - - dIASSERT (skip >= (int)sizeof(dContactGeom)); - dIASSERT (o1->type == dCCylinderClass); - dIASSERT (o2->type == dCCylinderClass); - dxCCylinder *cyl1 = (dxCCylinder*) o1; - dxCCylinder *cyl2 = (dxCCylinder*) o2; - - contact->g1 = o1; - contact->g2 = o2; - - // copy out some variables, for convenience - dReal lz1 = cyl1->lz * REAL(0.5); - dReal lz2 = cyl2->lz * REAL(0.5); - dReal *pos1 = o1->pos; - dReal *pos2 = o2->pos; - dReal axis1[3],axis2[3]; - axis1[0] = o1->R[2]; - axis1[1] = o1->R[6]; - axis1[2] = o1->R[10]; - axis2[0] = o2->R[2]; - axis2[1] = o2->R[6]; - axis2[2] = o2->R[10]; - - dReal alpha1,alpha2,sphere1[3],sphere2[3]; - int fix1 = 0; // 0 if alpha1 is free, +/-1 to fix at +/- lz1 - int fix2 = 0; // 0 if alpha2 is free, +/-1 to fix at +/- lz2 - - for (int count=0; count<9; count++) { - // find a trial solution by fixing or not fixing the alphas - if (fix1) { - if (fix2) { - // alpha1 and alpha2 are fixed, so the solution is easy - if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; - if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; - for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; - } - else { - // fix alpha1 but let alpha2 be free - if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; - for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; - alpha2 = (axis2[0]*(sphere1[0]-pos2[0]) + - axis2[1]*(sphere1[1]-pos2[1]) + - axis2[2]*(sphere1[2]-pos2[2])); - for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; - } - } - else { - if (fix2) { - // fix alpha2 but let alpha1 be free - if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; - alpha1 = (axis1[0]*(sphere2[0]-pos1[0]) + - axis1[1]*(sphere2[1]-pos1[1]) + - axis1[2]*(sphere2[2]-pos1[2])); - for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; - } - else { - // let alpha1 and alpha2 be free - // compute determinant of d(d^2)\d(alpha) jacobian - dReal a1a2 = dDOT (axis1,axis2); - dReal det = REAL(1.0)-a1a2*a1a2; - if (det < tolerance) { - // the cylinder axes (almost) parallel, so we will generate up to two - // contacts. the solution matrix is rank deficient so alpha1 and - // alpha2 are related by: - // alpha2 = alpha1 + (pos1-pos2)'*axis1 (if axis1==axis2) - // or alpha2 = -(alpha1 + (pos1-pos2)'*axis1) (if axis1==-axis2) - // first compute where the two cylinders overlap in alpha1 space: - if (a1a2 < 0) { - axis2[0] = -axis2[0]; - axis2[1] = -axis2[1]; - axis2[2] = -axis2[2]; - } - dReal q[3]; - for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i]; - dReal k = dDOT (axis1,q); - dReal a1lo = -lz1; - dReal a1hi = lz1; - dReal a2lo = -lz2 - k; - dReal a2hi = lz2 - k; - dReal lo = (a1lo > a2lo) ? a1lo : a2lo; - dReal hi = (a1hi < a2hi) ? a1hi : a2hi; - if (lo <= hi) { - int num_contacts = flags & NUMC_MASK; - if (num_contacts >= 2 && lo < hi) { - // generate up to two contacts. if one of those contacts is - // not made, fall back on the one-contact strategy. - for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i]; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i]; - int n1 = dCollideSpheres (sphere1,cyl1->radius, - sphere2,cyl2->radius,contact); - if (n1) { - for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i]; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i]; - dContactGeom *c2 = CONTACT(contact,skip); - int n2 = dCollideSpheres (sphere1,cyl1->radius, - sphere2,cyl2->radius, c2); - if (n2) { - c2->g1 = o1; - c2->g2 = o2; - return 2; - } - } - } - - // just one contact to generate, so put it in the middle of - // the range - alpha1 = (lo + hi) * REAL(0.5); - alpha2 = alpha1 + k; - for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; - return dCollideSpheres (sphere1,cyl1->radius, - sphere2,cyl2->radius,contact); - } - else return 0; - } - det = REAL(1.0)/det; - dReal delta[3]; - for (i=0; i<3; i++) delta[i] = pos1[i] - pos2[i]; - dReal q1 = dDOT (delta,axis1); - dReal q2 = dDOT (delta,axis2); - alpha1 = det*(a1a2*q2-q1); - alpha2 = det*(q2-a1a2*q1); - for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; - for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; - } - } - - // if the alphas are outside their allowed ranges then fix them and - // try again - if (fix1==0) { - if (alpha1 < -lz1) { - fix1 = -1; - continue; - } - if (alpha1 > lz1) { - fix1 = 1; - continue; - } - } - if (fix2==0) { - if (alpha2 < -lz2) { - fix2 = -1; - continue; - } - if (alpha2 > lz2) { - fix2 = 1; - continue; - } - } - - // unfix the alpha variables if the local distance gradient indicates - // that we are not yet at the minimum - dReal tmp[3]; - for (i=0; i<3; i++) tmp[i] = sphere1[i] - sphere2[i]; - if (fix1) { - dReal gradient = dDOT (tmp,axis1); - if ((fix1 > 0 && gradient > 0) || (fix1 < 0 && gradient < 0)) { - fix1 = 0; - continue; - } - } - if (fix2) { - dReal gradient = -dDOT (tmp,axis2); - if ((fix2 > 0 && gradient > 0) || (fix2 < 0 && gradient < 0)) { - fix2 = 0; - continue; - } - } - return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact); - } - // if we go through the loop too much, then give up. we should NEVER get to - // this point (i hope). - dMessage (0,"dCollideCC(): too many iterations"); - return 0; -} -- cgit v1.1