From 1ec410ecd725f5a3ccb2d2fc16f48730d9d9fe43 Mon Sep 17 00:00:00 2001 From: dan miller Date: Fri, 19 Oct 2007 05:22:23 +0000 Subject: trying to fix my screwup, please hold on --- libraries/ode-0.9/docs/matrix_8h-source.html | 214 --------------------------- 1 file changed, 214 deletions(-) delete mode 100644 libraries/ode-0.9/docs/matrix_8h-source.html (limited to 'libraries/ode-0.9/docs/matrix_8h-source.html') diff --git a/libraries/ode-0.9/docs/matrix_8h-source.html b/libraries/ode-0.9/docs/matrix_8h-source.html deleted file mode 100644 index 8f34e5e..0000000 --- a/libraries/ode-0.9/docs/matrix_8h-source.html +++ /dev/null @@ -1,214 +0,0 @@ - -
-00001 /************************************************************************* -00002 * * -00003 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * -00004 * All rights reserved. Email: russ@q12.org Web: www.q12.org * -00005 * * -00006 * This library is free software; you can redistribute it and/or * -00007 * modify it under the terms of EITHER: * -00008 * (1) The GNU Lesser General Public License as published by the Free * -00009 * Software Foundation; either version 2.1 of the License, or (at * -00010 * your option) any later version. The text of the GNU Lesser * -00011 * General Public License is included with this library in the * -00012 * file LICENSE.TXT. * -00013 * (2) The BSD-style license that is included with this library in * -00014 * the file LICENSE-BSD.TXT. * -00015 * * -00016 * This library is distributed in the hope that it will be useful, * -00017 * but WITHOUT ANY WARRANTY; without even the implied warranty of * -00018 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * -00019 * LICENSE.TXT and LICENSE-BSD.TXT for more details. * -00020 * * -00021 *************************************************************************/ -00022 -00023 /* optimized and unoptimized vector and matrix functions */ -00024 -00025 #ifndef _ODE_MATRIX_H_ -00026 #define _ODE_MATRIX_H_ -00027 -00028 #include <ode/common.h> -00029 -00030 -00031 #ifdef __cplusplus -00032 extern "C" { -00033 #endif -00034 -00035 -00036 /* set a vector/matrix of size n to all zeros, or to a specific value. */ -00037 -00038 ODE_API void dSetZero (dReal *a, int n); -00039 ODE_API void dSetValue (dReal *a, int n, dReal value); -00040 -00041 -00042 /* get the dot product of two n*1 vectors. if n <= 0 then -00043 * zero will be returned (in which case a and b need not be valid). -00044 */ -00045 -00046 ODE_API dReal dDot (const dReal *a, const dReal *b, int n); -00047 -00048 -00049 /* get the dot products of (a0,b), (a1,b), etc and return them in outsum. -00050 * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case -00051 * the input vectors need not be valid). this function is somewhat faster -00052 * than calling dDot() for all of the combinations separately. -00053 */ -00054 -00055 /* NOT INCLUDED in the library for now. -00056 void dMultidot2 (const dReal *a0, const dReal *a1, -00057 const dReal *b, dReal *outsum, int n); -00058 */ -00059 -00060 -00061 /* matrix multiplication. all matrices are stored in standard row format. -00062 * the digit refers to the argument that is transposed: -00063 * 0: A = B * C (sizes: A:p*r B:p*q C:q*r) -00064 * 1: A = B' * C (sizes: A:p*r B:q*p C:q*r) -00065 * 2: A = B * C' (sizes: A:p*r B:p*q C:r*q) -00066 * case 1,2 are equivalent to saying that the operation is A=B*C but -00067 * B or C are stored in standard column format. -00068 */ -00069 -00070 ODE_API void dMultiply0 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); -00071 ODE_API void dMultiply1 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); -00072 ODE_API void dMultiply2 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r); -00073 -00074 -00075 /* do an in-place cholesky decomposition on the lower triangle of the n*n -00076 * symmetric matrix A (which is stored by rows). the resulting lower triangle -00077 * will be such that L*L'=A. return 1 on success and 0 on failure (on failure -00078 * the matrix is not positive definite). -00079 */ -00080 -00081 ODE_API int dFactorCholesky (dReal *A, int n); -00082 -00083 -00084 /* solve for x: L*L'*x = b, and put the result back into x. -00085 * L is size n*n, b is size n*1. only the lower triangle of L is considered. -00086 */ -00087 -00088 ODE_API void dSolveCholesky (const dReal *L, dReal *b, int n); -00089 -00090 -00091 /* compute the inverse of the n*n positive definite matrix A and put it in -00092 * Ainv. this is not especially fast. this returns 1 on success (A was -00093 * positive definite) or 0 on failure (not PD). -00094 */ -00095 -00096 ODE_API int dInvertPDMatrix (const dReal *A, dReal *Ainv, int n); -00097 -00098 -00099 /* check whether an n*n matrix A is positive definite, return 1/0 (yes/no). -00100 * positive definite means that x'*A*x > 0 for any x. this performs a -00101 * cholesky decomposition of A. if the decomposition fails then the matrix -00102 * is not positive definite. A is stored by rows. A is not altered. -00103 */ -00104 -00105 ODE_API int dIsPositiveDefinite (const dReal *A, int n); -00106 -00107 -00108 /* factorize a matrix A into L*D*L', where L is lower triangular with ones on -00109 * the diagonal, and D is diagonal. -00110 * A is an n*n matrix stored by rows, with a leading dimension of n rounded -00111 * up to 4. L is written into the strict lower triangle of A (the ones are not -00112 * written) and the reciprocal of the diagonal elements of D are written into -00113 * d. -00114 */ -00115 ODE_API void dFactorLDLT (dReal *A, dReal *d, int n, int nskip); -00116 -00117 -00118 /* solve L*x=b, where L is n*n lower triangular with ones on the diagonal, -00119 * and x,b are n*1. b is overwritten with x. -00120 * the leading dimension of L is `nskip'. -00121 */ -00122 ODE_API void dSolveL1 (const dReal *L, dReal *b, int n, int nskip); -00123 -00124 -00125 /* solve L'*x=b, where L is n*n lower triangular with ones on the diagonal, -00126 * and x,b are n*1. b is overwritten with x. -00127 * the leading dimension of L is `nskip'. -00128 */ -00129 ODE_API void dSolveL1T (const dReal *L, dReal *b, int n, int nskip); -00130 -00131 -00132 /* in matlab syntax: a(1:n) = a(1:n) .* d(1:n) */ -00133 -00134 ODE_API void dVectorScale (dReal *a, const dReal *d, int n); -00135 -00136 -00137 /* given `L', a n*n lower triangular matrix with ones on the diagonal, -00138 * and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix -00139 * D, solve L*D*L'*x=b where x,b are n*1. x overwrites b. -00140 * the leading dimension of L is `nskip'. -00141 */ -00142 -00143 ODE_API void dSolveLDLT (const dReal *L, const dReal *d, dReal *b, int n, int nskip); -00144 -00145 -00146 /* given an L*D*L' factorization of an n*n matrix A, return the updated -00147 * factorization L2*D2*L2' of A plus the following "top left" matrix: -00148 * -00149 * [ b a' ] <-- b is a[0] -00150 * [ a 0 ] <-- a is a[1..n-1] -00151 * -00152 * - L has size n*n, its leading dimension is nskip. L is lower triangular -00153 * with ones on the diagonal. only the lower triangle of L is referenced. -00154 * - d has size n. d contains the reciprocal diagonal elements of D. -00155 * - a has size n. -00156 * the result is written into L, except that the left column of L and d[0] -00157 * are not actually modified. see ldltaddTL.m for further comments. -00158 */ -00159 ODE_API void dLDLTAddTL (dReal *L, dReal *d, const dReal *a, int n, int nskip); -00160 -00161 -00162 /* given an L*D*L' factorization of a permuted matrix A, produce a new -00163 * factorization for row and column `r' removed. -00164 * - A has size n1*n1, its leading dimension in nskip. A is symmetric and -00165 * positive definite. only the lower triangle of A is referenced. -00166 * A itself may actually be an array of row pointers. -00167 * - L has size n2*n2, its leading dimension in nskip. L is lower triangular -00168 * with ones on the diagonal. only the lower triangle of L is referenced. -00169 * - d has size n2. d contains the reciprocal diagonal elements of D. -00170 * - p is a permutation vector. it contains n2 indexes into A. each index -00171 * must be in the range 0..n1-1. -00172 * - r is the row/column of L to remove. -00173 * the new L will be written within the old L, i.e. will have the same leading -00174 * dimension. the last row and column of L, and the last element of d, are -00175 * undefined on exit. -00176 * -00177 * a fast O(n^2) algorithm is used. see ldltremove.m for further comments. -00178 */ -00179 ODE_API void dLDLTRemove (dReal **A, const int *p, dReal *L, dReal *d, -00180 int n1, int n2, int r, int nskip); -00181 -00182 -00183 /* given an n*n matrix A (with leading dimension nskip), remove the r'th row -00184 * and column by moving elements. the new matrix will have the same leading -00185 * dimension. the last row and column of A are untouched on exit. -00186 */ -00187 ODE_API void dRemoveRowCol (dReal *A, int n, int nskip, int r); -00188 -00189 -00190 #ifdef __cplusplus -00191 } -00192 #endif -00193 -00194 #endif -