From fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd Mon Sep 17 00:00:00 2001 From: dan miller Date: Fri, 19 Oct 2007 05:20:07 +0000 Subject: dont ask --- libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h | 279 --------------------------- 1 file changed, 279 deletions(-) delete mode 100644 libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h (limited to 'libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h') diff --git a/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h b/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h deleted file mode 100644 index 1e71c6a..0000000 --- a/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h +++ /dev/null @@ -1,279 +0,0 @@ - -//! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|b) \ - { \ - const float c=a; \ - a=b; \ - b=c; \ - } - -//! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202 -#define EDGE_EDGE_TEST(V0, U0, U1) \ - Bx = U0[i0] - U1[i0]; \ - By = U0[i1] - U1[i1]; \ - Cx = V0[i0] - U0[i0]; \ - Cy = V0[i1] - U0[i1]; \ - f = Ay*Bx - Ax*By; \ - d = By*Cx - Bx*Cy; \ - if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \ - { \ - const float e=Ax*Cy - Ay*Cx; \ - if(f>0.0f) \ - { \ - if(e>=0.0f && e<=f) return TRUE; \ - } \ - else \ - { \ - if(e<=0.0f && e>=f) return TRUE; \ - } \ - } - -//! TO BE DOCUMENTED -#define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \ -{ \ - float Bx,By,Cx,Cy,d,f; \ - const float Ax = V1[i0] - V0[i0]; \ - const float Ay = V1[i1] - V0[i1]; \ - /* test edge U0,U1 against V0,V1 */ \ - EDGE_EDGE_TEST(V0, U0, U1); \ - /* test edge U1,U2 against V0,V1 */ \ - EDGE_EDGE_TEST(V0, U1, U2); \ - /* test edge U2,U1 against V0,V1 */ \ - EDGE_EDGE_TEST(V0, U2, U0); \ -} - -//! TO BE DOCUMENTED -#define POINT_IN_TRI(V0, U0, U1, U2) \ -{ \ - /* is T1 completly inside T2? */ \ - /* check if V0 is inside tri(U0,U1,U2) */ \ - float a = U1[i1] - U0[i1]; \ - float b = -(U1[i0] - U0[i0]); \ - float c = -a*U0[i0] - b*U0[i1]; \ - float d0 = a*V0[i0] + b*V0[i1] + c; \ - \ - a = U2[i1] - U1[i1]; \ - b = -(U2[i0] - U1[i0]); \ - c = -a*U1[i0] - b*U1[i1]; \ - const float d1 = a*V0[i0] + b*V0[i1] + c; \ - \ - a = U0[i1] - U2[i1]; \ - b = -(U0[i0] - U2[i0]); \ - c = -a*U2[i0] - b*U2[i1]; \ - const float d2 = a*V0[i0] + b*V0[i1] + c; \ - if(d0*d1>0.0f) \ - { \ - if(d0*d2>0.0f) return TRUE; \ - } \ -} - -//! TO BE DOCUMENTED -BOOL CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2) -{ - float A[3]; - short i0,i1; - /* first project onto an axis-aligned plane, that maximizes the area */ - /* of the triangles, compute indices: i0,i1. */ - A[0] = fabsf(n[0]); - A[1] = fabsf(n[1]); - A[2] = fabsf(n[2]); - if(A[0]>A[1]) - { - if(A[0]>A[2]) - { - i0=1; /* A[0] is greatest */ - i1=2; - } - else - { - i0=0; /* A[2] is greatest */ - i1=1; - } - } - else /* A[0]<=A[1] */ - { - if(A[2]>A[1]) - { - i0=0; /* A[2] is greatest */ - i1=1; - } - else - { - i0=0; /* A[1] is greatest */ - i1=2; - } - } - - /* test all edges of triangle 1 against the edges of triangle 2 */ - EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2); - EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2); - EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2); - - /* finally, test if tri1 is totally contained in tri2 or vice versa */ - POINT_IN_TRI(v0, u0, u1, u2); - POINT_IN_TRI(u0, v0, v1, v2); - - return FALSE; -} - -//! TO BE DOCUMENTED -#define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \ -{ \ - if(D0D1>0.0f) \ - { \ - /* here we know that D0D2<=0.0 */ \ - /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ - A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ - } \ - else if(D0D2>0.0f) \ - { \ - /* here we know that d0d1<=0.0 */ \ - A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ - } \ - else if(D1*D2>0.0f || D0!=0.0f) \ - { \ - /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ - A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \ - } \ - else if(D1!=0.0f) \ - { \ - A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ - } \ - else if(D2!=0.0f) \ - { \ - A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ - } \ - else \ - { \ - /* triangles are coplanar */ \ - return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \ - } \ -} - -/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -/** - * Triangle/triangle intersection test routine, - * by Tomas Moller, 1997. - * See article "A Fast Triangle-Triangle Intersection Test", - * Journal of Graphics Tools, 2(2), 1997 - * - * Updated June 1999: removed the divisions -- a little faster now! - * Updated October 1999: added {} to CROSS and SUB macros - * - * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], - * float U0[3],float U1[3],float U2[3]) - * - * \param V0 [in] triangle 0, vertex 0 - * \param V1 [in] triangle 0, vertex 1 - * \param V2 [in] triangle 0, vertex 2 - * \param U0 [in] triangle 1, vertex 0 - * \param U1 [in] triangle 1, vertex 1 - * \param U2 [in] triangle 1, vertex 2 - * \return true if triangles overlap - */ -/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -inline_ BOOL AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2) -{ - // Stats - mNbPrimPrimTests++; - - // Compute plane equation of triangle(V0,V1,V2) - Point E1 = V1 - V0; - Point E2 = V2 - V0; - const Point N1 = E1 ^ E2; - const float d1 =-N1 | V0; - // Plane equation 1: N1.X+d1=0 - - // Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane - float du0 = (N1|U0) + d1; - float du1 = (N1|U1) + d1; - float du2 = (N1|U2) + d1; - - // Coplanarity robustness check -#ifdef OPC_TRITRI_EPSILON_TEST - if(fabsf(du0)0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ? - return FALSE; // no intersection occurs - - // Compute plane of triangle (U0,U1,U2) - E1 = U1 - U0; - E2 = U2 - U0; - const Point N2 = E1 ^ E2; - const float d2=-N2 | U0; - // plane equation 2: N2.X+d2=0 - - // put V0,V1,V2 into plane equation 2 - float dv0 = (N2|V0) + d2; - float dv1 = (N2|V1) + d2; - float dv2 = (N2|V2) + d2; - -#ifdef OPC_TRITRI_EPSILON_TEST - if(fabsf(dv0)0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ? - return FALSE; // no intersection occurs - - // Compute direction of intersection line - const Point D = N1^N2; - - // Compute and index to the largest component of D - float max=fabsf(D[0]); - short index=0; - float bb=fabsf(D[1]); - float cc=fabsf(D[2]); - if(bb>max) max=bb,index=1; - if(cc>max) max=cc,index=2; - - // This is the simplified projection onto L - const float vp0 = V0[index]; - const float vp1 = V1[index]; - const float vp2 = V2[index]; - - const float up0 = U0[index]; - const float up1 = U1[index]; - const float up2 = U2[index]; - - // Compute interval for triangle 1 - float a,b,c,x0,x1; - NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); - - // Compute interval for triangle 2 - float d,e,f,y0,y1; - NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); - - const float xx=x0*x1; - const float yy=y0*y1; - const float xxyy=xx*yy; - - float isect1[2], isect2[2]; - - float tmp=a*xxyy; - isect1[0]=tmp+b*x1*yy; - isect1[1]=tmp+c*x0*yy; - - tmp=d*xxyy; - isect2[0]=tmp+e*xx*y1; - isect2[1]=tmp+f*xx*y0; - - SORT(isect1[0],isect1[1]); - SORT(isect2[0],isect2[1]); - - if(isect1[1]