From 0fc46fc9590912bf6925c899edd02d7a2cdf5f79 Mon Sep 17 00:00:00 2001 From: dan miller Date: Fri, 19 Oct 2007 04:28:53 +0000 Subject: adding ode source to /libraries --- "libraries/ode-0.9\\/ode/src/fastldlt.c" | 381 +++++++++++++++++++++++++++++++ 1 file changed, 381 insertions(+) create mode 100755 "libraries/ode-0.9\\/ode/src/fastldlt.c" (limited to 'libraries/ode-0.9\/ode/src/fastldlt.c') diff --git "a/libraries/ode-0.9\\/ode/src/fastldlt.c" "b/libraries/ode-0.9\\/ode/src/fastldlt.c" new file mode 100755 index 0000000..df2ea6e --- /dev/null +++ "b/libraries/ode-0.9\\/ode/src/fastldlt.c" @@ -0,0 +1,381 @@ +/* generated code, do not edit. */ + +#include "ode/matrix.h" + +/* solve L*X=B, with B containing 1 right hand sides. + * L is an n*n lower triangular matrix with ones on the diagonal. + * L is stored by rows and its leading dimension is lskip. + * B is an n*1 matrix that contains the right hand sides. + * B is stored by columns and its leading dimension is also lskip. + * B is overwritten with X. + * this processes blocks of 2*2. + * if this is in the factorizer source file, n must be a multiple of 2. + */ + +static void dSolveL1_1 (const dReal *L, dReal *B, int n, int lskip1) +{ + /* declare variables - Z matrix, p and q vectors, etc */ + dReal Z11,m11,Z21,m21,p1,q1,p2,*ex; + const dReal *ell; + int i,j; + /* compute all 2 x 1 blocks of X */ + for (i=0; i < n; i+=2) { + /* compute all 2 x 1 block of X, from rows i..i+2-1 */ + /* set the Z matrix to 0 */ + Z11=0; + Z21=0; + ell = L + i*lskip1; + ex = B; + /* the inner loop that computes outer products and adds them to Z */ + for (j=i-2; j >= 0; j -= 2) { + /* compute outer product and add it to the Z matrix */ + p1=ell[0]; + q1=ex[0]; + m11 = p1 * q1; + p2=ell[lskip1]; + m21 = p2 * q1; + Z11 += m11; + Z21 += m21; + /* compute outer product and add it to the Z matrix */ + p1=ell[1]; + q1=ex[1]; + m11 = p1 * q1; + p2=ell[1+lskip1]; + m21 = p2 * q1; + /* advance pointers */ + ell += 2; + ex += 2; + Z11 += m11; + Z21 += m21; + /* end of inner loop */ + } + /* compute left-over iterations */ + j += 2; + for (; j > 0; j--) { + /* compute outer product and add it to the Z matrix */ + p1=ell[0]; + q1=ex[0]; + m11 = p1 * q1; + p2=ell[lskip1]; + m21 = p2 * q1; + /* advance pointers */ + ell += 1; + ex += 1; + Z11 += m11; + Z21 += m21; + } + /* finish computing the X(i) block */ + Z11 = ex[0] - Z11; + ex[0] = Z11; + p1 = ell[lskip1]; + Z21 = ex[1] - Z21 - p1*Z11; + ex[1] = Z21; + /* end of outer loop */ + } +} + +/* solve L*X=B, with B containing 2 right hand sides. + * L is an n*n lower triangular matrix with ones on the diagonal. + * L is stored by rows and its leading dimension is lskip. + * B is an n*2 matrix that contains the right hand sides. + * B is stored by columns and its leading dimension is also lskip. + * B is overwritten with X. + * this processes blocks of 2*2. + * if this is in the factorizer source file, n must be a multiple of 2. + */ + +static void dSolveL1_2 (const dReal *L, dReal *B, int n, int lskip1) +{ + /* declare variables - Z matrix, p and q vectors, etc */ + dReal Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex; + const dReal *ell; + int i,j; + /* compute all 2 x 2 blocks of X */ + for (i=0; i < n; i+=2) { + /* compute all 2 x 2 block of X, from rows i..i+2-1 */ + /* set the Z matrix to 0 */ + Z11=0; + Z12=0; + Z21=0; + Z22=0; + ell = L + i*lskip1; + ex = B; + /* the inner loop that computes outer products and adds them to Z */ + for (j=i-2; j >= 0; j -= 2) { + /* compute outer product and add it to the Z matrix */ + p1=ell[0]; + q1=ex[0]; + m11 = p1 * q1; + q2=ex[lskip1]; + m12 = p1 * q2; + p2=ell[lskip1]; + m21 = p2 * q1; + m22 = p2 * q2; + Z11 += m11; + Z12 += m12; + Z21 += m21; + Z22 += m22; + /* compute outer product and add it to the Z matrix */ + p1=ell[1]; + q1=ex[1]; + m11 = p1 * q1; + q2=ex[1+lskip1]; + m12 = p1 * q2; + p2=ell[1+lskip1]; + m21 = p2 * q1; + m22 = p2 * q2; + /* advance pointers */ + ell += 2; + ex += 2; + Z11 += m11; + Z12 += m12; + Z21 += m21; + Z22 += m22; + /* end of inner loop */ + } + /* compute left-over iterations */ + j += 2; + for (; j > 0; j--) { + /* compute outer product and add it to the Z matrix */ + p1=ell[0]; + q1=ex[0]; + m11 = p1 * q1; + q2=ex[lskip1]; + m12 = p1 * q2; + p2=ell[lskip1]; + m21 = p2 * q1; + m22 = p2 * q2; + /* advance pointers */ + ell += 1; + ex += 1; + Z11 += m11; + Z12 += m12; + Z21 += m21; + Z22 += m22; + } + /* finish computing the X(i) block */ + Z11 = ex[0] - Z11; + ex[0] = Z11; + Z12 = ex[lskip1] - Z12; + ex[lskip1] = Z12; + p1 = ell[lskip1]; + Z21 = ex[1] - Z21 - p1*Z11; + ex[1] = Z21; + Z22 = ex[1+lskip1] - Z22 - p1*Z12; + ex[1+lskip1] = Z22; + /* end of outer loop */ + } +} + + +void dFactorLDLT (dReal *A, dReal *d, int n, int nskip1) +{ + int i,j; + dReal sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22; + if (n < 1) return; + + for (i=0; i<=n-2; i += 2) { + /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */ + dSolveL1_2 (A,A+i*nskip1,i,nskip1); + /* scale the elements in a 2 x i block at A(i,0), and also */ + /* compute Z = the outer product matrix that we'll need. */ + Z11 = 0; + Z21 = 0; + Z22 = 0; + ell = A+i*nskip1; + dee = d; + for (j=i-6; j >= 0; j -= 6) { + p1 = ell[0]; + p2 = ell[nskip1]; + dd = dee[0]; + q1 = p1*dd; + q2 = p2*dd; + ell[0] = q1; + ell[nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + p1 = ell[1]; + p2 = ell[1+nskip1]; + dd = dee[1]; + q1 = p1*dd; + q2 = p2*dd; + ell[1] = q1; + ell[1+nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + p1 = ell[2]; + p2 = ell[2+nskip1]; + dd = dee[2]; + q1 = p1*dd; + q2 = p2*dd; + ell[2] = q1; + ell[2+nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + p1 = ell[3]; + p2 = ell[3+nskip1]; + dd = dee[3]; + q1 = p1*dd; + q2 = p2*dd; + ell[3] = q1; + ell[3+nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + p1 = ell[4]; + p2 = ell[4+nskip1]; + dd = dee[4]; + q1 = p1*dd; + q2 = p2*dd; + ell[4] = q1; + ell[4+nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + p1 = ell[5]; + p2 = ell[5+nskip1]; + dd = dee[5]; + q1 = p1*dd; + q2 = p2*dd; + ell[5] = q1; + ell[5+nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + ell += 6; + dee += 6; + } + /* compute left-over iterations */ + j += 6; + for (; j > 0; j--) { + p1 = ell[0]; + p2 = ell[nskip1]; + dd = dee[0]; + q1 = p1*dd; + q2 = p2*dd; + ell[0] = q1; + ell[nskip1] = q2; + m11 = p1*q1; + m21 = p2*q1; + m22 = p2*q2; + Z11 += m11; + Z21 += m21; + Z22 += m22; + ell++; + dee++; + } + /* solve for diagonal 2 x 2 block at A(i,i) */ + Z11 = ell[0] - Z11; + Z21 = ell[nskip1] - Z21; + Z22 = ell[1+nskip1] - Z22; + dee = d + i; + /* factorize 2 x 2 block Z,dee */ + /* factorize row 1 */ + dee[0] = dRecip(Z11); + /* factorize row 2 */ + sum = 0; + q1 = Z21; + q2 = q1 * dee[0]; + Z21 = q2; + sum += q1*q2; + dee[1] = dRecip(Z22 - sum); + /* done factorizing 2 x 2 block */ + ell[nskip1] = Z21; + } + /* compute the (less than 2) rows at the bottom */ + switch (n-i) { + case 0: + break; + + case 1: + dSolveL1_1 (A,A+i*nskip1,i,nskip1); + /* scale the elements in a 1 x i block at A(i,0), and also */ + /* compute Z = the outer product matrix that we'll need. */ + Z11 = 0; + ell = A+i*nskip1; + dee = d; + for (j=i-6; j >= 0; j -= 6) { + p1 = ell[0]; + dd = dee[0]; + q1 = p1*dd; + ell[0] = q1; + m11 = p1*q1; + Z11 += m11; + p1 = ell[1]; + dd = dee[1]; + q1 = p1*dd; + ell[1] = q1; + m11 = p1*q1; + Z11 += m11; + p1 = ell[2]; + dd = dee[2]; + q1 = p1*dd; + ell[2] = q1; + m11 = p1*q1; + Z11 += m11; + p1 = ell[3]; + dd = dee[3]; + q1 = p1*dd; + ell[3] = q1; + m11 = p1*q1; + Z11 += m11; + p1 = ell[4]; + dd = dee[4]; + q1 = p1*dd; + ell[4] = q1; + m11 = p1*q1; + Z11 += m11; + p1 = ell[5]; + dd = dee[5]; + q1 = p1*dd; + ell[5] = q1; + m11 = p1*q1; + Z11 += m11; + ell += 6; + dee += 6; + } + /* compute left-over iterations */ + j += 6; + for (; j > 0; j--) { + p1 = ell[0]; + dd = dee[0]; + q1 = p1*dd; + ell[0] = q1; + m11 = p1*q1; + Z11 += m11; + ell++; + dee++; + } + /* solve for diagonal 1 x 1 block at A(i,i) */ + Z11 = ell[0] - Z11; + dee = d + i; + /* factorize 1 x 1 block Z,dee */ + /* factorize row 1 */ + dee[0] = dRecip(Z11); + /* done factorizing 1 x 1 block */ + break; + + default: *((char*)0)=0; /* this should never happen! */ + } +} -- cgit v1.1