From 827b0fb1993c6f9b1289931a1ac38ff2b810952c Mon Sep 17 00:00:00 2001 From: opensim Date: Wed, 30 Sep 2009 18:51:02 +0200 Subject: Commit initial version of KittoFlora's vehicle changes --- OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs | 658 ++++++++++++++++++++++++ 1 file changed, 658 insertions(+) create mode 100644 OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs (limited to 'OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs') diff --git a/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs new file mode 100644 index 0000000..467eba0 --- /dev/null +++ b/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs @@ -0,0 +1,658 @@ +/* + * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces + * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: + * ODEPrim.cs contains methods dealing with Prim editing, Prim + * characteristics and Kinetic motion. + * ODEDynamics.cs contains methods dealing with Prim Physical motion + * (dynamics) and the associated settings. Old Linear and angular + * motors for dynamic motion have been replace with MoveLinear() + * and MoveAngular(); 'Physical' is used only to switch ODE dynamic + * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to + * switch between 'VEHICLE' parameter use and general dynamics + * settings use. + * + * Copyright (c) Contributors, http://opensimulator.org/ + * See CONTRIBUTORS.TXT for a full list of copyright holders. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of the OpenSimulator Project nor the + * names of its contributors may be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +using System; +using System.Collections.Generic; +using System.Reflection; +using System.Runtime.InteropServices; +using log4net; +using OpenMetaverse; +using Ode.NET; +using OpenSim.Framework; +using OpenSim.Region.Physics.Manager; + +namespace OpenSim.Region.Physics.OdePlugin +{ + public class ODEDynamics + { + public Vehicle Type + { + get { return m_type; } + } + + public IntPtr Body + { + get { return m_body; } + } + + private int frcount = 0; // Used to limit dynamics debug output to + // every 100th frame + + // private OdeScene m_parentScene = null; + private IntPtr m_body = IntPtr.Zero; + private IntPtr m_jointGroup = IntPtr.Zero; + private IntPtr m_aMotor = IntPtr.Zero; + + + // Vehicle properties + private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind + // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier + private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: + // HOVER_TERRAIN_ONLY + // HOVER_GLOBAL_HEIGHT + // NO_DEFLECTION_UP + // HOVER_WATER_ONLY + // HOVER_UP_ONLY + // LIMIT_MOTOR_UP + // LIMIT_ROLL_ONLY + + // Linear properties + private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time + private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL + private Vector3 m_dir = Vector3.Zero; // velocity applied to body + private Vector3 m_linearFrictionTimescale = Vector3.Zero; + private float m_linearMotorDecayTimescale = 0; + private float m_linearMotorTimescale = 0; + private Vector3 m_lastLinearVelocityVector = Vector3.Zero; + // private bool m_LinearMotorSetLastFrame = false; + // private Vector3 m_linearMotorOffset = Vector3.Zero; + + //Angular properties + private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor + private int m_angularMotorApply = 0; // application frame counter + private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity + private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate + private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate + private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate + private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body + // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body + + //Deflection properties + // private float m_angularDeflectionEfficiency = 0; + // private float m_angularDeflectionTimescale = 0; + // private float m_linearDeflectionEfficiency = 0; + // private float m_linearDeflectionTimescale = 0; + + //Banking properties + // private float m_bankingEfficiency = 0; + // private float m_bankingMix = 0; + // private float m_bankingTimescale = 0; + + //Hover and Buoyancy properties + private float m_VhoverHeight = 0f; + private float m_VhoverEfficiency = 0f; + private float m_VhoverTimescale = 0f; + private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height + private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. + // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) + // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. + // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. + + //Attractor properties + private float m_verticalAttractionEfficiency = 1.0f; // damped + private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. + + + + + + internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) + { + switch (pParam) + { + case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: + if (pValue < 0.01f) pValue = 0.01f; + // m_angularDeflectionEfficiency = pValue; + break; + case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + // m_angularDeflectionTimescale = pValue; + break; + case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_angularMotorDecayTimescale = pValue; + break; + case Vehicle.ANGULAR_MOTOR_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_angularMotorTimescale = pValue; + break; + case Vehicle.BANKING_EFFICIENCY: + if (pValue < 0.01f) pValue = 0.01f; + // m_bankingEfficiency = pValue; + break; + case Vehicle.BANKING_MIX: + if (pValue < 0.01f) pValue = 0.01f; + // m_bankingMix = pValue; + break; + case Vehicle.BANKING_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + // m_bankingTimescale = pValue; + break; + case Vehicle.BUOYANCY: + if (pValue < -1f) pValue = -1f; + if (pValue > 1f) pValue = 1f; + m_VehicleBuoyancy = pValue; + break; + case Vehicle.HOVER_EFFICIENCY: + if (pValue < 0f) pValue = 0f; + if (pValue > 1f) pValue = 1f; + m_VhoverEfficiency = pValue; + break; + case Vehicle.HOVER_HEIGHT: + m_VhoverHeight = pValue; + break; + case Vehicle.HOVER_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_VhoverTimescale = pValue; + break; + case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: + if (pValue < 0.01f) pValue = 0.01f; + // m_linearDeflectionEfficiency = pValue; + break; + case Vehicle.LINEAR_DEFLECTION_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + // m_linearDeflectionTimescale = pValue; + break; + case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_linearMotorDecayTimescale = pValue; + break; + case Vehicle.LINEAR_MOTOR_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_linearMotorTimescale = pValue; + break; + case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: + if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable + if (pValue > 1.0f) pValue = 1.0f; + m_verticalAttractionEfficiency = pValue; + break; + case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: + if (pValue < 0.01f) pValue = 0.01f; + m_verticalAttractionTimescale = pValue; + break; + + // These are vector properties but the engine lets you use a single float value to + // set all of the components to the same value + case Vehicle.ANGULAR_FRICTION_TIMESCALE: + m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); + break; + case Vehicle.ANGULAR_MOTOR_DIRECTION: + m_angularMotorDirection = new Vector3(pValue, pValue, pValue); + m_angularMotorApply = 10; + break; + case Vehicle.LINEAR_FRICTION_TIMESCALE: + m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); + break; + case Vehicle.LINEAR_MOTOR_DIRECTION: + m_linearMotorDirection = new Vector3(pValue, pValue, pValue); + m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); + break; + case Vehicle.LINEAR_MOTOR_OFFSET: + // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); + break; + + } + + }//end ProcessFloatVehicleParam + + internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue) + { + switch (pParam) + { + case Vehicle.ANGULAR_FRICTION_TIMESCALE: + m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); + break; + case Vehicle.ANGULAR_MOTOR_DIRECTION: + m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); + // Limit requested angular speed to 2 rps= 4 pi rads/sec + if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; + if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; + if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; + if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; + if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; + if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; + m_angularMotorApply = 10; + break; + case Vehicle.LINEAR_FRICTION_TIMESCALE: + m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); + break; + case Vehicle.LINEAR_MOTOR_DIRECTION: + m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); + m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); + break; + case Vehicle.LINEAR_MOTOR_OFFSET: + // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); + break; + } + + }//end ProcessVectorVehicleParam + + internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) + { + switch (pParam) + { + case Vehicle.REFERENCE_FRAME: + // m_referenceFrame = pValue; + break; + } + + }//end ProcessRotationVehicleParam + + internal void ProcessTypeChange(Vehicle pType) + { + // Set Defaults For Type + m_type = pType; + switch (pType) + { + case Vehicle.TYPE_SLED: + m_linearFrictionTimescale = new Vector3(30, 1, 1000); + m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); + m_linearMotorDirection = Vector3.Zero; + m_linearMotorTimescale = 1000; + m_linearMotorDecayTimescale = 120; + m_angularMotorDirection = Vector3.Zero; + m_angularMotorTimescale = 1000; + m_angularMotorDecayTimescale = 120; + m_VhoverHeight = 0; + m_VhoverEfficiency = 1; + m_VhoverTimescale = 10; + m_VehicleBuoyancy = 0; + // m_linearDeflectionEfficiency = 1; + // m_linearDeflectionTimescale = 1; + // m_angularDeflectionEfficiency = 1; + // m_angularDeflectionTimescale = 1000; + // m_bankingEfficiency = 0; + // m_bankingMix = 1; + // m_bankingTimescale = 10; + // m_referenceFrame = Quaternion.Identity; + m_flags &= + ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | + VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); + m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); + break; + case Vehicle.TYPE_CAR: + m_linearFrictionTimescale = new Vector3(100, 2, 1000); + m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); + m_linearMotorDirection = Vector3.Zero; + m_linearMotorTimescale = 1; + m_linearMotorDecayTimescale = 60; + m_angularMotorDirection = Vector3.Zero; + m_angularMotorTimescale = 1; + m_angularMotorDecayTimescale = 0.8f; + m_VhoverHeight = 0; + m_VhoverEfficiency = 0; + m_VhoverTimescale = 1000; + m_VehicleBuoyancy = 0; + // // m_linearDeflectionEfficiency = 1; + // // m_linearDeflectionTimescale = 2; + // // m_angularDeflectionEfficiency = 0; + // m_angularDeflectionTimescale = 10; + m_verticalAttractionEfficiency = 1f; + m_verticalAttractionTimescale = 10f; + // m_bankingEfficiency = -0.2f; + // m_bankingMix = 1; + // m_bankingTimescale = 1; + // m_referenceFrame = Quaternion.Identity; + m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); + m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | + VehicleFlag.LIMIT_MOTOR_UP); + break; + case Vehicle.TYPE_BOAT: + m_linearFrictionTimescale = new Vector3(10, 3, 2); + m_angularFrictionTimescale = new Vector3(10,10,10); + m_linearMotorDirection = Vector3.Zero; + m_linearMotorTimescale = 5; + m_linearMotorDecayTimescale = 60; + m_angularMotorDirection = Vector3.Zero; + m_angularMotorTimescale = 4; + m_angularMotorDecayTimescale = 4; + m_VhoverHeight = 0; + m_VhoverEfficiency = 0.5f; + m_VhoverTimescale = 2; + m_VehicleBuoyancy = 1; + // m_linearDeflectionEfficiency = 0.5f; + // m_linearDeflectionTimescale = 3; + // m_angularDeflectionEfficiency = 0.5f; + // m_angularDeflectionTimescale = 5; + m_verticalAttractionEfficiency = 0.5f; + m_verticalAttractionTimescale = 5f; + // m_bankingEfficiency = -0.3f; + // m_bankingMix = 0.8f; + // m_bankingTimescale = 1; + // m_referenceFrame = Quaternion.Identity; + m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | + VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); + m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | + VehicleFlag.LIMIT_MOTOR_UP); + break; + case Vehicle.TYPE_AIRPLANE: + m_linearFrictionTimescale = new Vector3(200, 10, 5); + m_angularFrictionTimescale = new Vector3(20, 20, 20); + m_linearMotorDirection = Vector3.Zero; + m_linearMotorTimescale = 2; + m_linearMotorDecayTimescale = 60; + m_angularMotorDirection = Vector3.Zero; + m_angularMotorTimescale = 4; + m_angularMotorDecayTimescale = 4; + m_VhoverHeight = 0; + m_VhoverEfficiency = 0.5f; + m_VhoverTimescale = 1000; + m_VehicleBuoyancy = 0; + // m_linearDeflectionEfficiency = 0.5f; + // m_linearDeflectionTimescale = 3; + // m_angularDeflectionEfficiency = 1; + // m_angularDeflectionTimescale = 2; + m_verticalAttractionEfficiency = 0.9f; + m_verticalAttractionTimescale = 2f; + // m_bankingEfficiency = 1; + // m_bankingMix = 0.7f; + // m_bankingTimescale = 2; + // m_referenceFrame = Quaternion.Identity; + m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | + VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); + m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); + break; + case Vehicle.TYPE_BALLOON: + m_linearFrictionTimescale = new Vector3(5, 5, 5); + m_angularFrictionTimescale = new Vector3(10, 10, 10); + m_linearMotorDirection = Vector3.Zero; + m_linearMotorTimescale = 5; + m_linearMotorDecayTimescale = 60; + m_angularMotorDirection = Vector3.Zero; + m_angularMotorTimescale = 6; + m_angularMotorDecayTimescale = 10; + m_VhoverHeight = 5; + m_VhoverEfficiency = 0.8f; + m_VhoverTimescale = 10; + m_VehicleBuoyancy = 1; + // m_linearDeflectionEfficiency = 0; + // m_linearDeflectionTimescale = 5; + // m_angularDeflectionEfficiency = 0; + // m_angularDeflectionTimescale = 5; + m_verticalAttractionEfficiency = 1f; + m_verticalAttractionTimescale = 100f; + // m_bankingEfficiency = 0; + // m_bankingMix = 0.7f; + // m_bankingTimescale = 5; + // m_referenceFrame = Quaternion.Identity; + m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | + VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); + m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); + break; + + } + }//end SetDefaultsForType + + internal void Enable(IntPtr pBody, OdeScene pParentScene) + { + if (m_type == Vehicle.TYPE_NONE) + return; + + m_body = pBody; + } + + internal void Step(float pTimestep, OdeScene pParentScene) + { + if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE) + return; + frcount++; // used to limit debug comment output + if (frcount > 100) + frcount = 0; + + MoveLinear(pTimestep, pParentScene); + MoveAngular(pTimestep); + }// end Step + + private void MoveLinear(float pTimestep, OdeScene _pParentScene) + { + if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant + { + if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); + + // add drive to body + Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep); + m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector? + + // This will work temporarily, but we really need to compare speed on an axis + // KF: Limit body velocity to applied velocity? + if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X)) + m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X; + if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y)) + m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y; + if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z)) + m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z; + + // decay applied velocity + Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep))); + //Console.WriteLine("decay: " + decayfraction); + m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f; + //Console.WriteLine("actual: " + m_linearMotorDirection); + } + else + { // requested is not significant + // if what remains of applied is small, zero it. + if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f)) + m_lastLinearVelocityVector = Vector3.Zero; + } + + + // convert requested object velocity to world-referenced vector + m_dir = m_lastLinearVelocityVector; + d.Quaternion rot = d.BodyGetQuaternion(Body); + Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object + m_dir *= rotq; // apply obj rotation to velocity vector + + // add Gravity andBuoyancy + // KF: So far I have found no good method to combine a script-requested + // .Z velocity and gravity. Therefore only 0g will used script-requested + // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only. + Vector3 grav = Vector3.Zero; + if(m_VehicleBuoyancy < 1.0f) + { + // There is some gravity, make a gravity force vector + // that is applied after object velocity. + d.Mass objMass; + d.BodyGetMass(Body, out objMass); + // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; + grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); + // Preserve the current Z velocity + d.Vector3 vel_now = d.BodyGetLinearVel(Body); + m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity + } // else its 1.0, no gravity. + + // Check if hovering + if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) + { + // We should hover, get the target height + d.Vector3 pos = d.BodyGetPosition(Body); + if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) + { + m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; + } + else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) + { + m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; + } + else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) + { + m_VhoverTargetHeight = m_VhoverHeight; + } + + if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) + { + // If body is aready heigher, use its height as target height + if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; + } + +// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped +// m_VhoverTimescale = 0f; // time to acheive height +// pTimestep is time since last frame,in secs + float herr0 = pos.Z - m_VhoverTargetHeight; + // Replace Vertical speed with correction figure if significant + if(Math.Abs(herr0) > 0.01f ) + { + d.Mass objMass; + d.BodyGetMass(Body, out objMass); + m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale); + //KF: m_VhoverEfficiency is not yet implemented + } + else + { + m_dir.Z = 0f; + } + } + + // Apply velocity + d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z); + // apply gravity force + d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); + + + // apply friction + Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep); + m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount; + } // end MoveLinear() + + private void MoveAngular(float pTimestep) + { + /* + private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor + private int m_angularMotorApply = 0; // application frame counter + private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down) + private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate + private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate + private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate + private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body + */ + + // Get what the body is doing, this includes 'external' influences + d.Vector3 angularVelocity = d.BodyGetAngularVel(Body); + // Vector3 angularVelocity = Vector3.Zero; + + if (m_angularMotorApply > 0) + { + // ramp up to new value + // current velocity += error / ( time to get there / step interval ) + // requested speed - last motor speed + m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); + m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); + m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); + + m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected + // velocity may still be acheived. + } + else + { + // no motor recently applied, keep the body velocity + /* m_angularMotorVelocity.X = angularVelocity.X; + m_angularMotorVelocity.Y = angularVelocity.Y; + m_angularMotorVelocity.Z = angularVelocity.Z; */ + + // and decay the velocity + m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); + } // end motor section + + + // Vertical attractor section + Vector3 vertattr = Vector3.Zero; + + if(m_verticalAttractionTimescale < 300) + { + float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep); + // get present body rotation + d.Quaternion rot = d.BodyGetQuaternion(Body); + Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); + // make a vector pointing up + Vector3 verterr = Vector3.Zero; + verterr.Z = 1.0f; + // rotate it to Body Angle + verterr = verterr * rotq; + // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. + // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go + // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. + if (verterr.Z < 0.0f) + { + verterr.X = 2.0f - verterr.X; + verterr.Y = 2.0f - verterr.Y; + } + // Error is 0 (no error) to +/- 2 (max error) + // scale it by VAservo + verterr = verterr * VAservo; +//if(frcount == 0) Console.WriteLine("VAerr=" + verterr); + + // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so + // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. + vertattr.X = verterr.Y; + vertattr.Y = - verterr.X; + vertattr.Z = 0f; + + // scaling appears better usingsquare-law + float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); + vertattr.X += bounce * angularVelocity.X; + vertattr.Y += bounce * angularVelocity.Y; + + } // else vertical attractor is off + + // m_lastVertAttractor = vertattr; + + // Bank section tba + // Deflection section tba + + // Sum velocities + m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection + + if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) + { + if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); + } + else + { + m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. + } + + // apply friction + Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep); + m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; + + // Apply to the body + d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); + + } //end MoveAngular + } +} -- cgit v1.1