diff options
Diffstat (limited to 'libraries/sqlite/win32/vdbemem.c')
-rwxr-xr-x | libraries/sqlite/win32/vdbemem.c | 1017 |
1 files changed, 1017 insertions, 0 deletions
diff --git a/libraries/sqlite/win32/vdbemem.c b/libraries/sqlite/win32/vdbemem.c new file mode 100755 index 0000000..58e2946 --- /dev/null +++ b/libraries/sqlite/win32/vdbemem.c | |||
@@ -0,0 +1,1017 @@ | |||
1 | /* | ||
2 | ** 2004 May 26 | ||
3 | ** | ||
4 | ** The author disclaims copyright to this source code. In place of | ||
5 | ** a legal notice, here is a blessing: | ||
6 | ** | ||
7 | ** May you do good and not evil. | ||
8 | ** May you find forgiveness for yourself and forgive others. | ||
9 | ** May you share freely, never taking more than you give. | ||
10 | ** | ||
11 | ************************************************************************* | ||
12 | ** | ||
13 | ** This file contains code use to manipulate "Mem" structure. A "Mem" | ||
14 | ** stores a single value in the VDBE. Mem is an opaque structure visible | ||
15 | ** only within the VDBE. Interface routines refer to a Mem using the | ||
16 | ** name sqlite_value | ||
17 | */ | ||
18 | #include "sqliteInt.h" | ||
19 | #include <math.h> | ||
20 | #include <ctype.h> | ||
21 | #include "vdbeInt.h" | ||
22 | |||
23 | /* | ||
24 | ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) | ||
25 | ** P if required. | ||
26 | */ | ||
27 | #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) | ||
28 | |||
29 | /* | ||
30 | ** If pMem is an object with a valid string representation, this routine | ||
31 | ** ensures the internal encoding for the string representation is | ||
32 | ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. | ||
33 | ** | ||
34 | ** If pMem is not a string object, or the encoding of the string | ||
35 | ** representation is already stored using the requested encoding, then this | ||
36 | ** routine is a no-op. | ||
37 | ** | ||
38 | ** SQLITE_OK is returned if the conversion is successful (or not required). | ||
39 | ** SQLITE_NOMEM may be returned if a malloc() fails during conversion | ||
40 | ** between formats. | ||
41 | */ | ||
42 | int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ | ||
43 | int rc; | ||
44 | if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ | ||
45 | return SQLITE_OK; | ||
46 | } | ||
47 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
48 | #ifdef SQLITE_OMIT_UTF16 | ||
49 | return SQLITE_ERROR; | ||
50 | #else | ||
51 | |||
52 | /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, | ||
53 | ** then the encoding of the value may not have changed. | ||
54 | */ | ||
55 | rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); | ||
56 | assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); | ||
57 | assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); | ||
58 | assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); | ||
59 | return rc; | ||
60 | #endif | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | ** Make the given Mem object MEM_Dyn. | ||
65 | ** | ||
66 | ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. | ||
67 | */ | ||
68 | int sqlite3VdbeMemDynamicify(Mem *pMem){ | ||
69 | int n; | ||
70 | u8 *z; | ||
71 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
72 | expandBlob(pMem); | ||
73 | if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ | ||
74 | return SQLITE_OK; | ||
75 | } | ||
76 | assert( (pMem->flags & MEM_Dyn)==0 ); | ||
77 | n = pMem->n; | ||
78 | assert( pMem->flags & (MEM_Str|MEM_Blob) ); | ||
79 | z = sqlite3DbMallocRaw(pMem->db, n+2 ); | ||
80 | if( z==0 ){ | ||
81 | return SQLITE_NOMEM; | ||
82 | } | ||
83 | pMem->flags |= MEM_Dyn|MEM_Term; | ||
84 | pMem->xDel = 0; | ||
85 | memcpy(z, pMem->z, n ); | ||
86 | z[n] = 0; | ||
87 | z[n+1] = 0; | ||
88 | pMem->z = (char*)z; | ||
89 | pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); | ||
90 | return SQLITE_OK; | ||
91 | } | ||
92 | |||
93 | /* | ||
94 | ** If the given Mem* has a zero-filled tail, turn it into an ordinary | ||
95 | ** blob stored in dynamically allocated space. | ||
96 | */ | ||
97 | #ifndef SQLITE_OMIT_INCRBLOB | ||
98 | int sqlite3VdbeMemExpandBlob(Mem *pMem){ | ||
99 | if( pMem->flags & MEM_Zero ){ | ||
100 | char *pNew; | ||
101 | int nByte; | ||
102 | assert( (pMem->flags & MEM_Blob)!=0 ); | ||
103 | nByte = pMem->n + pMem->u.i; | ||
104 | if( nByte<=0 ) nByte = 1; | ||
105 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
106 | pNew = sqlite3DbMallocRaw(pMem->db, nByte); | ||
107 | if( pNew==0 ){ | ||
108 | return SQLITE_NOMEM; | ||
109 | } | ||
110 | memcpy(pNew, pMem->z, pMem->n); | ||
111 | memset(&pNew[pMem->n], 0, pMem->u.i); | ||
112 | sqlite3VdbeMemRelease(pMem); | ||
113 | pMem->z = pNew; | ||
114 | pMem->n += pMem->u.i; | ||
115 | pMem->u.i = 0; | ||
116 | pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term); | ||
117 | pMem->flags |= MEM_Dyn; | ||
118 | } | ||
119 | return SQLITE_OK; | ||
120 | } | ||
121 | #endif | ||
122 | |||
123 | |||
124 | /* | ||
125 | ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes | ||
126 | ** of the Mem.z[] array can be modified. | ||
127 | ** | ||
128 | ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. | ||
129 | */ | ||
130 | int sqlite3VdbeMemMakeWriteable(Mem *pMem){ | ||
131 | int n; | ||
132 | u8 *z; | ||
133 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
134 | expandBlob(pMem); | ||
135 | if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ | ||
136 | return SQLITE_OK; | ||
137 | } | ||
138 | assert( (pMem->flags & MEM_Dyn)==0 ); | ||
139 | assert( pMem->flags & (MEM_Str|MEM_Blob) ); | ||
140 | if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ | ||
141 | z = (u8*)pMem->zShort; | ||
142 | pMem->flags |= MEM_Short|MEM_Term; | ||
143 | }else{ | ||
144 | z = sqlite3DbMallocRaw(pMem->db, n+2 ); | ||
145 | if( z==0 ){ | ||
146 | return SQLITE_NOMEM; | ||
147 | } | ||
148 | pMem->flags |= MEM_Dyn|MEM_Term; | ||
149 | pMem->xDel = 0; | ||
150 | } | ||
151 | memcpy(z, pMem->z, n ); | ||
152 | z[n] = 0; | ||
153 | z[n+1] = 0; | ||
154 | pMem->z = (char*)z; | ||
155 | pMem->flags &= ~(MEM_Ephem|MEM_Static); | ||
156 | assert(0==(1&(int)pMem->z)); | ||
157 | return SQLITE_OK; | ||
158 | } | ||
159 | |||
160 | /* | ||
161 | ** Make sure the given Mem is \u0000 terminated. | ||
162 | */ | ||
163 | int sqlite3VdbeMemNulTerminate(Mem *pMem){ | ||
164 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
165 | if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ | ||
166 | return SQLITE_OK; /* Nothing to do */ | ||
167 | } | ||
168 | if( pMem->flags & (MEM_Static|MEM_Ephem) ){ | ||
169 | return sqlite3VdbeMemMakeWriteable(pMem); | ||
170 | }else{ | ||
171 | char *z; | ||
172 | sqlite3VdbeMemExpandBlob(pMem); | ||
173 | z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); | ||
174 | if( !z ){ | ||
175 | return SQLITE_NOMEM; | ||
176 | } | ||
177 | memcpy(z, pMem->z, pMem->n); | ||
178 | z[pMem->n] = 0; | ||
179 | z[pMem->n+1] = 0; | ||
180 | if( pMem->xDel ){ | ||
181 | pMem->xDel(pMem->z); | ||
182 | }else{ | ||
183 | sqlite3_free(pMem->z); | ||
184 | } | ||
185 | pMem->xDel = 0; | ||
186 | pMem->z = z; | ||
187 | pMem->flags |= MEM_Term; | ||
188 | } | ||
189 | return SQLITE_OK; | ||
190 | } | ||
191 | |||
192 | /* | ||
193 | ** Add MEM_Str to the set of representations for the given Mem. Numbers | ||
194 | ** are converted using sqlite3_snprintf(). Converting a BLOB to a string | ||
195 | ** is a no-op. | ||
196 | ** | ||
197 | ** Existing representations MEM_Int and MEM_Real are *not* invalidated. | ||
198 | ** | ||
199 | ** A MEM_Null value will never be passed to this function. This function is | ||
200 | ** used for converting values to text for returning to the user (i.e. via | ||
201 | ** sqlite3_value_text()), or for ensuring that values to be used as btree | ||
202 | ** keys are strings. In the former case a NULL pointer is returned the | ||
203 | ** user and the later is an internal programming error. | ||
204 | */ | ||
205 | int sqlite3VdbeMemStringify(Mem *pMem, int enc){ | ||
206 | int rc = SQLITE_OK; | ||
207 | int fg = pMem->flags; | ||
208 | char *z = pMem->zShort; | ||
209 | |||
210 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
211 | assert( !(fg&MEM_Zero) ); | ||
212 | assert( !(fg&(MEM_Str|MEM_Blob)) ); | ||
213 | assert( fg&(MEM_Int|MEM_Real) ); | ||
214 | |||
215 | /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 | ||
216 | ** string representation of the value. Then, if the required encoding | ||
217 | ** is UTF-16le or UTF-16be do a translation. | ||
218 | ** | ||
219 | ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. | ||
220 | */ | ||
221 | if( fg & MEM_Int ){ | ||
222 | sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i); | ||
223 | }else{ | ||
224 | assert( fg & MEM_Real ); | ||
225 | sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r); | ||
226 | } | ||
227 | pMem->n = strlen(z); | ||
228 | pMem->z = z; | ||
229 | pMem->enc = SQLITE_UTF8; | ||
230 | pMem->flags |= MEM_Str | MEM_Short | MEM_Term; | ||
231 | sqlite3VdbeChangeEncoding(pMem, enc); | ||
232 | return rc; | ||
233 | } | ||
234 | |||
235 | /* | ||
236 | ** Memory cell pMem contains the context of an aggregate function. | ||
237 | ** This routine calls the finalize method for that function. The | ||
238 | ** result of the aggregate is stored back into pMem. | ||
239 | ** | ||
240 | ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK | ||
241 | ** otherwise. | ||
242 | */ | ||
243 | int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ | ||
244 | int rc = SQLITE_OK; | ||
245 | if( pFunc && pFunc->xFinalize ){ | ||
246 | sqlite3_context ctx; | ||
247 | assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); | ||
248 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
249 | ctx.s.flags = MEM_Null; | ||
250 | ctx.s.z = pMem->zShort; | ||
251 | ctx.s.db = pMem->db; | ||
252 | ctx.pMem = pMem; | ||
253 | ctx.pFunc = pFunc; | ||
254 | ctx.isError = 0; | ||
255 | pFunc->xFinalize(&ctx); | ||
256 | if( pMem->z && pMem->z!=pMem->zShort ){ | ||
257 | sqlite3_free( pMem->z ); | ||
258 | } | ||
259 | *pMem = ctx.s; | ||
260 | if( pMem->flags & MEM_Short ){ | ||
261 | pMem->z = pMem->zShort; | ||
262 | } | ||
263 | rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); | ||
264 | } | ||
265 | return rc; | ||
266 | } | ||
267 | |||
268 | /* | ||
269 | ** Release any memory held by the Mem. This may leave the Mem in an | ||
270 | ** inconsistent state, for example with (Mem.z==0) and | ||
271 | ** (Mem.type==SQLITE_TEXT). | ||
272 | */ | ||
273 | void sqlite3VdbeMemRelease(Mem *p){ | ||
274 | assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); | ||
275 | if( p->flags & (MEM_Dyn|MEM_Agg) ){ | ||
276 | if( p->xDel ){ | ||
277 | if( p->flags & MEM_Agg ){ | ||
278 | sqlite3VdbeMemFinalize(p, p->u.pDef); | ||
279 | assert( (p->flags & MEM_Agg)==0 ); | ||
280 | sqlite3VdbeMemRelease(p); | ||
281 | }else{ | ||
282 | p->xDel((void *)p->z); | ||
283 | } | ||
284 | }else{ | ||
285 | sqlite3_free(p->z); | ||
286 | } | ||
287 | p->z = 0; | ||
288 | p->xDel = 0; | ||
289 | } | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | ** Return some kind of integer value which is the best we can do | ||
294 | ** at representing the value that *pMem describes as an integer. | ||
295 | ** If pMem is an integer, then the value is exact. If pMem is | ||
296 | ** a floating-point then the value returned is the integer part. | ||
297 | ** If pMem is a string or blob, then we make an attempt to convert | ||
298 | ** it into a integer and return that. If pMem is NULL, return 0. | ||
299 | ** | ||
300 | ** If pMem is a string, its encoding might be changed. | ||
301 | */ | ||
302 | i64 sqlite3VdbeIntValue(Mem *pMem){ | ||
303 | int flags; | ||
304 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
305 | flags = pMem->flags; | ||
306 | if( flags & MEM_Int ){ | ||
307 | return pMem->u.i; | ||
308 | }else if( flags & MEM_Real ){ | ||
309 | return (i64)pMem->r; | ||
310 | }else if( flags & (MEM_Str|MEM_Blob) ){ | ||
311 | i64 value; | ||
312 | pMem->flags |= MEM_Str; | ||
313 | if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) | ||
314 | || sqlite3VdbeMemNulTerminate(pMem) ){ | ||
315 | return 0; | ||
316 | } | ||
317 | assert( pMem->z ); | ||
318 | sqlite3Atoi64(pMem->z, &value); | ||
319 | return value; | ||
320 | }else{ | ||
321 | return 0; | ||
322 | } | ||
323 | } | ||
324 | |||
325 | /* | ||
326 | ** Return the best representation of pMem that we can get into a | ||
327 | ** double. If pMem is already a double or an integer, return its | ||
328 | ** value. If it is a string or blob, try to convert it to a double. | ||
329 | ** If it is a NULL, return 0.0. | ||
330 | */ | ||
331 | double sqlite3VdbeRealValue(Mem *pMem){ | ||
332 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
333 | if( pMem->flags & MEM_Real ){ | ||
334 | return pMem->r; | ||
335 | }else if( pMem->flags & MEM_Int ){ | ||
336 | return (double)pMem->u.i; | ||
337 | }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ | ||
338 | double val = 0.0; | ||
339 | pMem->flags |= MEM_Str; | ||
340 | if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) | ||
341 | || sqlite3VdbeMemNulTerminate(pMem) ){ | ||
342 | return 0.0; | ||
343 | } | ||
344 | assert( pMem->z ); | ||
345 | sqlite3AtoF(pMem->z, &val); | ||
346 | return val; | ||
347 | }else{ | ||
348 | return 0.0; | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | ** The MEM structure is already a MEM_Real. Try to also make it a | ||
354 | ** MEM_Int if we can. | ||
355 | */ | ||
356 | void sqlite3VdbeIntegerAffinity(Mem *pMem){ | ||
357 | assert( pMem->flags & MEM_Real ); | ||
358 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
359 | pMem->u.i = pMem->r; | ||
360 | if( ((double)pMem->u.i)==pMem->r ){ | ||
361 | pMem->flags |= MEM_Int; | ||
362 | } | ||
363 | } | ||
364 | |||
365 | /* | ||
366 | ** Convert pMem to type integer. Invalidate any prior representations. | ||
367 | */ | ||
368 | int sqlite3VdbeMemIntegerify(Mem *pMem){ | ||
369 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
370 | pMem->u.i = sqlite3VdbeIntValue(pMem); | ||
371 | sqlite3VdbeMemRelease(pMem); | ||
372 | pMem->flags = MEM_Int; | ||
373 | return SQLITE_OK; | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | ** Convert pMem so that it is of type MEM_Real. | ||
378 | ** Invalidate any prior representations. | ||
379 | */ | ||
380 | int sqlite3VdbeMemRealify(Mem *pMem){ | ||
381 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
382 | pMem->r = sqlite3VdbeRealValue(pMem); | ||
383 | sqlite3VdbeMemRelease(pMem); | ||
384 | pMem->flags = MEM_Real; | ||
385 | return SQLITE_OK; | ||
386 | } | ||
387 | |||
388 | /* | ||
389 | ** Convert pMem so that it has types MEM_Real or MEM_Int or both. | ||
390 | ** Invalidate any prior representations. | ||
391 | */ | ||
392 | int sqlite3VdbeMemNumerify(Mem *pMem){ | ||
393 | double r1, r2; | ||
394 | i64 i; | ||
395 | assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); | ||
396 | assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); | ||
397 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
398 | r1 = sqlite3VdbeRealValue(pMem); | ||
399 | i = (i64)r1; | ||
400 | r2 = (double)i; | ||
401 | if( r1==r2 ){ | ||
402 | sqlite3VdbeMemIntegerify(pMem); | ||
403 | }else{ | ||
404 | pMem->r = r1; | ||
405 | pMem->flags = MEM_Real; | ||
406 | sqlite3VdbeMemRelease(pMem); | ||
407 | } | ||
408 | return SQLITE_OK; | ||
409 | } | ||
410 | |||
411 | /* | ||
412 | ** Delete any previous value and set the value stored in *pMem to NULL. | ||
413 | */ | ||
414 | void sqlite3VdbeMemSetNull(Mem *pMem){ | ||
415 | sqlite3VdbeMemRelease(pMem); | ||
416 | pMem->flags = MEM_Null; | ||
417 | pMem->type = SQLITE_NULL; | ||
418 | pMem->n = 0; | ||
419 | } | ||
420 | |||
421 | /* | ||
422 | ** Delete any previous value and set the value to be a BLOB of length | ||
423 | ** n containing all zeros. | ||
424 | */ | ||
425 | void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ | ||
426 | sqlite3VdbeMemRelease(pMem); | ||
427 | pMem->flags = MEM_Blob|MEM_Zero|MEM_Short; | ||
428 | pMem->type = SQLITE_BLOB; | ||
429 | pMem->n = 0; | ||
430 | if( n<0 ) n = 0; | ||
431 | pMem->u.i = n; | ||
432 | pMem->z = pMem->zShort; | ||
433 | pMem->enc = SQLITE_UTF8; | ||
434 | } | ||
435 | |||
436 | /* | ||
437 | ** Delete any previous value and set the value stored in *pMem to val, | ||
438 | ** manifest type INTEGER. | ||
439 | */ | ||
440 | void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ | ||
441 | sqlite3VdbeMemRelease(pMem); | ||
442 | pMem->u.i = val; | ||
443 | pMem->flags = MEM_Int; | ||
444 | pMem->type = SQLITE_INTEGER; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | ** Delete any previous value and set the value stored in *pMem to val, | ||
449 | ** manifest type REAL. | ||
450 | */ | ||
451 | void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ | ||
452 | if( sqlite3_isnan(val) ){ | ||
453 | sqlite3VdbeMemSetNull(pMem); | ||
454 | }else{ | ||
455 | sqlite3VdbeMemRelease(pMem); | ||
456 | pMem->r = val; | ||
457 | pMem->flags = MEM_Real; | ||
458 | pMem->type = SQLITE_FLOAT; | ||
459 | } | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | ** Return true if the Mem object contains a TEXT or BLOB that is | ||
464 | ** too large - whose size exceeds SQLITE_MAX_LENGTH. | ||
465 | */ | ||
466 | int sqlite3VdbeMemTooBig(Mem *p){ | ||
467 | if( p->flags & (MEM_Str|MEM_Blob) ){ | ||
468 | int n = p->n; | ||
469 | if( p->flags & MEM_Zero ){ | ||
470 | n += p->u.i; | ||
471 | } | ||
472 | return n>SQLITE_MAX_LENGTH; | ||
473 | } | ||
474 | return 0; | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | ** Make an shallow copy of pFrom into pTo. Prior contents of | ||
479 | ** pTo are overwritten. The pFrom->z field is not duplicated. If | ||
480 | ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z | ||
481 | ** and flags gets srcType (either MEM_Ephem or MEM_Static). | ||
482 | */ | ||
483 | void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ | ||
484 | memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); | ||
485 | pTo->xDel = 0; | ||
486 | if( pTo->flags & (MEM_Str|MEM_Blob) ){ | ||
487 | pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); | ||
488 | assert( srcType==MEM_Ephem || srcType==MEM_Static ); | ||
489 | pTo->flags |= srcType; | ||
490 | } | ||
491 | } | ||
492 | |||
493 | /* | ||
494 | ** Make a full copy of pFrom into pTo. Prior contents of pTo are | ||
495 | ** freed before the copy is made. | ||
496 | */ | ||
497 | int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ | ||
498 | int rc; | ||
499 | if( pTo->flags & MEM_Dyn ){ | ||
500 | sqlite3VdbeMemRelease(pTo); | ||
501 | } | ||
502 | sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); | ||
503 | if( pTo->flags & MEM_Ephem ){ | ||
504 | rc = sqlite3VdbeMemMakeWriteable(pTo); | ||
505 | }else{ | ||
506 | rc = SQLITE_OK; | ||
507 | } | ||
508 | return rc; | ||
509 | } | ||
510 | |||
511 | /* | ||
512 | ** Transfer the contents of pFrom to pTo. Any existing value in pTo is | ||
513 | ** freed. If pFrom contains ephemeral data, a copy is made. | ||
514 | ** | ||
515 | ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM | ||
516 | ** might be returned if pFrom held ephemeral data and we were unable | ||
517 | ** to allocate enough space to make a copy. | ||
518 | */ | ||
519 | int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ | ||
520 | int rc; | ||
521 | assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); | ||
522 | assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); | ||
523 | assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); | ||
524 | if( pTo->flags & MEM_Dyn ){ | ||
525 | sqlite3VdbeMemRelease(pTo); | ||
526 | } | ||
527 | memcpy(pTo, pFrom, sizeof(Mem)); | ||
528 | if( pFrom->flags & MEM_Short ){ | ||
529 | pTo->z = pTo->zShort; | ||
530 | } | ||
531 | pFrom->flags = MEM_Null; | ||
532 | pFrom->xDel = 0; | ||
533 | if( pTo->flags & MEM_Ephem ){ | ||
534 | rc = sqlite3VdbeMemMakeWriteable(pTo); | ||
535 | }else{ | ||
536 | rc = SQLITE_OK; | ||
537 | } | ||
538 | return rc; | ||
539 | } | ||
540 | |||
541 | /* | ||
542 | ** Change the value of a Mem to be a string or a BLOB. | ||
543 | */ | ||
544 | int sqlite3VdbeMemSetStr( | ||
545 | Mem *pMem, /* Memory cell to set to string value */ | ||
546 | const char *z, /* String pointer */ | ||
547 | int n, /* Bytes in string, or negative */ | ||
548 | u8 enc, /* Encoding of z. 0 for BLOBs */ | ||
549 | void (*xDel)(void*) /* Destructor function */ | ||
550 | ){ | ||
551 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | ||
552 | sqlite3VdbeMemRelease(pMem); | ||
553 | if( !z ){ | ||
554 | pMem->flags = MEM_Null; | ||
555 | pMem->type = SQLITE_NULL; | ||
556 | return SQLITE_OK; | ||
557 | } | ||
558 | pMem->z = (char *)z; | ||
559 | if( xDel==SQLITE_STATIC ){ | ||
560 | pMem->flags = MEM_Static; | ||
561 | }else if( xDel==SQLITE_TRANSIENT ){ | ||
562 | pMem->flags = MEM_Ephem; | ||
563 | }else{ | ||
564 | pMem->flags = MEM_Dyn; | ||
565 | pMem->xDel = xDel; | ||
566 | } | ||
567 | |||
568 | pMem->enc = enc; | ||
569 | pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; | ||
570 | pMem->n = n; | ||
571 | |||
572 | assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE | ||
573 | || enc==SQLITE_UTF16BE ); | ||
574 | switch( enc ){ | ||
575 | case 0: | ||
576 | pMem->flags |= MEM_Blob; | ||
577 | pMem->enc = SQLITE_UTF8; | ||
578 | break; | ||
579 | |||
580 | case SQLITE_UTF8: | ||
581 | pMem->flags |= MEM_Str; | ||
582 | if( n<0 ){ | ||
583 | pMem->n = strlen(z); | ||
584 | pMem->flags |= MEM_Term; | ||
585 | } | ||
586 | break; | ||
587 | |||
588 | #ifndef SQLITE_OMIT_UTF16 | ||
589 | case SQLITE_UTF16LE: | ||
590 | case SQLITE_UTF16BE: | ||
591 | pMem->flags |= MEM_Str; | ||
592 | if( pMem->n<0 ){ | ||
593 | pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); | ||
594 | pMem->flags |= MEM_Term; | ||
595 | } | ||
596 | if( sqlite3VdbeMemHandleBom(pMem) ){ | ||
597 | return SQLITE_NOMEM; | ||
598 | } | ||
599 | #endif /* SQLITE_OMIT_UTF16 */ | ||
600 | } | ||
601 | if( pMem->flags&MEM_Ephem ){ | ||
602 | return sqlite3VdbeMemMakeWriteable(pMem); | ||
603 | } | ||
604 | return SQLITE_OK; | ||
605 | } | ||
606 | |||
607 | /* | ||
608 | ** Compare the values contained by the two memory cells, returning | ||
609 | ** negative, zero or positive if pMem1 is less than, equal to, or greater | ||
610 | ** than pMem2. Sorting order is NULL's first, followed by numbers (integers | ||
611 | ** and reals) sorted numerically, followed by text ordered by the collating | ||
612 | ** sequence pColl and finally blob's ordered by memcmp(). | ||
613 | ** | ||
614 | ** Two NULL values are considered equal by this function. | ||
615 | */ | ||
616 | int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ | ||
617 | int rc; | ||
618 | int f1, f2; | ||
619 | int combined_flags; | ||
620 | |||
621 | /* Interchange pMem1 and pMem2 if the collating sequence specifies | ||
622 | ** DESC order. | ||
623 | */ | ||
624 | f1 = pMem1->flags; | ||
625 | f2 = pMem2->flags; | ||
626 | combined_flags = f1|f2; | ||
627 | |||
628 | /* If one value is NULL, it is less than the other. If both values | ||
629 | ** are NULL, return 0. | ||
630 | */ | ||
631 | if( combined_flags&MEM_Null ){ | ||
632 | return (f2&MEM_Null) - (f1&MEM_Null); | ||
633 | } | ||
634 | |||
635 | /* If one value is a number and the other is not, the number is less. | ||
636 | ** If both are numbers, compare as reals if one is a real, or as integers | ||
637 | ** if both values are integers. | ||
638 | */ | ||
639 | if( combined_flags&(MEM_Int|MEM_Real) ){ | ||
640 | if( !(f1&(MEM_Int|MEM_Real)) ){ | ||
641 | return 1; | ||
642 | } | ||
643 | if( !(f2&(MEM_Int|MEM_Real)) ){ | ||
644 | return -1; | ||
645 | } | ||
646 | if( (f1 & f2 & MEM_Int)==0 ){ | ||
647 | double r1, r2; | ||
648 | if( (f1&MEM_Real)==0 ){ | ||
649 | r1 = pMem1->u.i; | ||
650 | }else{ | ||
651 | r1 = pMem1->r; | ||
652 | } | ||
653 | if( (f2&MEM_Real)==0 ){ | ||
654 | r2 = pMem2->u.i; | ||
655 | }else{ | ||
656 | r2 = pMem2->r; | ||
657 | } | ||
658 | if( r1<r2 ) return -1; | ||
659 | if( r1>r2 ) return 1; | ||
660 | return 0; | ||
661 | }else{ | ||
662 | assert( f1&MEM_Int ); | ||
663 | assert( f2&MEM_Int ); | ||
664 | if( pMem1->u.i < pMem2->u.i ) return -1; | ||
665 | if( pMem1->u.i > pMem2->u.i ) return 1; | ||
666 | return 0; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | /* If one value is a string and the other is a blob, the string is less. | ||
671 | ** If both are strings, compare using the collating functions. | ||
672 | */ | ||
673 | if( combined_flags&MEM_Str ){ | ||
674 | if( (f1 & MEM_Str)==0 ){ | ||
675 | return 1; | ||
676 | } | ||
677 | if( (f2 & MEM_Str)==0 ){ | ||
678 | return -1; | ||
679 | } | ||
680 | |||
681 | assert( pMem1->enc==pMem2->enc ); | ||
682 | assert( pMem1->enc==SQLITE_UTF8 || | ||
683 | pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); | ||
684 | |||
685 | /* The collation sequence must be defined at this point, even if | ||
686 | ** the user deletes the collation sequence after the vdbe program is | ||
687 | ** compiled (this was not always the case). | ||
688 | */ | ||
689 | assert( !pColl || pColl->xCmp ); | ||
690 | |||
691 | if( pColl ){ | ||
692 | if( pMem1->enc==pColl->enc ){ | ||
693 | /* The strings are already in the correct encoding. Call the | ||
694 | ** comparison function directly */ | ||
695 | return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); | ||
696 | }else{ | ||
697 | u8 origEnc = pMem1->enc; | ||
698 | const void *v1, *v2; | ||
699 | int n1, n2; | ||
700 | /* Convert the strings into the encoding that the comparison | ||
701 | ** function expects */ | ||
702 | v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); | ||
703 | n1 = v1==0 ? 0 : pMem1->n; | ||
704 | assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); | ||
705 | v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); | ||
706 | n2 = v2==0 ? 0 : pMem2->n; | ||
707 | assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); | ||
708 | /* Do the comparison */ | ||
709 | rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); | ||
710 | /* Convert the strings back into the database encoding */ | ||
711 | sqlite3ValueText((sqlite3_value*)pMem1, origEnc); | ||
712 | sqlite3ValueText((sqlite3_value*)pMem2, origEnc); | ||
713 | return rc; | ||
714 | } | ||
715 | } | ||
716 | /* If a NULL pointer was passed as the collate function, fall through | ||
717 | ** to the blob case and use memcmp(). */ | ||
718 | } | ||
719 | |||
720 | /* Both values must be blobs. Compare using memcmp(). */ | ||
721 | rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); | ||
722 | if( rc==0 ){ | ||
723 | rc = pMem1->n - pMem2->n; | ||
724 | } | ||
725 | return rc; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | ** Move data out of a btree key or data field and into a Mem structure. | ||
730 | ** The data or key is taken from the entry that pCur is currently pointing | ||
731 | ** to. offset and amt determine what portion of the data or key to retrieve. | ||
732 | ** key is true to get the key or false to get data. The result is written | ||
733 | ** into the pMem element. | ||
734 | ** | ||
735 | ** The pMem structure is assumed to be uninitialized. Any prior content | ||
736 | ** is overwritten without being freed. | ||
737 | ** | ||
738 | ** If this routine fails for any reason (malloc returns NULL or unable | ||
739 | ** to read from the disk) then the pMem is left in an inconsistent state. | ||
740 | */ | ||
741 | int sqlite3VdbeMemFromBtree( | ||
742 | BtCursor *pCur, /* Cursor pointing at record to retrieve. */ | ||
743 | int offset, /* Offset from the start of data to return bytes from. */ | ||
744 | int amt, /* Number of bytes to return. */ | ||
745 | int key, /* If true, retrieve from the btree key, not data. */ | ||
746 | Mem *pMem /* OUT: Return data in this Mem structure. */ | ||
747 | ){ | ||
748 | char *zData; /* Data from the btree layer */ | ||
749 | int available = 0; /* Number of bytes available on the local btree page */ | ||
750 | sqlite3 *db; /* Database connection */ | ||
751 | |||
752 | db = sqlite3BtreeCursorDb(pCur); | ||
753 | assert( sqlite3_mutex_held(db->mutex) ); | ||
754 | if( key ){ | ||
755 | zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); | ||
756 | }else{ | ||
757 | zData = (char *)sqlite3BtreeDataFetch(pCur, &available); | ||
758 | } | ||
759 | assert( zData!=0 ); | ||
760 | |||
761 | pMem->db = db; | ||
762 | pMem->n = amt; | ||
763 | if( offset+amt<=available ){ | ||
764 | pMem->z = &zData[offset]; | ||
765 | pMem->flags = MEM_Blob|MEM_Ephem; | ||
766 | }else{ | ||
767 | int rc; | ||
768 | if( amt>NBFS-2 ){ | ||
769 | zData = (char *)sqlite3DbMallocRaw(db, amt+2); | ||
770 | if( !zData ){ | ||
771 | return SQLITE_NOMEM; | ||
772 | } | ||
773 | pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; | ||
774 | pMem->xDel = 0; | ||
775 | }else{ | ||
776 | zData = &(pMem->zShort[0]); | ||
777 | pMem->flags = MEM_Blob|MEM_Short|MEM_Term; | ||
778 | } | ||
779 | pMem->z = zData; | ||
780 | pMem->enc = 0; | ||
781 | pMem->type = SQLITE_BLOB; | ||
782 | |||
783 | if( key ){ | ||
784 | rc = sqlite3BtreeKey(pCur, offset, amt, zData); | ||
785 | }else{ | ||
786 | rc = sqlite3BtreeData(pCur, offset, amt, zData); | ||
787 | } | ||
788 | zData[amt] = 0; | ||
789 | zData[amt+1] = 0; | ||
790 | if( rc!=SQLITE_OK ){ | ||
791 | if( amt>NBFS-2 ){ | ||
792 | assert( zData!=pMem->zShort ); | ||
793 | assert( pMem->flags & MEM_Dyn ); | ||
794 | sqlite3_free(zData); | ||
795 | } else { | ||
796 | assert( zData==pMem->zShort ); | ||
797 | assert( pMem->flags & MEM_Short ); | ||
798 | } | ||
799 | return rc; | ||
800 | } | ||
801 | } | ||
802 | |||
803 | return SQLITE_OK; | ||
804 | } | ||
805 | |||
806 | #ifndef NDEBUG | ||
807 | /* | ||
808 | ** Perform various checks on the memory cell pMem. An assert() will | ||
809 | ** fail if pMem is internally inconsistent. | ||
810 | */ | ||
811 | void sqlite3VdbeMemSanity(Mem *pMem){ | ||
812 | int flags = pMem->flags; | ||
813 | assert( flags!=0 ); /* Must define some type */ | ||
814 | if( flags & (MEM_Str|MEM_Blob) ){ | ||
815 | int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); | ||
816 | assert( x!=0 ); /* Strings must define a string subtype */ | ||
817 | assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ | ||
818 | assert( pMem->z!=0 ); /* Strings must have a value */ | ||
819 | /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ | ||
820 | assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); | ||
821 | assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); | ||
822 | /* No destructor unless there is MEM_Dyn */ | ||
823 | assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); | ||
824 | |||
825 | if( (flags & MEM_Str) ){ | ||
826 | assert( pMem->enc==SQLITE_UTF8 || | ||
827 | pMem->enc==SQLITE_UTF16BE || | ||
828 | pMem->enc==SQLITE_UTF16LE | ||
829 | ); | ||
830 | /* If the string is UTF-8 encoded and nul terminated, then pMem->n | ||
831 | ** must be the length of the string. (Later:) If the database file | ||
832 | ** has been corrupted, '\000' characters might have been inserted | ||
833 | ** into the middle of the string. In that case, the strlen() might | ||
834 | ** be less. | ||
835 | */ | ||
836 | if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ | ||
837 | assert( strlen(pMem->z)<=pMem->n ); | ||
838 | assert( pMem->z[pMem->n]==0 ); | ||
839 | } | ||
840 | } | ||
841 | }else{ | ||
842 | /* Cannot define a string subtype for non-string objects */ | ||
843 | assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); | ||
844 | assert( pMem->xDel==0 ); | ||
845 | } | ||
846 | /* MEM_Null excludes all other types */ | ||
847 | assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 | ||
848 | || (pMem->flags&MEM_Null)==0 ); | ||
849 | /* If the MEM is both real and integer, the values are equal */ | ||
850 | assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) | ||
851 | || pMem->r==pMem->u.i ); | ||
852 | } | ||
853 | #endif | ||
854 | |||
855 | /* This function is only available internally, it is not part of the | ||
856 | ** external API. It works in a similar way to sqlite3_value_text(), | ||
857 | ** except the data returned is in the encoding specified by the second | ||
858 | ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or | ||
859 | ** SQLITE_UTF8. | ||
860 | ** | ||
861 | ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. | ||
862 | ** If that is the case, then the result must be aligned on an even byte | ||
863 | ** boundary. | ||
864 | */ | ||
865 | const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ | ||
866 | if( !pVal ) return 0; | ||
867 | |||
868 | assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); | ||
869 | assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); | ||
870 | |||
871 | if( pVal->flags&MEM_Null ){ | ||
872 | return 0; | ||
873 | } | ||
874 | assert( (MEM_Blob>>3) == MEM_Str ); | ||
875 | pVal->flags |= (pVal->flags & MEM_Blob)>>3; | ||
876 | expandBlob(pVal); | ||
877 | if( pVal->flags&MEM_Str ){ | ||
878 | sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); | ||
879 | if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ | ||
880 | assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); | ||
881 | if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ | ||
882 | return 0; | ||
883 | } | ||
884 | } | ||
885 | sqlite3VdbeMemNulTerminate(pVal); | ||
886 | }else{ | ||
887 | assert( (pVal->flags&MEM_Blob)==0 ); | ||
888 | sqlite3VdbeMemStringify(pVal, enc); | ||
889 | assert( 0==(1&(int)pVal->z) ); | ||
890 | } | ||
891 | assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 | ||
892 | || pVal->db->mallocFailed ); | ||
893 | if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ | ||
894 | return pVal->z; | ||
895 | }else{ | ||
896 | return 0; | ||
897 | } | ||
898 | } | ||
899 | |||
900 | /* | ||
901 | ** Create a new sqlite3_value object. | ||
902 | */ | ||
903 | sqlite3_value *sqlite3ValueNew(sqlite3 *db){ | ||
904 | Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); | ||
905 | if( p ){ | ||
906 | p->flags = MEM_Null; | ||
907 | p->type = SQLITE_NULL; | ||
908 | p->db = db; | ||
909 | } | ||
910 | return p; | ||
911 | } | ||
912 | |||
913 | /* | ||
914 | ** Create a new sqlite3_value object, containing the value of pExpr. | ||
915 | ** | ||
916 | ** This only works for very simple expressions that consist of one constant | ||
917 | ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can | ||
918 | ** be converted directly into a value, then the value is allocated and | ||
919 | ** a pointer written to *ppVal. The caller is responsible for deallocating | ||
920 | ** the value by passing it to sqlite3ValueFree() later on. If the expression | ||
921 | ** cannot be converted to a value, then *ppVal is set to NULL. | ||
922 | */ | ||
923 | int sqlite3ValueFromExpr( | ||
924 | sqlite3 *db, /* The database connection */ | ||
925 | Expr *pExpr, /* The expression to evaluate */ | ||
926 | u8 enc, /* Encoding to use */ | ||
927 | u8 affinity, /* Affinity to use */ | ||
928 | sqlite3_value **ppVal /* Write the new value here */ | ||
929 | ){ | ||
930 | int op; | ||
931 | char *zVal = 0; | ||
932 | sqlite3_value *pVal = 0; | ||
933 | |||
934 | if( !pExpr ){ | ||
935 | *ppVal = 0; | ||
936 | return SQLITE_OK; | ||
937 | } | ||
938 | op = pExpr->op; | ||
939 | |||
940 | if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ | ||
941 | zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); | ||
942 | pVal = sqlite3ValueNew(db); | ||
943 | if( !zVal || !pVal ) goto no_mem; | ||
944 | sqlite3Dequote(zVal); | ||
945 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); | ||
946 | if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ | ||
947 | sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); | ||
948 | }else{ | ||
949 | sqlite3ValueApplyAffinity(pVal, affinity, enc); | ||
950 | } | ||
951 | }else if( op==TK_UMINUS ) { | ||
952 | if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ | ||
953 | pVal->u.i = -1 * pVal->u.i; | ||
954 | pVal->r = -1.0 * pVal->r; | ||
955 | } | ||
956 | } | ||
957 | #ifndef SQLITE_OMIT_BLOB_LITERAL | ||
958 | else if( op==TK_BLOB ){ | ||
959 | int nVal; | ||
960 | pVal = sqlite3ValueNew(db); | ||
961 | zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1); | ||
962 | if( !zVal || !pVal ) goto no_mem; | ||
963 | sqlite3Dequote(zVal); | ||
964 | nVal = strlen(zVal)/2; | ||
965 | sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free); | ||
966 | sqlite3_free(zVal); | ||
967 | } | ||
968 | #endif | ||
969 | |||
970 | *ppVal = pVal; | ||
971 | return SQLITE_OK; | ||
972 | |||
973 | no_mem: | ||
974 | db->mallocFailed = 1; | ||
975 | sqlite3_free(zVal); | ||
976 | sqlite3ValueFree(pVal); | ||
977 | *ppVal = 0; | ||
978 | return SQLITE_NOMEM; | ||
979 | } | ||
980 | |||
981 | /* | ||
982 | ** Change the string value of an sqlite3_value object | ||
983 | */ | ||
984 | void sqlite3ValueSetStr( | ||
985 | sqlite3_value *v, /* Value to be set */ | ||
986 | int n, /* Length of string z */ | ||
987 | const void *z, /* Text of the new string */ | ||
988 | u8 enc, /* Encoding to use */ | ||
989 | void (*xDel)(void*) /* Destructor for the string */ | ||
990 | ){ | ||
991 | if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); | ||
992 | } | ||
993 | |||
994 | /* | ||
995 | ** Free an sqlite3_value object | ||
996 | */ | ||
997 | void sqlite3ValueFree(sqlite3_value *v){ | ||
998 | if( !v ) return; | ||
999 | sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); | ||
1000 | sqlite3_free(v); | ||
1001 | } | ||
1002 | |||
1003 | /* | ||
1004 | ** Return the number of bytes in the sqlite3_value object assuming | ||
1005 | ** that it uses the encoding "enc" | ||
1006 | */ | ||
1007 | int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ | ||
1008 | Mem *p = (Mem*)pVal; | ||
1009 | if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ | ||
1010 | if( p->flags & MEM_Zero ){ | ||
1011 | return p->n+p->u.i; | ||
1012 | }else{ | ||
1013 | return p->n; | ||
1014 | } | ||
1015 | } | ||
1016 | return 0; | ||
1017 | } | ||