diff options
Diffstat (limited to '')
-rwxr-xr-x | libraries/sqlite/win32/vdbeaux.c | 2243 |
1 files changed, 2243 insertions, 0 deletions
diff --git a/libraries/sqlite/win32/vdbeaux.c b/libraries/sqlite/win32/vdbeaux.c new file mode 100755 index 0000000..8a61872 --- /dev/null +++ b/libraries/sqlite/win32/vdbeaux.c | |||
@@ -0,0 +1,2243 @@ | |||
1 | /* | ||
2 | ** 2003 September 6 | ||
3 | ** | ||
4 | ** The author disclaims copyright to this source code. In place of | ||
5 | ** a legal notice, here is a blessing: | ||
6 | ** | ||
7 | ** May you do good and not evil. | ||
8 | ** May you find forgiveness for yourself and forgive others. | ||
9 | ** May you share freely, never taking more than you give. | ||
10 | ** | ||
11 | ************************************************************************* | ||
12 | ** This file contains code used for creating, destroying, and populating | ||
13 | ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior | ||
14 | ** to version 2.8.7, all this code was combined into the vdbe.c source file. | ||
15 | ** But that file was getting too big so this subroutines were split out. | ||
16 | */ | ||
17 | #include "sqliteInt.h" | ||
18 | #include <ctype.h> | ||
19 | #include "vdbeInt.h" | ||
20 | |||
21 | |||
22 | |||
23 | /* | ||
24 | ** When debugging the code generator in a symbolic debugger, one can | ||
25 | ** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed | ||
26 | ** as they are added to the instruction stream. | ||
27 | */ | ||
28 | #ifdef SQLITE_DEBUG | ||
29 | int sqlite3_vdbe_addop_trace = 0; | ||
30 | #endif | ||
31 | |||
32 | |||
33 | /* | ||
34 | ** Create a new virtual database engine. | ||
35 | */ | ||
36 | Vdbe *sqlite3VdbeCreate(sqlite3 *db){ | ||
37 | Vdbe *p; | ||
38 | p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); | ||
39 | if( p==0 ) return 0; | ||
40 | p->db = db; | ||
41 | if( db->pVdbe ){ | ||
42 | db->pVdbe->pPrev = p; | ||
43 | } | ||
44 | p->pNext = db->pVdbe; | ||
45 | p->pPrev = 0; | ||
46 | db->pVdbe = p; | ||
47 | p->magic = VDBE_MAGIC_INIT; | ||
48 | return p; | ||
49 | } | ||
50 | |||
51 | /* | ||
52 | ** Remember the SQL string for a prepared statement. | ||
53 | */ | ||
54 | void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){ | ||
55 | if( p==0 ) return; | ||
56 | assert( p->zSql==0 ); | ||
57 | p->zSql = sqlite3DbStrNDup(p->db, z, n); | ||
58 | } | ||
59 | |||
60 | /* | ||
61 | ** Return the SQL associated with a prepared statement | ||
62 | */ | ||
63 | const char *sqlite3VdbeGetSql(Vdbe *p){ | ||
64 | return p->zSql; | ||
65 | } | ||
66 | |||
67 | /* | ||
68 | ** Swap all content between two VDBE structures. | ||
69 | */ | ||
70 | void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ | ||
71 | Vdbe tmp, *pTmp; | ||
72 | char *zTmp; | ||
73 | int nTmp; | ||
74 | tmp = *pA; | ||
75 | *pA = *pB; | ||
76 | *pB = tmp; | ||
77 | pTmp = pA->pNext; | ||
78 | pA->pNext = pB->pNext; | ||
79 | pB->pNext = pTmp; | ||
80 | pTmp = pA->pPrev; | ||
81 | pA->pPrev = pB->pPrev; | ||
82 | pB->pPrev = pTmp; | ||
83 | zTmp = pA->zSql; | ||
84 | pA->zSql = pB->zSql; | ||
85 | pB->zSql = zTmp; | ||
86 | nTmp = pA->nSql; | ||
87 | pA->nSql = pB->nSql; | ||
88 | pB->nSql = nTmp; | ||
89 | } | ||
90 | |||
91 | #ifdef SQLITE_DEBUG | ||
92 | /* | ||
93 | ** Turn tracing on or off | ||
94 | */ | ||
95 | void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ | ||
96 | p->trace = trace; | ||
97 | } | ||
98 | #endif | ||
99 | |||
100 | /* | ||
101 | ** Resize the Vdbe.aOp array so that it contains at least N | ||
102 | ** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then | ||
103 | ** the Vdbe.aOp array will be sized to contain exactly N | ||
104 | ** elements. Vdbe.nOpAlloc is set to reflect the new size of | ||
105 | ** the array. | ||
106 | ** | ||
107 | ** If an out-of-memory error occurs while resizing the array, | ||
108 | ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that | ||
109 | ** any opcodes already allocated can be correctly deallocated | ||
110 | ** along with the rest of the Vdbe). | ||
111 | */ | ||
112 | static void resizeOpArray(Vdbe *p, int N){ | ||
113 | int runMode = p->magic==VDBE_MAGIC_RUN; | ||
114 | if( runMode || p->nOpAlloc<N ){ | ||
115 | VdbeOp *pNew; | ||
116 | int nNew = N + 100*(!runMode); | ||
117 | int oldSize = p->nOpAlloc; | ||
118 | pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); | ||
119 | if( pNew ){ | ||
120 | p->nOpAlloc = nNew; | ||
121 | p->aOp = pNew; | ||
122 | if( nNew>oldSize ){ | ||
123 | memset(&p->aOp[oldSize], 0, (nNew-oldSize)*sizeof(Op)); | ||
124 | } | ||
125 | } | ||
126 | } | ||
127 | } | ||
128 | |||
129 | /* | ||
130 | ** Add a new instruction to the list of instructions current in the | ||
131 | ** VDBE. Return the address of the new instruction. | ||
132 | ** | ||
133 | ** Parameters: | ||
134 | ** | ||
135 | ** p Pointer to the VDBE | ||
136 | ** | ||
137 | ** op The opcode for this instruction | ||
138 | ** | ||
139 | ** p1, p2 First two of the three possible operands. | ||
140 | ** | ||
141 | ** Use the sqlite3VdbeResolveLabel() function to fix an address and | ||
142 | ** the sqlite3VdbeChangeP3() function to change the value of the P3 | ||
143 | ** operand. | ||
144 | */ | ||
145 | int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ | ||
146 | int i; | ||
147 | VdbeOp *pOp; | ||
148 | |||
149 | i = p->nOp; | ||
150 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
151 | if( p->nOpAlloc<=i ){ | ||
152 | resizeOpArray(p, i+1); | ||
153 | if( p->db->mallocFailed ){ | ||
154 | return 0; | ||
155 | } | ||
156 | } | ||
157 | p->nOp++; | ||
158 | pOp = &p->aOp[i]; | ||
159 | pOp->opcode = op; | ||
160 | pOp->p1 = p1; | ||
161 | pOp->p2 = p2; | ||
162 | pOp->p3 = 0; | ||
163 | pOp->p3type = P3_NOTUSED; | ||
164 | p->expired = 0; | ||
165 | #ifdef SQLITE_DEBUG | ||
166 | if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); | ||
167 | #endif | ||
168 | return i; | ||
169 | } | ||
170 | |||
171 | /* | ||
172 | ** Add an opcode that includes the p3 value. | ||
173 | */ | ||
174 | int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){ | ||
175 | int addr = sqlite3VdbeAddOp(p, op, p1, p2); | ||
176 | sqlite3VdbeChangeP3(p, addr, zP3, p3type); | ||
177 | return addr; | ||
178 | } | ||
179 | |||
180 | /* | ||
181 | ** Create a new symbolic label for an instruction that has yet to be | ||
182 | ** coded. The symbolic label is really just a negative number. The | ||
183 | ** label can be used as the P2 value of an operation. Later, when | ||
184 | ** the label is resolved to a specific address, the VDBE will scan | ||
185 | ** through its operation list and change all values of P2 which match | ||
186 | ** the label into the resolved address. | ||
187 | ** | ||
188 | ** The VDBE knows that a P2 value is a label because labels are | ||
189 | ** always negative and P2 values are suppose to be non-negative. | ||
190 | ** Hence, a negative P2 value is a label that has yet to be resolved. | ||
191 | ** | ||
192 | ** Zero is returned if a malloc() fails. | ||
193 | */ | ||
194 | int sqlite3VdbeMakeLabel(Vdbe *p){ | ||
195 | int i; | ||
196 | i = p->nLabel++; | ||
197 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
198 | if( i>=p->nLabelAlloc ){ | ||
199 | p->nLabelAlloc = p->nLabelAlloc*2 + 10; | ||
200 | p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, | ||
201 | p->nLabelAlloc*sizeof(p->aLabel[0])); | ||
202 | } | ||
203 | if( p->aLabel ){ | ||
204 | p->aLabel[i] = -1; | ||
205 | } | ||
206 | return -1-i; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | ** Resolve label "x" to be the address of the next instruction to | ||
211 | ** be inserted. The parameter "x" must have been obtained from | ||
212 | ** a prior call to sqlite3VdbeMakeLabel(). | ||
213 | */ | ||
214 | void sqlite3VdbeResolveLabel(Vdbe *p, int x){ | ||
215 | int j = -1-x; | ||
216 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
217 | assert( j>=0 && j<p->nLabel ); | ||
218 | if( p->aLabel ){ | ||
219 | p->aLabel[j] = p->nOp; | ||
220 | } | ||
221 | } | ||
222 | |||
223 | /* | ||
224 | ** Return non-zero if opcode 'op' is guarenteed not to push more values | ||
225 | ** onto the VDBE stack than it pops off. | ||
226 | */ | ||
227 | static int opcodeNoPush(u8 op){ | ||
228 | /* The 10 NOPUSH_MASK_n constants are defined in the automatically | ||
229 | ** generated header file opcodes.h. Each is a 16-bit bitmask, one | ||
230 | ** bit corresponding to each opcode implemented by the virtual | ||
231 | ** machine in vdbe.c. The bit is true if the word "no-push" appears | ||
232 | ** in a comment on the same line as the "case OP_XXX:" in | ||
233 | ** sqlite3VdbeExec() in vdbe.c. | ||
234 | ** | ||
235 | ** If the bit is true, then the corresponding opcode is guarenteed not | ||
236 | ** to grow the stack when it is executed. Otherwise, it may grow the | ||
237 | ** stack by at most one entry. | ||
238 | ** | ||
239 | ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains | ||
240 | ** one bit for opcodes 16 to 31, and so on. | ||
241 | ** | ||
242 | ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h | ||
243 | ** because the file is generated by an awk program. Awk manipulates | ||
244 | ** all numbers as floating-point and we don't want to risk a rounding | ||
245 | ** error if someone builds with an awk that uses (for example) 32-bit | ||
246 | ** IEEE floats. | ||
247 | */ | ||
248 | static const u32 masks[5] = { | ||
249 | NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16), | ||
250 | NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16), | ||
251 | NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16), | ||
252 | NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16), | ||
253 | NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16) | ||
254 | }; | ||
255 | assert( op<32*5 ); | ||
256 | return (masks[op>>5] & (1<<(op&0x1F))); | ||
257 | } | ||
258 | |||
259 | #ifndef NDEBUG | ||
260 | int sqlite3VdbeOpcodeNoPush(u8 op){ | ||
261 | return opcodeNoPush(op); | ||
262 | } | ||
263 | #endif | ||
264 | |||
265 | /* | ||
266 | ** Loop through the program looking for P2 values that are negative. | ||
267 | ** Each such value is a label. Resolve the label by setting the P2 | ||
268 | ** value to its correct non-zero value. | ||
269 | ** | ||
270 | ** This routine is called once after all opcodes have been inserted. | ||
271 | ** | ||
272 | ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument | ||
273 | ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by | ||
274 | ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. | ||
275 | ** | ||
276 | ** The integer *pMaxStack is set to the maximum number of vdbe stack | ||
277 | ** entries that static analysis reveals this program might need. | ||
278 | ** | ||
279 | ** This routine also does the following optimization: It scans for | ||
280 | ** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for | ||
281 | ** IdxInsert instructions where P2!=0. If no such instruction is | ||
282 | ** found, then every Statement instruction is changed to a Noop. In | ||
283 | ** this way, we avoid creating the statement journal file unnecessarily. | ||
284 | */ | ||
285 | static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){ | ||
286 | int i; | ||
287 | int nMaxArgs = 0; | ||
288 | int nMaxStack = p->nOp; | ||
289 | Op *pOp; | ||
290 | int *aLabel = p->aLabel; | ||
291 | int doesStatementRollback = 0; | ||
292 | int hasStatementBegin = 0; | ||
293 | for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ | ||
294 | u8 opcode = pOp->opcode; | ||
295 | |||
296 | if( opcode==OP_Function || opcode==OP_AggStep | ||
297 | #ifndef SQLITE_OMIT_VIRTUALTABLE | ||
298 | || opcode==OP_VUpdate | ||
299 | #endif | ||
300 | ){ | ||
301 | if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; | ||
302 | } | ||
303 | if( opcode==OP_Halt ){ | ||
304 | if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){ | ||
305 | doesStatementRollback = 1; | ||
306 | } | ||
307 | }else if( opcode==OP_Statement ){ | ||
308 | hasStatementBegin = 1; | ||
309 | #ifndef SQLITE_OMIT_VIRTUALTABLE | ||
310 | }else if( opcode==OP_VUpdate || opcode==OP_VRename ){ | ||
311 | doesStatementRollback = 1; | ||
312 | }else if( opcode==OP_VFilter ){ | ||
313 | int n; | ||
314 | assert( p->nOp - i >= 3 ); | ||
315 | assert( pOp[-2].opcode==OP_Integer ); | ||
316 | n = pOp[-2].p1; | ||
317 | if( n>nMaxArgs ) nMaxArgs = n; | ||
318 | #endif | ||
319 | } | ||
320 | if( opcodeNoPush(opcode) ){ | ||
321 | nMaxStack--; | ||
322 | } | ||
323 | |||
324 | if( pOp->p2>=0 ) continue; | ||
325 | assert( -1-pOp->p2<p->nLabel ); | ||
326 | pOp->p2 = aLabel[-1-pOp->p2]; | ||
327 | } | ||
328 | sqlite3_free(p->aLabel); | ||
329 | p->aLabel = 0; | ||
330 | |||
331 | *pMaxFuncArgs = nMaxArgs; | ||
332 | *pMaxStack = nMaxStack; | ||
333 | |||
334 | /* If we never rollback a statement transaction, then statement | ||
335 | ** transactions are not needed. So change every OP_Statement | ||
336 | ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive() | ||
337 | ** which can be expensive on some platforms. | ||
338 | */ | ||
339 | if( hasStatementBegin && !doesStatementRollback ){ | ||
340 | for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ | ||
341 | if( pOp->opcode==OP_Statement ){ | ||
342 | pOp->opcode = OP_Noop; | ||
343 | } | ||
344 | } | ||
345 | } | ||
346 | } | ||
347 | |||
348 | /* | ||
349 | ** Return the address of the next instruction to be inserted. | ||
350 | */ | ||
351 | int sqlite3VdbeCurrentAddr(Vdbe *p){ | ||
352 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
353 | return p->nOp; | ||
354 | } | ||
355 | |||
356 | /* | ||
357 | ** Add a whole list of operations to the operation stack. Return the | ||
358 | ** address of the first operation added. | ||
359 | */ | ||
360 | int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ | ||
361 | int addr; | ||
362 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
363 | resizeOpArray(p, p->nOp + nOp); | ||
364 | if( p->db->mallocFailed ){ | ||
365 | return 0; | ||
366 | } | ||
367 | addr = p->nOp; | ||
368 | if( nOp>0 ){ | ||
369 | int i; | ||
370 | VdbeOpList const *pIn = aOp; | ||
371 | for(i=0; i<nOp; i++, pIn++){ | ||
372 | int p2 = pIn->p2; | ||
373 | VdbeOp *pOut = &p->aOp[i+addr]; | ||
374 | pOut->opcode = pIn->opcode; | ||
375 | pOut->p1 = pIn->p1; | ||
376 | pOut->p2 = p2<0 ? addr + ADDR(p2) : p2; | ||
377 | pOut->p3 = pIn->p3; | ||
378 | pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED; | ||
379 | #ifdef SQLITE_DEBUG | ||
380 | if( sqlite3_vdbe_addop_trace ){ | ||
381 | sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); | ||
382 | } | ||
383 | #endif | ||
384 | } | ||
385 | p->nOp += nOp; | ||
386 | } | ||
387 | return addr; | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | ** Change the value of the P1 operand for a specific instruction. | ||
392 | ** This routine is useful when a large program is loaded from a | ||
393 | ** static array using sqlite3VdbeAddOpList but we want to make a | ||
394 | ** few minor changes to the program. | ||
395 | */ | ||
396 | void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ | ||
397 | assert( p==0 || p->magic==VDBE_MAGIC_INIT ); | ||
398 | if( p && addr>=0 && p->nOp>addr && p->aOp ){ | ||
399 | p->aOp[addr].p1 = val; | ||
400 | } | ||
401 | } | ||
402 | |||
403 | /* | ||
404 | ** Change the value of the P2 operand for a specific instruction. | ||
405 | ** This routine is useful for setting a jump destination. | ||
406 | */ | ||
407 | void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ | ||
408 | assert( val>=0 ); | ||
409 | assert( p==0 || p->magic==VDBE_MAGIC_INIT ); | ||
410 | if( p && addr>=0 && p->nOp>addr && p->aOp ){ | ||
411 | p->aOp[addr].p2 = val; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | /* | ||
416 | ** Change the P2 operand of instruction addr so that it points to | ||
417 | ** the address of the next instruction to be coded. | ||
418 | */ | ||
419 | void sqlite3VdbeJumpHere(Vdbe *p, int addr){ | ||
420 | sqlite3VdbeChangeP2(p, addr, p->nOp); | ||
421 | } | ||
422 | |||
423 | |||
424 | /* | ||
425 | ** If the input FuncDef structure is ephemeral, then free it. If | ||
426 | ** the FuncDef is not ephermal, then do nothing. | ||
427 | */ | ||
428 | static void freeEphemeralFunction(FuncDef *pDef){ | ||
429 | if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ | ||
430 | sqlite3_free(pDef); | ||
431 | } | ||
432 | } | ||
433 | |||
434 | /* | ||
435 | ** Delete a P3 value if necessary. | ||
436 | */ | ||
437 | static void freeP3(int p3type, void *p3){ | ||
438 | if( p3 ){ | ||
439 | switch( p3type ){ | ||
440 | case P3_DYNAMIC: | ||
441 | case P3_KEYINFO: | ||
442 | case P3_KEYINFO_HANDOFF: { | ||
443 | sqlite3_free(p3); | ||
444 | break; | ||
445 | } | ||
446 | case P3_MPRINTF: { | ||
447 | sqlite3_free(p3); | ||
448 | break; | ||
449 | } | ||
450 | case P3_VDBEFUNC: { | ||
451 | VdbeFunc *pVdbeFunc = (VdbeFunc *)p3; | ||
452 | freeEphemeralFunction(pVdbeFunc->pFunc); | ||
453 | sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); | ||
454 | sqlite3_free(pVdbeFunc); | ||
455 | break; | ||
456 | } | ||
457 | case P3_FUNCDEF: { | ||
458 | freeEphemeralFunction((FuncDef*)p3); | ||
459 | break; | ||
460 | } | ||
461 | case P3_MEM: { | ||
462 | sqlite3ValueFree((sqlite3_value*)p3); | ||
463 | break; | ||
464 | } | ||
465 | } | ||
466 | } | ||
467 | } | ||
468 | |||
469 | |||
470 | /* | ||
471 | ** Change N opcodes starting at addr to No-ops. | ||
472 | */ | ||
473 | void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ | ||
474 | if( p && p->aOp ){ | ||
475 | VdbeOp *pOp = &p->aOp[addr]; | ||
476 | while( N-- ){ | ||
477 | freeP3(pOp->p3type, pOp->p3); | ||
478 | memset(pOp, 0, sizeof(pOp[0])); | ||
479 | pOp->opcode = OP_Noop; | ||
480 | pOp++; | ||
481 | } | ||
482 | } | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | ** Change the value of the P3 operand for a specific instruction. | ||
487 | ** This routine is useful when a large program is loaded from a | ||
488 | ** static array using sqlite3VdbeAddOpList but we want to make a | ||
489 | ** few minor changes to the program. | ||
490 | ** | ||
491 | ** If n>=0 then the P3 operand is dynamic, meaning that a copy of | ||
492 | ** the string is made into memory obtained from sqlite3_malloc(). | ||
493 | ** A value of n==0 means copy bytes of zP3 up to and including the | ||
494 | ** first null byte. If n>0 then copy n+1 bytes of zP3. | ||
495 | ** | ||
496 | ** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure. | ||
497 | ** A copy is made of the KeyInfo structure into memory obtained from | ||
498 | ** sqlite3_malloc, to be freed when the Vdbe is finalized. | ||
499 | ** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure | ||
500 | ** stored in memory that the caller has obtained from sqlite3_malloc. The | ||
501 | ** caller should not free the allocation, it will be freed when the Vdbe is | ||
502 | ** finalized. | ||
503 | ** | ||
504 | ** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points | ||
505 | ** to a string or structure that is guaranteed to exist for the lifetime of | ||
506 | ** the Vdbe. In these cases we can just copy the pointer. | ||
507 | ** | ||
508 | ** If addr<0 then change P3 on the most recently inserted instruction. | ||
509 | */ | ||
510 | void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ | ||
511 | Op *pOp; | ||
512 | assert( p==0 || p->magic==VDBE_MAGIC_INIT ); | ||
513 | if( p==0 || p->aOp==0 || p->db->mallocFailed ){ | ||
514 | if (n != P3_KEYINFO) { | ||
515 | freeP3(n, (void*)*(char**)&zP3); | ||
516 | } | ||
517 | return; | ||
518 | } | ||
519 | if( addr<0 || addr>=p->nOp ){ | ||
520 | addr = p->nOp - 1; | ||
521 | if( addr<0 ) return; | ||
522 | } | ||
523 | pOp = &p->aOp[addr]; | ||
524 | freeP3(pOp->p3type, pOp->p3); | ||
525 | pOp->p3 = 0; | ||
526 | if( zP3==0 ){ | ||
527 | pOp->p3 = 0; | ||
528 | pOp->p3type = P3_NOTUSED; | ||
529 | }else if( n==P3_KEYINFO ){ | ||
530 | KeyInfo *pKeyInfo; | ||
531 | int nField, nByte; | ||
532 | |||
533 | nField = ((KeyInfo*)zP3)->nField; | ||
534 | nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; | ||
535 | pKeyInfo = sqlite3_malloc( nByte ); | ||
536 | pOp->p3 = (char*)pKeyInfo; | ||
537 | if( pKeyInfo ){ | ||
538 | unsigned char *aSortOrder; | ||
539 | memcpy(pKeyInfo, zP3, nByte); | ||
540 | aSortOrder = pKeyInfo->aSortOrder; | ||
541 | if( aSortOrder ){ | ||
542 | pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; | ||
543 | memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); | ||
544 | } | ||
545 | pOp->p3type = P3_KEYINFO; | ||
546 | }else{ | ||
547 | p->db->mallocFailed = 1; | ||
548 | pOp->p3type = P3_NOTUSED; | ||
549 | } | ||
550 | }else if( n==P3_KEYINFO_HANDOFF ){ | ||
551 | pOp->p3 = (char*)zP3; | ||
552 | pOp->p3type = P3_KEYINFO; | ||
553 | }else if( n<0 ){ | ||
554 | pOp->p3 = (char*)zP3; | ||
555 | pOp->p3type = n; | ||
556 | }else{ | ||
557 | if( n==0 ) n = strlen(zP3); | ||
558 | pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n); | ||
559 | pOp->p3type = P3_DYNAMIC; | ||
560 | } | ||
561 | } | ||
562 | |||
563 | #ifndef NDEBUG | ||
564 | /* | ||
565 | ** Replace the P3 field of the most recently coded instruction with | ||
566 | ** comment text. | ||
567 | */ | ||
568 | void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ | ||
569 | va_list ap; | ||
570 | assert( p->nOp>0 || p->aOp==0 ); | ||
571 | assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed ); | ||
572 | va_start(ap, zFormat); | ||
573 | sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC); | ||
574 | va_end(ap); | ||
575 | } | ||
576 | #endif | ||
577 | |||
578 | /* | ||
579 | ** Return the opcode for a given address. | ||
580 | */ | ||
581 | VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ | ||
582 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
583 | assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); | ||
584 | return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0); | ||
585 | } | ||
586 | |||
587 | #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ | ||
588 | || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) | ||
589 | /* | ||
590 | ** Compute a string that describes the P3 parameter for an opcode. | ||
591 | ** Use zTemp for any required temporary buffer space. | ||
592 | */ | ||
593 | static char *displayP3(Op *pOp, char *zTemp, int nTemp){ | ||
594 | char *zP3; | ||
595 | assert( nTemp>=20 ); | ||
596 | switch( pOp->p3type ){ | ||
597 | case P3_KEYINFO: { | ||
598 | int i, j; | ||
599 | KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; | ||
600 | sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); | ||
601 | i = strlen(zTemp); | ||
602 | for(j=0; j<pKeyInfo->nField; j++){ | ||
603 | CollSeq *pColl = pKeyInfo->aColl[j]; | ||
604 | if( pColl ){ | ||
605 | int n = strlen(pColl->zName); | ||
606 | if( i+n>nTemp-6 ){ | ||
607 | memcpy(&zTemp[i],",...",4); | ||
608 | break; | ||
609 | } | ||
610 | zTemp[i++] = ','; | ||
611 | if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ | ||
612 | zTemp[i++] = '-'; | ||
613 | } | ||
614 | memcpy(&zTemp[i], pColl->zName,n+1); | ||
615 | i += n; | ||
616 | }else if( i+4<nTemp-6 ){ | ||
617 | memcpy(&zTemp[i],",nil",4); | ||
618 | i += 4; | ||
619 | } | ||
620 | } | ||
621 | zTemp[i++] = ')'; | ||
622 | zTemp[i] = 0; | ||
623 | assert( i<nTemp ); | ||
624 | zP3 = zTemp; | ||
625 | break; | ||
626 | } | ||
627 | case P3_COLLSEQ: { | ||
628 | CollSeq *pColl = (CollSeq*)pOp->p3; | ||
629 | sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); | ||
630 | zP3 = zTemp; | ||
631 | break; | ||
632 | } | ||
633 | case P3_FUNCDEF: { | ||
634 | FuncDef *pDef = (FuncDef*)pOp->p3; | ||
635 | sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); | ||
636 | zP3 = zTemp; | ||
637 | break; | ||
638 | } | ||
639 | #ifndef SQLITE_OMIT_VIRTUALTABLE | ||
640 | case P3_VTAB: { | ||
641 | sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3; | ||
642 | sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); | ||
643 | zP3 = zTemp; | ||
644 | break; | ||
645 | } | ||
646 | #endif | ||
647 | default: { | ||
648 | zP3 = pOp->p3; | ||
649 | if( zP3==0 || pOp->opcode==OP_Noop ){ | ||
650 | zP3 = ""; | ||
651 | } | ||
652 | } | ||
653 | } | ||
654 | assert( zP3!=0 ); | ||
655 | return zP3; | ||
656 | } | ||
657 | #endif | ||
658 | |||
659 | /* | ||
660 | ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. | ||
661 | ** | ||
662 | */ | ||
663 | void sqlite3VdbeUsesBtree(Vdbe *p, int i){ | ||
664 | int mask; | ||
665 | assert( i>=0 && i<p->db->nDb ); | ||
666 | assert( i<sizeof(p->btreeMask)*8 ); | ||
667 | mask = 1<<i; | ||
668 | if( (p->btreeMask & mask)==0 ){ | ||
669 | p->btreeMask |= mask; | ||
670 | sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); | ||
671 | } | ||
672 | } | ||
673 | |||
674 | |||
675 | #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) | ||
676 | /* | ||
677 | ** Print a single opcode. This routine is used for debugging only. | ||
678 | */ | ||
679 | void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ | ||
680 | char *zP3; | ||
681 | char zPtr[50]; | ||
682 | static const char *zFormat1 = "%4d %-13s %4d %4d %s\n"; | ||
683 | if( pOut==0 ) pOut = stdout; | ||
684 | zP3 = displayP3(pOp, zPtr, sizeof(zPtr)); | ||
685 | fprintf(pOut, zFormat1, | ||
686 | pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3); | ||
687 | fflush(pOut); | ||
688 | } | ||
689 | #endif | ||
690 | |||
691 | /* | ||
692 | ** Release an array of N Mem elements | ||
693 | */ | ||
694 | static void releaseMemArray(Mem *p, int N){ | ||
695 | if( p ){ | ||
696 | while( N-->0 ){ | ||
697 | assert( N<2 || p[0].db==p[1].db ); | ||
698 | sqlite3VdbeMemRelease(p++); | ||
699 | } | ||
700 | } | ||
701 | } | ||
702 | |||
703 | #ifndef SQLITE_OMIT_EXPLAIN | ||
704 | /* | ||
705 | ** Give a listing of the program in the virtual machine. | ||
706 | ** | ||
707 | ** The interface is the same as sqlite3VdbeExec(). But instead of | ||
708 | ** running the code, it invokes the callback once for each instruction. | ||
709 | ** This feature is used to implement "EXPLAIN". | ||
710 | */ | ||
711 | int sqlite3VdbeList( | ||
712 | Vdbe *p /* The VDBE */ | ||
713 | ){ | ||
714 | sqlite3 *db = p->db; | ||
715 | int i; | ||
716 | int rc = SQLITE_OK; | ||
717 | |||
718 | assert( p->explain ); | ||
719 | if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; | ||
720 | assert( db->magic==SQLITE_MAGIC_BUSY ); | ||
721 | assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); | ||
722 | |||
723 | /* Even though this opcode does not put dynamic strings onto the | ||
724 | ** the stack, they may become dynamic if the user calls | ||
725 | ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. | ||
726 | */ | ||
727 | if( p->pTos==&p->aStack[4] ){ | ||
728 | releaseMemArray(p->aStack, 5); | ||
729 | } | ||
730 | p->resOnStack = 0; | ||
731 | |||
732 | do{ | ||
733 | i = p->pc++; | ||
734 | }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); | ||
735 | if( i>=p->nOp ){ | ||
736 | p->rc = SQLITE_OK; | ||
737 | rc = SQLITE_DONE; | ||
738 | }else if( db->u1.isInterrupted ){ | ||
739 | p->rc = SQLITE_INTERRUPT; | ||
740 | rc = SQLITE_ERROR; | ||
741 | sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); | ||
742 | }else{ | ||
743 | Op *pOp = &p->aOp[i]; | ||
744 | Mem *pMem = p->aStack; | ||
745 | pMem->flags = MEM_Int; | ||
746 | pMem->type = SQLITE_INTEGER; | ||
747 | pMem->u.i = i; /* Program counter */ | ||
748 | pMem++; | ||
749 | |||
750 | pMem->flags = MEM_Static|MEM_Str|MEM_Term; | ||
751 | pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ | ||
752 | assert( pMem->z!=0 ); | ||
753 | pMem->n = strlen(pMem->z); | ||
754 | pMem->type = SQLITE_TEXT; | ||
755 | pMem->enc = SQLITE_UTF8; | ||
756 | pMem++; | ||
757 | |||
758 | pMem->flags = MEM_Int; | ||
759 | pMem->u.i = pOp->p1; /* P1 */ | ||
760 | pMem->type = SQLITE_INTEGER; | ||
761 | pMem++; | ||
762 | |||
763 | pMem->flags = MEM_Int; | ||
764 | pMem->u.i = pOp->p2; /* P2 */ | ||
765 | pMem->type = SQLITE_INTEGER; | ||
766 | pMem++; | ||
767 | |||
768 | pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P3 */ | ||
769 | pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort)); | ||
770 | assert( pMem->z!=0 ); | ||
771 | pMem->n = strlen(pMem->z); | ||
772 | pMem->type = SQLITE_TEXT; | ||
773 | pMem->enc = SQLITE_UTF8; | ||
774 | |||
775 | p->nResColumn = 5 - 2*(p->explain-1); | ||
776 | p->pTos = pMem; | ||
777 | p->rc = SQLITE_OK; | ||
778 | p->resOnStack = 1; | ||
779 | rc = SQLITE_ROW; | ||
780 | } | ||
781 | return rc; | ||
782 | } | ||
783 | #endif /* SQLITE_OMIT_EXPLAIN */ | ||
784 | |||
785 | #ifdef SQLITE_DEBUG | ||
786 | /* | ||
787 | ** Print the SQL that was used to generate a VDBE program. | ||
788 | */ | ||
789 | void sqlite3VdbePrintSql(Vdbe *p){ | ||
790 | int nOp = p->nOp; | ||
791 | VdbeOp *pOp; | ||
792 | if( nOp<1 ) return; | ||
793 | pOp = &p->aOp[nOp-1]; | ||
794 | if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ | ||
795 | const char *z = pOp->p3; | ||
796 | while( isspace(*(u8*)z) ) z++; | ||
797 | printf("SQL: [%s]\n", z); | ||
798 | } | ||
799 | } | ||
800 | #endif | ||
801 | |||
802 | #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) | ||
803 | /* | ||
804 | ** Print an IOTRACE message showing SQL content. | ||
805 | */ | ||
806 | void sqlite3VdbeIOTraceSql(Vdbe *p){ | ||
807 | int nOp = p->nOp; | ||
808 | VdbeOp *pOp; | ||
809 | if( sqlite3_io_trace==0 ) return; | ||
810 | if( nOp<1 ) return; | ||
811 | pOp = &p->aOp[nOp-1]; | ||
812 | if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ | ||
813 | int i, j; | ||
814 | char z[1000]; | ||
815 | sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3); | ||
816 | for(i=0; isspace((unsigned char)z[i]); i++){} | ||
817 | for(j=0; z[i]; i++){ | ||
818 | if( isspace((unsigned char)z[i]) ){ | ||
819 | if( z[i-1]!=' ' ){ | ||
820 | z[j++] = ' '; | ||
821 | } | ||
822 | }else{ | ||
823 | z[j++] = z[i]; | ||
824 | } | ||
825 | } | ||
826 | z[j] = 0; | ||
827 | sqlite3_io_trace("SQL %s\n", z); | ||
828 | } | ||
829 | } | ||
830 | #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ | ||
831 | |||
832 | |||
833 | /* | ||
834 | ** Prepare a virtual machine for execution. This involves things such | ||
835 | ** as allocating stack space and initializing the program counter. | ||
836 | ** After the VDBE has be prepped, it can be executed by one or more | ||
837 | ** calls to sqlite3VdbeExec(). | ||
838 | ** | ||
839 | ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to | ||
840 | ** VDBE_MAGIC_RUN. | ||
841 | */ | ||
842 | void sqlite3VdbeMakeReady( | ||
843 | Vdbe *p, /* The VDBE */ | ||
844 | int nVar, /* Number of '?' see in the SQL statement */ | ||
845 | int nMem, /* Number of memory cells to allocate */ | ||
846 | int nCursor, /* Number of cursors to allocate */ | ||
847 | int isExplain /* True if the EXPLAIN keywords is present */ | ||
848 | ){ | ||
849 | int n; | ||
850 | sqlite3 *db = p->db; | ||
851 | |||
852 | assert( p!=0 ); | ||
853 | assert( p->magic==VDBE_MAGIC_INIT ); | ||
854 | |||
855 | /* There should be at least one opcode. | ||
856 | */ | ||
857 | assert( p->nOp>0 ); | ||
858 | |||
859 | /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This | ||
860 | * is because the call to resizeOpArray() below may shrink the | ||
861 | * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN | ||
862 | * state. | ||
863 | */ | ||
864 | p->magic = VDBE_MAGIC_RUN; | ||
865 | |||
866 | /* No instruction ever pushes more than a single element onto the | ||
867 | ** stack. And the stack never grows on successive executions of the | ||
868 | ** same loop. So the total number of instructions is an upper bound | ||
869 | ** on the maximum stack depth required. (Added later:) The | ||
870 | ** resolveP2Values() call computes a tighter upper bound on the | ||
871 | ** stack size. | ||
872 | ** | ||
873 | ** Allocation all the stack space we will ever need. | ||
874 | */ | ||
875 | if( p->aStack==0 ){ | ||
876 | int nArg; /* Maximum number of args passed to a user function. */ | ||
877 | int nStack; /* Maximum number of stack entries required */ | ||
878 | resolveP2Values(p, &nArg, &nStack); | ||
879 | resizeOpArray(p, p->nOp); | ||
880 | assert( nVar>=0 ); | ||
881 | assert( nStack<p->nOp ); | ||
882 | if( isExplain ){ | ||
883 | nStack = 10; | ||
884 | } | ||
885 | p->aStack = sqlite3DbMallocZero(db, | ||
886 | nStack*sizeof(p->aStack[0]) /* aStack */ | ||
887 | + nArg*sizeof(Mem*) /* apArg */ | ||
888 | + nVar*sizeof(Mem) /* aVar */ | ||
889 | + nVar*sizeof(char*) /* azVar */ | ||
890 | + nMem*sizeof(Mem) /* aMem */ | ||
891 | + nCursor*sizeof(Cursor*) /* apCsr */ | ||
892 | ); | ||
893 | if( !db->mallocFailed ){ | ||
894 | p->aMem = &p->aStack[nStack]; | ||
895 | p->nMem = nMem; | ||
896 | p->aVar = &p->aMem[nMem]; | ||
897 | p->nVar = nVar; | ||
898 | p->okVar = 0; | ||
899 | p->apArg = (Mem**)&p->aVar[nVar]; | ||
900 | p->azVar = (char**)&p->apArg[nArg]; | ||
901 | p->apCsr = (Cursor**)&p->azVar[nVar]; | ||
902 | p->nCursor = nCursor; | ||
903 | for(n=0; n<nVar; n++){ | ||
904 | p->aVar[n].flags = MEM_Null; | ||
905 | p->aVar[n].db = db; | ||
906 | } | ||
907 | for(n=0; n<nStack; n++){ | ||
908 | p->aStack[n].db = db; | ||
909 | } | ||
910 | } | ||
911 | } | ||
912 | for(n=0; n<p->nMem; n++){ | ||
913 | p->aMem[n].flags = MEM_Null; | ||
914 | p->aMem[n].db = db; | ||
915 | } | ||
916 | |||
917 | p->pTos = &p->aStack[-1]; | ||
918 | p->pc = -1; | ||
919 | p->rc = SQLITE_OK; | ||
920 | p->uniqueCnt = 0; | ||
921 | p->returnDepth = 0; | ||
922 | p->errorAction = OE_Abort; | ||
923 | p->popStack = 0; | ||
924 | p->explain |= isExplain; | ||
925 | p->magic = VDBE_MAGIC_RUN; | ||
926 | p->nChange = 0; | ||
927 | p->cacheCtr = 1; | ||
928 | p->minWriteFileFormat = 255; | ||
929 | p->openedStatement = 0; | ||
930 | #ifdef VDBE_PROFILE | ||
931 | { | ||
932 | int i; | ||
933 | for(i=0; i<p->nOp; i++){ | ||
934 | p->aOp[i].cnt = 0; | ||
935 | p->aOp[i].cycles = 0; | ||
936 | } | ||
937 | } | ||
938 | #endif | ||
939 | } | ||
940 | |||
941 | /* | ||
942 | ** Close a VDBE cursor and release all the resources that cursor happens | ||
943 | ** to hold. | ||
944 | */ | ||
945 | void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){ | ||
946 | if( pCx==0 ){ | ||
947 | return; | ||
948 | } | ||
949 | if( pCx->pCursor ){ | ||
950 | sqlite3BtreeCloseCursor(pCx->pCursor); | ||
951 | } | ||
952 | if( pCx->pBt ){ | ||
953 | sqlite3BtreeClose(pCx->pBt); | ||
954 | } | ||
955 | #ifndef SQLITE_OMIT_VIRTUALTABLE | ||
956 | if( pCx->pVtabCursor ){ | ||
957 | sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; | ||
958 | const sqlite3_module *pModule = pCx->pModule; | ||
959 | p->inVtabMethod = 1; | ||
960 | sqlite3SafetyOff(p->db); | ||
961 | pModule->xClose(pVtabCursor); | ||
962 | sqlite3SafetyOn(p->db); | ||
963 | p->inVtabMethod = 0; | ||
964 | } | ||
965 | #endif | ||
966 | sqlite3_free(pCx->pData); | ||
967 | sqlite3_free(pCx->aType); | ||
968 | sqlite3_free(pCx); | ||
969 | } | ||
970 | |||
971 | /* | ||
972 | ** Close all cursors except for VTab cursors that are currently | ||
973 | ** in use. | ||
974 | */ | ||
975 | static void closeAllCursorsExceptActiveVtabs(Vdbe *p){ | ||
976 | int i; | ||
977 | if( p->apCsr==0 ) return; | ||
978 | for(i=0; i<p->nCursor; i++){ | ||
979 | Cursor *pC = p->apCsr[i]; | ||
980 | if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){ | ||
981 | sqlite3VdbeFreeCursor(p, pC); | ||
982 | p->apCsr[i] = 0; | ||
983 | } | ||
984 | } | ||
985 | } | ||
986 | |||
987 | /* | ||
988 | ** Clean up the VM after execution. | ||
989 | ** | ||
990 | ** This routine will automatically close any cursors, lists, and/or | ||
991 | ** sorters that were left open. It also deletes the values of | ||
992 | ** variables in the aVar[] array. | ||
993 | */ | ||
994 | static void Cleanup(Vdbe *p){ | ||
995 | int i; | ||
996 | if( p->aStack ){ | ||
997 | releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack)); | ||
998 | p->pTos = &p->aStack[-1]; | ||
999 | } | ||
1000 | closeAllCursorsExceptActiveVtabs(p); | ||
1001 | releaseMemArray(p->aMem, p->nMem); | ||
1002 | sqlite3VdbeFifoClear(&p->sFifo); | ||
1003 | if( p->contextStack ){ | ||
1004 | for(i=0; i<p->contextStackTop; i++){ | ||
1005 | sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); | ||
1006 | } | ||
1007 | sqlite3_free(p->contextStack); | ||
1008 | } | ||
1009 | p->contextStack = 0; | ||
1010 | p->contextStackDepth = 0; | ||
1011 | p->contextStackTop = 0; | ||
1012 | sqlite3_free(p->zErrMsg); | ||
1013 | p->zErrMsg = 0; | ||
1014 | p->resOnStack = 0; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
1018 | ** Set the number of result columns that will be returned by this SQL | ||
1019 | ** statement. This is now set at compile time, rather than during | ||
1020 | ** execution of the vdbe program so that sqlite3_column_count() can | ||
1021 | ** be called on an SQL statement before sqlite3_step(). | ||
1022 | */ | ||
1023 | void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ | ||
1024 | Mem *pColName; | ||
1025 | int n; | ||
1026 | |||
1027 | releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | ||
1028 | sqlite3_free(p->aColName); | ||
1029 | n = nResColumn*COLNAME_N; | ||
1030 | p->nResColumn = nResColumn; | ||
1031 | p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n ); | ||
1032 | if( p->aColName==0 ) return; | ||
1033 | while( n-- > 0 ){ | ||
1034 | pColName->flags = MEM_Null; | ||
1035 | pColName->db = p->db; | ||
1036 | pColName++; | ||
1037 | } | ||
1038 | } | ||
1039 | |||
1040 | /* | ||
1041 | ** Set the name of the idx'th column to be returned by the SQL statement. | ||
1042 | ** zName must be a pointer to a nul terminated string. | ||
1043 | ** | ||
1044 | ** This call must be made after a call to sqlite3VdbeSetNumCols(). | ||
1045 | ** | ||
1046 | ** If N==P3_STATIC it means that zName is a pointer to a constant static | ||
1047 | ** string and we can just copy the pointer. If it is P3_DYNAMIC, then | ||
1048 | ** the string is freed using sqlite3_free() when the vdbe is finished with | ||
1049 | ** it. Otherwise, N bytes of zName are copied. | ||
1050 | */ | ||
1051 | int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){ | ||
1052 | int rc; | ||
1053 | Mem *pColName; | ||
1054 | assert( idx<p->nResColumn ); | ||
1055 | assert( var<COLNAME_N ); | ||
1056 | if( p->db->mallocFailed ) return SQLITE_NOMEM; | ||
1057 | assert( p->aColName!=0 ); | ||
1058 | pColName = &(p->aColName[idx+var*p->nResColumn]); | ||
1059 | if( N==P3_DYNAMIC || N==P3_STATIC ){ | ||
1060 | rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); | ||
1061 | }else{ | ||
1062 | rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); | ||
1063 | } | ||
1064 | if( rc==SQLITE_OK && N==P3_DYNAMIC ){ | ||
1065 | pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; | ||
1066 | pColName->xDel = 0; | ||
1067 | } | ||
1068 | return rc; | ||
1069 | } | ||
1070 | |||
1071 | /* | ||
1072 | ** A read or write transaction may or may not be active on database handle | ||
1073 | ** db. If a transaction is active, commit it. If there is a | ||
1074 | ** write-transaction spanning more than one database file, this routine | ||
1075 | ** takes care of the master journal trickery. | ||
1076 | */ | ||
1077 | static int vdbeCommit(sqlite3 *db){ | ||
1078 | int i; | ||
1079 | int nTrans = 0; /* Number of databases with an active write-transaction */ | ||
1080 | int rc = SQLITE_OK; | ||
1081 | int needXcommit = 0; | ||
1082 | |||
1083 | /* Before doing anything else, call the xSync() callback for any | ||
1084 | ** virtual module tables written in this transaction. This has to | ||
1085 | ** be done before determining whether a master journal file is | ||
1086 | ** required, as an xSync() callback may add an attached database | ||
1087 | ** to the transaction. | ||
1088 | */ | ||
1089 | rc = sqlite3VtabSync(db, rc); | ||
1090 | if( rc!=SQLITE_OK ){ | ||
1091 | return rc; | ||
1092 | } | ||
1093 | |||
1094 | /* This loop determines (a) if the commit hook should be invoked and | ||
1095 | ** (b) how many database files have open write transactions, not | ||
1096 | ** including the temp database. (b) is important because if more than | ||
1097 | ** one database file has an open write transaction, a master journal | ||
1098 | ** file is required for an atomic commit. | ||
1099 | */ | ||
1100 | for(i=0; i<db->nDb; i++){ | ||
1101 | Btree *pBt = db->aDb[i].pBt; | ||
1102 | if( sqlite3BtreeIsInTrans(pBt) ){ | ||
1103 | needXcommit = 1; | ||
1104 | if( i!=1 ) nTrans++; | ||
1105 | } | ||
1106 | } | ||
1107 | |||
1108 | /* If there are any write-transactions at all, invoke the commit hook */ | ||
1109 | if( needXcommit && db->xCommitCallback ){ | ||
1110 | sqlite3SafetyOff(db); | ||
1111 | rc = db->xCommitCallback(db->pCommitArg); | ||
1112 | sqlite3SafetyOn(db); | ||
1113 | if( rc ){ | ||
1114 | return SQLITE_CONSTRAINT; | ||
1115 | } | ||
1116 | } | ||
1117 | |||
1118 | /* The simple case - no more than one database file (not counting the | ||
1119 | ** TEMP database) has a transaction active. There is no need for the | ||
1120 | ** master-journal. | ||
1121 | ** | ||
1122 | ** If the return value of sqlite3BtreeGetFilename() is a zero length | ||
1123 | ** string, it means the main database is :memory:. In that case we do | ||
1124 | ** not support atomic multi-file commits, so use the simple case then | ||
1125 | ** too. | ||
1126 | */ | ||
1127 | if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ | ||
1128 | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | ||
1129 | Btree *pBt = db->aDb[i].pBt; | ||
1130 | if( pBt ){ | ||
1131 | rc = sqlite3BtreeCommitPhaseOne(pBt, 0); | ||
1132 | } | ||
1133 | } | ||
1134 | |||
1135 | /* Do the commit only if all databases successfully complete phase 1. | ||
1136 | ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an | ||
1137 | ** IO error while deleting or truncating a journal file. It is unlikely, | ||
1138 | ** but could happen. In this case abandon processing and return the error. | ||
1139 | */ | ||
1140 | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | ||
1141 | Btree *pBt = db->aDb[i].pBt; | ||
1142 | if( pBt ){ | ||
1143 | rc = sqlite3BtreeCommitPhaseTwo(pBt); | ||
1144 | } | ||
1145 | } | ||
1146 | if( rc==SQLITE_OK ){ | ||
1147 | sqlite3VtabCommit(db); | ||
1148 | } | ||
1149 | } | ||
1150 | |||
1151 | /* The complex case - There is a multi-file write-transaction active. | ||
1152 | ** This requires a master journal file to ensure the transaction is | ||
1153 | ** committed atomicly. | ||
1154 | */ | ||
1155 | #ifndef SQLITE_OMIT_DISKIO | ||
1156 | else{ | ||
1157 | sqlite3_vfs *pVfs = db->pVfs; | ||
1158 | int needSync = 0; | ||
1159 | char *zMaster = 0; /* File-name for the master journal */ | ||
1160 | char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); | ||
1161 | sqlite3_file *pMaster = 0; | ||
1162 | i64 offset = 0; | ||
1163 | |||
1164 | /* Select a master journal file name */ | ||
1165 | do { | ||
1166 | u32 random; | ||
1167 | sqlite3_free(zMaster); | ||
1168 | sqlite3Randomness(sizeof(random), &random); | ||
1169 | zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff); | ||
1170 | if( !zMaster ){ | ||
1171 | return SQLITE_NOMEM; | ||
1172 | } | ||
1173 | }while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) ); | ||
1174 | |||
1175 | /* Open the master journal. */ | ||
1176 | rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, | ||
1177 | SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| | ||
1178 | SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 | ||
1179 | ); | ||
1180 | if( rc!=SQLITE_OK ){ | ||
1181 | sqlite3_free(zMaster); | ||
1182 | return rc; | ||
1183 | } | ||
1184 | |||
1185 | /* Write the name of each database file in the transaction into the new | ||
1186 | ** master journal file. If an error occurs at this point close | ||
1187 | ** and delete the master journal file. All the individual journal files | ||
1188 | ** still have 'null' as the master journal pointer, so they will roll | ||
1189 | ** back independently if a failure occurs. | ||
1190 | */ | ||
1191 | for(i=0; i<db->nDb; i++){ | ||
1192 | Btree *pBt = db->aDb[i].pBt; | ||
1193 | if( i==1 ) continue; /* Ignore the TEMP database */ | ||
1194 | if( sqlite3BtreeIsInTrans(pBt) ){ | ||
1195 | char const *zFile = sqlite3BtreeGetJournalname(pBt); | ||
1196 | if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ | ||
1197 | if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ | ||
1198 | needSync = 1; | ||
1199 | } | ||
1200 | rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset); | ||
1201 | offset += strlen(zFile)+1; | ||
1202 | if( rc!=SQLITE_OK ){ | ||
1203 | sqlite3OsCloseFree(pMaster); | ||
1204 | sqlite3OsDelete(pVfs, zMaster, 0); | ||
1205 | sqlite3_free(zMaster); | ||
1206 | return rc; | ||
1207 | } | ||
1208 | } | ||
1209 | } | ||
1210 | |||
1211 | /* Sync the master journal file. If the IOCAP_SEQUENTIAL device | ||
1212 | ** flag is set this is not required. | ||
1213 | */ | ||
1214 | zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); | ||
1215 | if( (needSync | ||
1216 | && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)) | ||
1217 | && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){ | ||
1218 | sqlite3OsCloseFree(pMaster); | ||
1219 | sqlite3OsDelete(pVfs, zMaster, 0); | ||
1220 | sqlite3_free(zMaster); | ||
1221 | return rc; | ||
1222 | } | ||
1223 | |||
1224 | /* Sync all the db files involved in the transaction. The same call | ||
1225 | ** sets the master journal pointer in each individual journal. If | ||
1226 | ** an error occurs here, do not delete the master journal file. | ||
1227 | ** | ||
1228 | ** If the error occurs during the first call to | ||
1229 | ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the | ||
1230 | ** master journal file will be orphaned. But we cannot delete it, | ||
1231 | ** in case the master journal file name was written into the journal | ||
1232 | ** file before the failure occured. | ||
1233 | */ | ||
1234 | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | ||
1235 | Btree *pBt = db->aDb[i].pBt; | ||
1236 | if( pBt ){ | ||
1237 | rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); | ||
1238 | } | ||
1239 | } | ||
1240 | sqlite3OsCloseFree(pMaster); | ||
1241 | if( rc!=SQLITE_OK ){ | ||
1242 | sqlite3_free(zMaster); | ||
1243 | return rc; | ||
1244 | } | ||
1245 | |||
1246 | /* Delete the master journal file. This commits the transaction. After | ||
1247 | ** doing this the directory is synced again before any individual | ||
1248 | ** transaction files are deleted. | ||
1249 | */ | ||
1250 | rc = sqlite3OsDelete(pVfs, zMaster, 1); | ||
1251 | sqlite3_free(zMaster); | ||
1252 | zMaster = 0; | ||
1253 | if( rc ){ | ||
1254 | return rc; | ||
1255 | } | ||
1256 | |||
1257 | /* All files and directories have already been synced, so the following | ||
1258 | ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and | ||
1259 | ** deleting or truncating journals. If something goes wrong while | ||
1260 | ** this is happening we don't really care. The integrity of the | ||
1261 | ** transaction is already guaranteed, but some stray 'cold' journals | ||
1262 | ** may be lying around. Returning an error code won't help matters. | ||
1263 | */ | ||
1264 | disable_simulated_io_errors(); | ||
1265 | for(i=0; i<db->nDb; i++){ | ||
1266 | Btree *pBt = db->aDb[i].pBt; | ||
1267 | if( pBt ){ | ||
1268 | sqlite3BtreeCommitPhaseTwo(pBt); | ||
1269 | } | ||
1270 | } | ||
1271 | enable_simulated_io_errors(); | ||
1272 | |||
1273 | sqlite3VtabCommit(db); | ||
1274 | } | ||
1275 | #endif | ||
1276 | |||
1277 | return rc; | ||
1278 | } | ||
1279 | |||
1280 | /* | ||
1281 | ** This routine checks that the sqlite3.activeVdbeCnt count variable | ||
1282 | ** matches the number of vdbe's in the list sqlite3.pVdbe that are | ||
1283 | ** currently active. An assertion fails if the two counts do not match. | ||
1284 | ** This is an internal self-check only - it is not an essential processing | ||
1285 | ** step. | ||
1286 | ** | ||
1287 | ** This is a no-op if NDEBUG is defined. | ||
1288 | */ | ||
1289 | #ifndef NDEBUG | ||
1290 | static void checkActiveVdbeCnt(sqlite3 *db){ | ||
1291 | Vdbe *p; | ||
1292 | int cnt = 0; | ||
1293 | p = db->pVdbe; | ||
1294 | while( p ){ | ||
1295 | if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ | ||
1296 | cnt++; | ||
1297 | } | ||
1298 | p = p->pNext; | ||
1299 | } | ||
1300 | assert( cnt==db->activeVdbeCnt ); | ||
1301 | } | ||
1302 | #else | ||
1303 | #define checkActiveVdbeCnt(x) | ||
1304 | #endif | ||
1305 | |||
1306 | /* | ||
1307 | ** For every Btree that in database connection db which | ||
1308 | ** has been modified, "trip" or invalidate each cursor in | ||
1309 | ** that Btree might have been modified so that the cursor | ||
1310 | ** can never be used again. This happens when a rollback | ||
1311 | *** occurs. We have to trip all the other cursors, even | ||
1312 | ** cursor from other VMs in different database connections, | ||
1313 | ** so that none of them try to use the data at which they | ||
1314 | ** were pointing and which now may have been changed due | ||
1315 | ** to the rollback. | ||
1316 | ** | ||
1317 | ** Remember that a rollback can delete tables complete and | ||
1318 | ** reorder rootpages. So it is not sufficient just to save | ||
1319 | ** the state of the cursor. We have to invalidate the cursor | ||
1320 | ** so that it is never used again. | ||
1321 | */ | ||
1322 | void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ | ||
1323 | int i; | ||
1324 | for(i=0; i<db->nDb; i++){ | ||
1325 | Btree *p = db->aDb[i].pBt; | ||
1326 | if( p && sqlite3BtreeIsInTrans(p) ){ | ||
1327 | sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); | ||
1328 | } | ||
1329 | } | ||
1330 | } | ||
1331 | |||
1332 | /* | ||
1333 | ** This routine is called the when a VDBE tries to halt. If the VDBE | ||
1334 | ** has made changes and is in autocommit mode, then commit those | ||
1335 | ** changes. If a rollback is needed, then do the rollback. | ||
1336 | ** | ||
1337 | ** This routine is the only way to move the state of a VM from | ||
1338 | ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to | ||
1339 | ** call this on a VM that is in the SQLITE_MAGIC_HALT state. | ||
1340 | ** | ||
1341 | ** Return an error code. If the commit could not complete because of | ||
1342 | ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it | ||
1343 | ** means the close did not happen and needs to be repeated. | ||
1344 | */ | ||
1345 | int sqlite3VdbeHalt(Vdbe *p){ | ||
1346 | sqlite3 *db = p->db; | ||
1347 | int i; | ||
1348 | int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ | ||
1349 | int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */ | ||
1350 | |||
1351 | /* This function contains the logic that determines if a statement or | ||
1352 | ** transaction will be committed or rolled back as a result of the | ||
1353 | ** execution of this virtual machine. | ||
1354 | ** | ||
1355 | ** If any of the following errors occur: | ||
1356 | ** | ||
1357 | ** SQLITE_NOMEM | ||
1358 | ** SQLITE_IOERR | ||
1359 | ** SQLITE_FULL | ||
1360 | ** SQLITE_INTERRUPT | ||
1361 | ** | ||
1362 | ** Then the internal cache might have been left in an inconsistent | ||
1363 | ** state. We need to rollback the statement transaction, if there is | ||
1364 | ** one, or the complete transaction if there is no statement transaction. | ||
1365 | */ | ||
1366 | |||
1367 | if( p->db->mallocFailed ){ | ||
1368 | p->rc = SQLITE_NOMEM; | ||
1369 | } | ||
1370 | closeAllCursorsExceptActiveVtabs(p); | ||
1371 | if( p->magic!=VDBE_MAGIC_RUN ){ | ||
1372 | return SQLITE_OK; | ||
1373 | } | ||
1374 | checkActiveVdbeCnt(db); | ||
1375 | |||
1376 | /* No commit or rollback needed if the program never started */ | ||
1377 | if( p->pc>=0 ){ | ||
1378 | int mrc; /* Primary error code from p->rc */ | ||
1379 | |||
1380 | /* Lock all btrees used by the statement */ | ||
1381 | sqlite3BtreeMutexArrayEnter(&p->aMutex); | ||
1382 | |||
1383 | /* Check for one of the special errors */ | ||
1384 | mrc = p->rc & 0xff; | ||
1385 | isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR | ||
1386 | || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL ; | ||
1387 | if( isSpecialError ){ | ||
1388 | /* This loop does static analysis of the query to see which of the | ||
1389 | ** following three categories it falls into: | ||
1390 | ** | ||
1391 | ** Read-only | ||
1392 | ** Query with statement journal | ||
1393 | ** Query without statement journal | ||
1394 | ** | ||
1395 | ** We could do something more elegant than this static analysis (i.e. | ||
1396 | ** store the type of query as part of the compliation phase), but | ||
1397 | ** handling malloc() or IO failure is a fairly obscure edge case so | ||
1398 | ** this is probably easier. Todo: Might be an opportunity to reduce | ||
1399 | ** code size a very small amount though... | ||
1400 | */ | ||
1401 | int notReadOnly = 0; | ||
1402 | int isStatement = 0; | ||
1403 | assert(p->aOp || p->nOp==0); | ||
1404 | for(i=0; i<p->nOp; i++){ | ||
1405 | switch( p->aOp[i].opcode ){ | ||
1406 | case OP_Transaction: | ||
1407 | notReadOnly |= p->aOp[i].p2; | ||
1408 | break; | ||
1409 | case OP_Statement: | ||
1410 | isStatement = 1; | ||
1411 | break; | ||
1412 | } | ||
1413 | } | ||
1414 | |||
1415 | |||
1416 | /* If the query was read-only, we need do no rollback at all. Otherwise, | ||
1417 | ** proceed with the special handling. | ||
1418 | */ | ||
1419 | if( notReadOnly || mrc!=SQLITE_INTERRUPT ){ | ||
1420 | if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){ | ||
1421 | xFunc = sqlite3BtreeRollbackStmt; | ||
1422 | p->rc = SQLITE_BUSY; | ||
1423 | } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){ | ||
1424 | xFunc = sqlite3BtreeRollbackStmt; | ||
1425 | }else{ | ||
1426 | /* We are forced to roll back the active transaction. Before doing | ||
1427 | ** so, abort any other statements this handle currently has active. | ||
1428 | */ | ||
1429 | invalidateCursorsOnModifiedBtrees(db); | ||
1430 | sqlite3RollbackAll(db); | ||
1431 | db->autoCommit = 1; | ||
1432 | } | ||
1433 | } | ||
1434 | } | ||
1435 | |||
1436 | /* If the auto-commit flag is set and this is the only active vdbe, then | ||
1437 | ** we do either a commit or rollback of the current transaction. | ||
1438 | ** | ||
1439 | ** Note: This block also runs if one of the special errors handled | ||
1440 | ** above has occured. | ||
1441 | */ | ||
1442 | if( db->autoCommit && db->activeVdbeCnt==1 ){ | ||
1443 | if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ | ||
1444 | /* The auto-commit flag is true, and the vdbe program was | ||
1445 | ** successful or hit an 'OR FAIL' constraint. This means a commit | ||
1446 | ** is required. | ||
1447 | */ | ||
1448 | int rc = vdbeCommit(db); | ||
1449 | if( rc==SQLITE_BUSY ){ | ||
1450 | sqlite3BtreeMutexArrayLeave(&p->aMutex); | ||
1451 | return SQLITE_BUSY; | ||
1452 | }else if( rc!=SQLITE_OK ){ | ||
1453 | p->rc = rc; | ||
1454 | sqlite3RollbackAll(db); | ||
1455 | }else{ | ||
1456 | sqlite3CommitInternalChanges(db); | ||
1457 | } | ||
1458 | }else{ | ||
1459 | sqlite3RollbackAll(db); | ||
1460 | } | ||
1461 | }else if( !xFunc ){ | ||
1462 | if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ | ||
1463 | if( p->openedStatement ){ | ||
1464 | xFunc = sqlite3BtreeCommitStmt; | ||
1465 | } | ||
1466 | }else if( p->errorAction==OE_Abort ){ | ||
1467 | xFunc = sqlite3BtreeRollbackStmt; | ||
1468 | }else{ | ||
1469 | invalidateCursorsOnModifiedBtrees(db); | ||
1470 | sqlite3RollbackAll(db); | ||
1471 | db->autoCommit = 1; | ||
1472 | } | ||
1473 | } | ||
1474 | |||
1475 | /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or | ||
1476 | ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs | ||
1477 | ** and the return code is still SQLITE_OK, set the return code to the new | ||
1478 | ** error value. | ||
1479 | */ | ||
1480 | assert(!xFunc || | ||
1481 | xFunc==sqlite3BtreeCommitStmt || | ||
1482 | xFunc==sqlite3BtreeRollbackStmt | ||
1483 | ); | ||
1484 | for(i=0; xFunc && i<db->nDb; i++){ | ||
1485 | int rc; | ||
1486 | Btree *pBt = db->aDb[i].pBt; | ||
1487 | if( pBt ){ | ||
1488 | rc = xFunc(pBt); | ||
1489 | if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){ | ||
1490 | p->rc = rc; | ||
1491 | sqlite3SetString(&p->zErrMsg, 0); | ||
1492 | } | ||
1493 | } | ||
1494 | } | ||
1495 | |||
1496 | /* If this was an INSERT, UPDATE or DELETE and the statement was committed, | ||
1497 | ** set the change counter. | ||
1498 | */ | ||
1499 | if( p->changeCntOn && p->pc>=0 ){ | ||
1500 | if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ | ||
1501 | sqlite3VdbeSetChanges(db, p->nChange); | ||
1502 | }else{ | ||
1503 | sqlite3VdbeSetChanges(db, 0); | ||
1504 | } | ||
1505 | p->nChange = 0; | ||
1506 | } | ||
1507 | |||
1508 | /* Rollback or commit any schema changes that occurred. */ | ||
1509 | if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ | ||
1510 | sqlite3ResetInternalSchema(db, 0); | ||
1511 | db->flags = (db->flags | SQLITE_InternChanges); | ||
1512 | } | ||
1513 | |||
1514 | /* Release the locks */ | ||
1515 | sqlite3BtreeMutexArrayLeave(&p->aMutex); | ||
1516 | } | ||
1517 | |||
1518 | /* We have successfully halted and closed the VM. Record this fact. */ | ||
1519 | if( p->pc>=0 ){ | ||
1520 | db->activeVdbeCnt--; | ||
1521 | } | ||
1522 | p->magic = VDBE_MAGIC_HALT; | ||
1523 | checkActiveVdbeCnt(db); | ||
1524 | if( p->db->mallocFailed ){ | ||
1525 | p->rc = SQLITE_NOMEM; | ||
1526 | } | ||
1527 | checkActiveVdbeCnt(db); | ||
1528 | |||
1529 | return SQLITE_OK; | ||
1530 | } | ||
1531 | |||
1532 | |||
1533 | /* | ||
1534 | ** Each VDBE holds the result of the most recent sqlite3_step() call | ||
1535 | ** in p->rc. This routine sets that result back to SQLITE_OK. | ||
1536 | */ | ||
1537 | void sqlite3VdbeResetStepResult(Vdbe *p){ | ||
1538 | p->rc = SQLITE_OK; | ||
1539 | } | ||
1540 | |||
1541 | /* | ||
1542 | ** Clean up a VDBE after execution but do not delete the VDBE just yet. | ||
1543 | ** Write any error messages into *pzErrMsg. Return the result code. | ||
1544 | ** | ||
1545 | ** After this routine is run, the VDBE should be ready to be executed | ||
1546 | ** again. | ||
1547 | ** | ||
1548 | ** To look at it another way, this routine resets the state of the | ||
1549 | ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to | ||
1550 | ** VDBE_MAGIC_INIT. | ||
1551 | */ | ||
1552 | int sqlite3VdbeReset(Vdbe *p){ | ||
1553 | sqlite3 *db; | ||
1554 | db = p->db; | ||
1555 | |||
1556 | /* If the VM did not run to completion or if it encountered an | ||
1557 | ** error, then it might not have been halted properly. So halt | ||
1558 | ** it now. | ||
1559 | */ | ||
1560 | sqlite3SafetyOn(db); | ||
1561 | sqlite3VdbeHalt(p); | ||
1562 | sqlite3SafetyOff(db); | ||
1563 | |||
1564 | /* If the VDBE has be run even partially, then transfer the error code | ||
1565 | ** and error message from the VDBE into the main database structure. But | ||
1566 | ** if the VDBE has just been set to run but has not actually executed any | ||
1567 | ** instructions yet, leave the main database error information unchanged. | ||
1568 | */ | ||
1569 | if( p->pc>=0 ){ | ||
1570 | if( p->zErrMsg ){ | ||
1571 | sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free); | ||
1572 | db->errCode = p->rc; | ||
1573 | p->zErrMsg = 0; | ||
1574 | }else if( p->rc ){ | ||
1575 | sqlite3Error(db, p->rc, 0); | ||
1576 | }else{ | ||
1577 | sqlite3Error(db, SQLITE_OK, 0); | ||
1578 | } | ||
1579 | }else if( p->rc && p->expired ){ | ||
1580 | /* The expired flag was set on the VDBE before the first call | ||
1581 | ** to sqlite3_step(). For consistency (since sqlite3_step() was | ||
1582 | ** called), set the database error in this case as well. | ||
1583 | */ | ||
1584 | sqlite3Error(db, p->rc, 0); | ||
1585 | } | ||
1586 | |||
1587 | /* Reclaim all memory used by the VDBE | ||
1588 | */ | ||
1589 | Cleanup(p); | ||
1590 | |||
1591 | /* Save profiling information from this VDBE run. | ||
1592 | */ | ||
1593 | assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack ); | ||
1594 | #ifdef VDBE_PROFILE | ||
1595 | { | ||
1596 | FILE *out = fopen("vdbe_profile.out", "a"); | ||
1597 | if( out ){ | ||
1598 | int i; | ||
1599 | fprintf(out, "---- "); | ||
1600 | for(i=0; i<p->nOp; i++){ | ||
1601 | fprintf(out, "%02x", p->aOp[i].opcode); | ||
1602 | } | ||
1603 | fprintf(out, "\n"); | ||
1604 | for(i=0; i<p->nOp; i++){ | ||
1605 | fprintf(out, "%6d %10lld %8lld ", | ||
1606 | p->aOp[i].cnt, | ||
1607 | p->aOp[i].cycles, | ||
1608 | p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 | ||
1609 | ); | ||
1610 | sqlite3VdbePrintOp(out, i, &p->aOp[i]); | ||
1611 | } | ||
1612 | fclose(out); | ||
1613 | } | ||
1614 | } | ||
1615 | #endif | ||
1616 | p->magic = VDBE_MAGIC_INIT; | ||
1617 | p->aborted = 0; | ||
1618 | return p->rc & db->errMask; | ||
1619 | } | ||
1620 | |||
1621 | /* | ||
1622 | ** Clean up and delete a VDBE after execution. Return an integer which is | ||
1623 | ** the result code. Write any error message text into *pzErrMsg. | ||
1624 | */ | ||
1625 | int sqlite3VdbeFinalize(Vdbe *p){ | ||
1626 | int rc = SQLITE_OK; | ||
1627 | if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ | ||
1628 | rc = sqlite3VdbeReset(p); | ||
1629 | assert( (rc & p->db->errMask)==rc ); | ||
1630 | }else if( p->magic!=VDBE_MAGIC_INIT ){ | ||
1631 | return SQLITE_MISUSE; | ||
1632 | } | ||
1633 | sqlite3VdbeDelete(p); | ||
1634 | return rc; | ||
1635 | } | ||
1636 | |||
1637 | /* | ||
1638 | ** Call the destructor for each auxdata entry in pVdbeFunc for which | ||
1639 | ** the corresponding bit in mask is clear. Auxdata entries beyond 31 | ||
1640 | ** are always destroyed. To destroy all auxdata entries, call this | ||
1641 | ** routine with mask==0. | ||
1642 | */ | ||
1643 | void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ | ||
1644 | int i; | ||
1645 | for(i=0; i<pVdbeFunc->nAux; i++){ | ||
1646 | struct AuxData *pAux = &pVdbeFunc->apAux[i]; | ||
1647 | if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){ | ||
1648 | if( pAux->xDelete ){ | ||
1649 | pAux->xDelete(pAux->pAux); | ||
1650 | } | ||
1651 | pAux->pAux = 0; | ||
1652 | } | ||
1653 | } | ||
1654 | } | ||
1655 | |||
1656 | /* | ||
1657 | ** Delete an entire VDBE. | ||
1658 | */ | ||
1659 | void sqlite3VdbeDelete(Vdbe *p){ | ||
1660 | int i; | ||
1661 | if( p==0 ) return; | ||
1662 | Cleanup(p); | ||
1663 | if( p->pPrev ){ | ||
1664 | p->pPrev->pNext = p->pNext; | ||
1665 | }else{ | ||
1666 | assert( p->db->pVdbe==p ); | ||
1667 | p->db->pVdbe = p->pNext; | ||
1668 | } | ||
1669 | if( p->pNext ){ | ||
1670 | p->pNext->pPrev = p->pPrev; | ||
1671 | } | ||
1672 | if( p->aOp ){ | ||
1673 | for(i=0; i<p->nOp; i++){ | ||
1674 | Op *pOp = &p->aOp[i]; | ||
1675 | freeP3(pOp->p3type, pOp->p3); | ||
1676 | } | ||
1677 | sqlite3_free(p->aOp); | ||
1678 | } | ||
1679 | releaseMemArray(p->aVar, p->nVar); | ||
1680 | sqlite3_free(p->aLabel); | ||
1681 | sqlite3_free(p->aStack); | ||
1682 | releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | ||
1683 | sqlite3_free(p->aColName); | ||
1684 | sqlite3_free(p->zSql); | ||
1685 | p->magic = VDBE_MAGIC_DEAD; | ||
1686 | sqlite3_free(p); | ||
1687 | } | ||
1688 | |||
1689 | /* | ||
1690 | ** If a MoveTo operation is pending on the given cursor, then do that | ||
1691 | ** MoveTo now. Return an error code. If no MoveTo is pending, this | ||
1692 | ** routine does nothing and returns SQLITE_OK. | ||
1693 | */ | ||
1694 | int sqlite3VdbeCursorMoveto(Cursor *p){ | ||
1695 | if( p->deferredMoveto ){ | ||
1696 | int res, rc; | ||
1697 | #ifdef SQLITE_TEST | ||
1698 | extern int sqlite3_search_count; | ||
1699 | #endif | ||
1700 | assert( p->isTable ); | ||
1701 | rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res); | ||
1702 | if( rc ) return rc; | ||
1703 | *p->pIncrKey = 0; | ||
1704 | p->lastRowid = keyToInt(p->movetoTarget); | ||
1705 | p->rowidIsValid = res==0; | ||
1706 | if( res<0 ){ | ||
1707 | rc = sqlite3BtreeNext(p->pCursor, &res); | ||
1708 | if( rc ) return rc; | ||
1709 | } | ||
1710 | #ifdef SQLITE_TEST | ||
1711 | sqlite3_search_count++; | ||
1712 | #endif | ||
1713 | p->deferredMoveto = 0; | ||
1714 | p->cacheStatus = CACHE_STALE; | ||
1715 | } | ||
1716 | return SQLITE_OK; | ||
1717 | } | ||
1718 | |||
1719 | /* | ||
1720 | ** The following functions: | ||
1721 | ** | ||
1722 | ** sqlite3VdbeSerialType() | ||
1723 | ** sqlite3VdbeSerialTypeLen() | ||
1724 | ** sqlite3VdbeSerialRead() | ||
1725 | ** sqlite3VdbeSerialLen() | ||
1726 | ** sqlite3VdbeSerialWrite() | ||
1727 | ** | ||
1728 | ** encapsulate the code that serializes values for storage in SQLite | ||
1729 | ** data and index records. Each serialized value consists of a | ||
1730 | ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned | ||
1731 | ** integer, stored as a varint. | ||
1732 | ** | ||
1733 | ** In an SQLite index record, the serial type is stored directly before | ||
1734 | ** the blob of data that it corresponds to. In a table record, all serial | ||
1735 | ** types are stored at the start of the record, and the blobs of data at | ||
1736 | ** the end. Hence these functions allow the caller to handle the | ||
1737 | ** serial-type and data blob seperately. | ||
1738 | ** | ||
1739 | ** The following table describes the various storage classes for data: | ||
1740 | ** | ||
1741 | ** serial type bytes of data type | ||
1742 | ** -------------- --------------- --------------- | ||
1743 | ** 0 0 NULL | ||
1744 | ** 1 1 signed integer | ||
1745 | ** 2 2 signed integer | ||
1746 | ** 3 3 signed integer | ||
1747 | ** 4 4 signed integer | ||
1748 | ** 5 6 signed integer | ||
1749 | ** 6 8 signed integer | ||
1750 | ** 7 8 IEEE float | ||
1751 | ** 8 0 Integer constant 0 | ||
1752 | ** 9 0 Integer constant 1 | ||
1753 | ** 10,11 reserved for expansion | ||
1754 | ** N>=12 and even (N-12)/2 BLOB | ||
1755 | ** N>=13 and odd (N-13)/2 text | ||
1756 | ** | ||
1757 | ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions | ||
1758 | ** of SQLite will not understand those serial types. | ||
1759 | */ | ||
1760 | |||
1761 | /* | ||
1762 | ** Return the serial-type for the value stored in pMem. | ||
1763 | */ | ||
1764 | u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ | ||
1765 | int flags = pMem->flags; | ||
1766 | int n; | ||
1767 | |||
1768 | if( flags&MEM_Null ){ | ||
1769 | return 0; | ||
1770 | } | ||
1771 | if( flags&MEM_Int ){ | ||
1772 | /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ | ||
1773 | # define MAX_6BYTE ((((i64)0x00001000)<<32)-1) | ||
1774 | i64 i = pMem->u.i; | ||
1775 | u64 u; | ||
1776 | if( file_format>=4 && (i&1)==i ){ | ||
1777 | return 8+i; | ||
1778 | } | ||
1779 | u = i<0 ? -i : i; | ||
1780 | if( u<=127 ) return 1; | ||
1781 | if( u<=32767 ) return 2; | ||
1782 | if( u<=8388607 ) return 3; | ||
1783 | if( u<=2147483647 ) return 4; | ||
1784 | if( u<=MAX_6BYTE ) return 5; | ||
1785 | return 6; | ||
1786 | } | ||
1787 | if( flags&MEM_Real ){ | ||
1788 | return 7; | ||
1789 | } | ||
1790 | assert( flags&(MEM_Str|MEM_Blob) ); | ||
1791 | n = pMem->n; | ||
1792 | if( flags & MEM_Zero ){ | ||
1793 | n += pMem->u.i; | ||
1794 | } | ||
1795 | assert( n>=0 ); | ||
1796 | return ((n*2) + 12 + ((flags&MEM_Str)!=0)); | ||
1797 | } | ||
1798 | |||
1799 | /* | ||
1800 | ** Return the length of the data corresponding to the supplied serial-type. | ||
1801 | */ | ||
1802 | int sqlite3VdbeSerialTypeLen(u32 serial_type){ | ||
1803 | if( serial_type>=12 ){ | ||
1804 | return (serial_type-12)/2; | ||
1805 | }else{ | ||
1806 | static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; | ||
1807 | return aSize[serial_type]; | ||
1808 | } | ||
1809 | } | ||
1810 | |||
1811 | /* | ||
1812 | ** If we are on an architecture with mixed-endian floating | ||
1813 | ** points (ex: ARM7) then swap the lower 4 bytes with the | ||
1814 | ** upper 4 bytes. Return the result. | ||
1815 | ** | ||
1816 | ** For most architectures, this is a no-op. | ||
1817 | ** | ||
1818 | ** (later): It is reported to me that the mixed-endian problem | ||
1819 | ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems | ||
1820 | ** that early versions of GCC stored the two words of a 64-bit | ||
1821 | ** float in the wrong order. And that error has been propagated | ||
1822 | ** ever since. The blame is not necessarily with GCC, though. | ||
1823 | ** GCC might have just copying the problem from a prior compiler. | ||
1824 | ** I am also told that newer versions of GCC that follow a different | ||
1825 | ** ABI get the byte order right. | ||
1826 | ** | ||
1827 | ** Developers using SQLite on an ARM7 should compile and run their | ||
1828 | ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG | ||
1829 | ** enabled, some asserts below will ensure that the byte order of | ||
1830 | ** floating point values is correct. | ||
1831 | ** | ||
1832 | ** (2007-08-30) Frank van Vugt has studied this problem closely | ||
1833 | ** and has send his findings to the SQLite developers. Frank | ||
1834 | ** writes that some Linux kernels offer floating point hardware | ||
1835 | ** emulation that uses only 32-bit mantissas instead of a full | ||
1836 | ** 48-bits as required by the IEEE standard. (This is the | ||
1837 | ** CONFIG_FPE_FASTFPE option.) On such systems, floating point | ||
1838 | ** byte swapping becomes very complicated. To avoid problems, | ||
1839 | ** the necessary byte swapping is carried out using a 64-bit integer | ||
1840 | ** rather than a 64-bit float. Frank assures us that the code here | ||
1841 | ** works for him. We, the developers, have no way to independently | ||
1842 | ** verify this, but Frank seems to know what he is talking about | ||
1843 | ** so we trust him. | ||
1844 | */ | ||
1845 | #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT | ||
1846 | static u64 floatSwap(u64 in){ | ||
1847 | union { | ||
1848 | u64 r; | ||
1849 | u32 i[2]; | ||
1850 | } u; | ||
1851 | u32 t; | ||
1852 | |||
1853 | u.r = in; | ||
1854 | t = u.i[0]; | ||
1855 | u.i[0] = u.i[1]; | ||
1856 | u.i[1] = t; | ||
1857 | return u.r; | ||
1858 | } | ||
1859 | # define swapMixedEndianFloat(X) X = floatSwap(X) | ||
1860 | #else | ||
1861 | # define swapMixedEndianFloat(X) | ||
1862 | #endif | ||
1863 | |||
1864 | /* | ||
1865 | ** Write the serialized data blob for the value stored in pMem into | ||
1866 | ** buf. It is assumed that the caller has allocated sufficient space. | ||
1867 | ** Return the number of bytes written. | ||
1868 | ** | ||
1869 | ** nBuf is the amount of space left in buf[]. nBuf must always be | ||
1870 | ** large enough to hold the entire field. Except, if the field is | ||
1871 | ** a blob with a zero-filled tail, then buf[] might be just the right | ||
1872 | ** size to hold everything except for the zero-filled tail. If buf[] | ||
1873 | ** is only big enough to hold the non-zero prefix, then only write that | ||
1874 | ** prefix into buf[]. But if buf[] is large enough to hold both the | ||
1875 | ** prefix and the tail then write the prefix and set the tail to all | ||
1876 | ** zeros. | ||
1877 | ** | ||
1878 | ** Return the number of bytes actually written into buf[]. The number | ||
1879 | ** of bytes in the zero-filled tail is included in the return value only | ||
1880 | ** if those bytes were zeroed in buf[]. | ||
1881 | */ | ||
1882 | int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ | ||
1883 | u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); | ||
1884 | int len; | ||
1885 | |||
1886 | /* Integer and Real */ | ||
1887 | if( serial_type<=7 && serial_type>0 ){ | ||
1888 | u64 v; | ||
1889 | int i; | ||
1890 | if( serial_type==7 ){ | ||
1891 | assert( sizeof(v)==sizeof(pMem->r) ); | ||
1892 | memcpy(&v, &pMem->r, sizeof(v)); | ||
1893 | swapMixedEndianFloat(v); | ||
1894 | }else{ | ||
1895 | v = pMem->u.i; | ||
1896 | } | ||
1897 | len = i = sqlite3VdbeSerialTypeLen(serial_type); | ||
1898 | assert( len<=nBuf ); | ||
1899 | while( i-- ){ | ||
1900 | buf[i] = (v&0xFF); | ||
1901 | v >>= 8; | ||
1902 | } | ||
1903 | return len; | ||
1904 | } | ||
1905 | |||
1906 | /* String or blob */ | ||
1907 | if( serial_type>=12 ){ | ||
1908 | assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0) | ||
1909 | == sqlite3VdbeSerialTypeLen(serial_type) ); | ||
1910 | assert( pMem->n<=nBuf ); | ||
1911 | len = pMem->n; | ||
1912 | memcpy(buf, pMem->z, len); | ||
1913 | if( pMem->flags & MEM_Zero ){ | ||
1914 | len += pMem->u.i; | ||
1915 | if( len>nBuf ){ | ||
1916 | len = nBuf; | ||
1917 | } | ||
1918 | memset(&buf[pMem->n], 0, len-pMem->n); | ||
1919 | } | ||
1920 | return len; | ||
1921 | } | ||
1922 | |||
1923 | /* NULL or constants 0 or 1 */ | ||
1924 | return 0; | ||
1925 | } | ||
1926 | |||
1927 | /* | ||
1928 | ** Deserialize the data blob pointed to by buf as serial type serial_type | ||
1929 | ** and store the result in pMem. Return the number of bytes read. | ||
1930 | */ | ||
1931 | int sqlite3VdbeSerialGet( | ||
1932 | const unsigned char *buf, /* Buffer to deserialize from */ | ||
1933 | u32 serial_type, /* Serial type to deserialize */ | ||
1934 | Mem *pMem /* Memory cell to write value into */ | ||
1935 | ){ | ||
1936 | switch( serial_type ){ | ||
1937 | case 10: /* Reserved for future use */ | ||
1938 | case 11: /* Reserved for future use */ | ||
1939 | case 0: { /* NULL */ | ||
1940 | pMem->flags = MEM_Null; | ||
1941 | break; | ||
1942 | } | ||
1943 | case 1: { /* 1-byte signed integer */ | ||
1944 | pMem->u.i = (signed char)buf[0]; | ||
1945 | pMem->flags = MEM_Int; | ||
1946 | return 1; | ||
1947 | } | ||
1948 | case 2: { /* 2-byte signed integer */ | ||
1949 | pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; | ||
1950 | pMem->flags = MEM_Int; | ||
1951 | return 2; | ||
1952 | } | ||
1953 | case 3: { /* 3-byte signed integer */ | ||
1954 | pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; | ||
1955 | pMem->flags = MEM_Int; | ||
1956 | return 3; | ||
1957 | } | ||
1958 | case 4: { /* 4-byte signed integer */ | ||
1959 | pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; | ||
1960 | pMem->flags = MEM_Int; | ||
1961 | return 4; | ||
1962 | } | ||
1963 | case 5: { /* 6-byte signed integer */ | ||
1964 | u64 x = (((signed char)buf[0])<<8) | buf[1]; | ||
1965 | u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; | ||
1966 | x = (x<<32) | y; | ||
1967 | pMem->u.i = *(i64*)&x; | ||
1968 | pMem->flags = MEM_Int; | ||
1969 | return 6; | ||
1970 | } | ||
1971 | case 6: /* 8-byte signed integer */ | ||
1972 | case 7: { /* IEEE floating point */ | ||
1973 | u64 x; | ||
1974 | u32 y; | ||
1975 | #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) | ||
1976 | /* Verify that integers and floating point values use the same | ||
1977 | ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | ||
1978 | ** defined that 64-bit floating point values really are mixed | ||
1979 | ** endian. | ||
1980 | */ | ||
1981 | static const u64 t1 = ((u64)0x3ff00000)<<32; | ||
1982 | static const double r1 = 1.0; | ||
1983 | u64 t2 = t1; | ||
1984 | swapMixedEndianFloat(t2); | ||
1985 | assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); | ||
1986 | #endif | ||
1987 | |||
1988 | x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; | ||
1989 | y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; | ||
1990 | x = (x<<32) | y; | ||
1991 | if( serial_type==6 ){ | ||
1992 | pMem->u.i = *(i64*)&x; | ||
1993 | pMem->flags = MEM_Int; | ||
1994 | }else{ | ||
1995 | assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); | ||
1996 | swapMixedEndianFloat(x); | ||
1997 | memcpy(&pMem->r, &x, sizeof(x)); | ||
1998 | pMem->flags = MEM_Real; | ||
1999 | } | ||
2000 | return 8; | ||
2001 | } | ||
2002 | case 8: /* Integer 0 */ | ||
2003 | case 9: { /* Integer 1 */ | ||
2004 | pMem->u.i = serial_type-8; | ||
2005 | pMem->flags = MEM_Int; | ||
2006 | return 0; | ||
2007 | } | ||
2008 | default: { | ||
2009 | int len = (serial_type-12)/2; | ||
2010 | pMem->z = (char *)buf; | ||
2011 | pMem->n = len; | ||
2012 | pMem->xDel = 0; | ||
2013 | if( serial_type&0x01 ){ | ||
2014 | pMem->flags = MEM_Str | MEM_Ephem; | ||
2015 | }else{ | ||
2016 | pMem->flags = MEM_Blob | MEM_Ephem; | ||
2017 | } | ||
2018 | return len; | ||
2019 | } | ||
2020 | } | ||
2021 | return 0; | ||
2022 | } | ||
2023 | |||
2024 | /* | ||
2025 | ** The header of a record consists of a sequence variable-length integers. | ||
2026 | ** These integers are almost always small and are encoded as a single byte. | ||
2027 | ** The following macro takes advantage this fact to provide a fast decode | ||
2028 | ** of the integers in a record header. It is faster for the common case | ||
2029 | ** where the integer is a single byte. It is a little slower when the | ||
2030 | ** integer is two or more bytes. But overall it is faster. | ||
2031 | ** | ||
2032 | ** The following expressions are equivalent: | ||
2033 | ** | ||
2034 | ** x = sqlite3GetVarint32( A, &B ); | ||
2035 | ** | ||
2036 | ** x = GetVarint( A, B ); | ||
2037 | ** | ||
2038 | */ | ||
2039 | #define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B)) | ||
2040 | |||
2041 | /* | ||
2042 | ** This function compares the two table rows or index records specified by | ||
2043 | ** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero | ||
2044 | ** or positive integer if {nKey1, pKey1} is less than, equal to or | ||
2045 | ** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings | ||
2046 | ** composed by the OP_MakeRecord opcode of the VDBE. | ||
2047 | */ | ||
2048 | int sqlite3VdbeRecordCompare( | ||
2049 | void *userData, | ||
2050 | int nKey1, const void *pKey1, | ||
2051 | int nKey2, const void *pKey2 | ||
2052 | ){ | ||
2053 | KeyInfo *pKeyInfo = (KeyInfo*)userData; | ||
2054 | u32 d1, d2; /* Offset into aKey[] of next data element */ | ||
2055 | u32 idx1, idx2; /* Offset into aKey[] of next header element */ | ||
2056 | u32 szHdr1, szHdr2; /* Number of bytes in header */ | ||
2057 | int i = 0; | ||
2058 | int nField; | ||
2059 | int rc = 0; | ||
2060 | const unsigned char *aKey1 = (const unsigned char *)pKey1; | ||
2061 | const unsigned char *aKey2 = (const unsigned char *)pKey2; | ||
2062 | |||
2063 | Mem mem1; | ||
2064 | Mem mem2; | ||
2065 | mem1.enc = pKeyInfo->enc; | ||
2066 | mem1.db = pKeyInfo->db; | ||
2067 | mem2.enc = pKeyInfo->enc; | ||
2068 | mem2.db = pKeyInfo->db; | ||
2069 | |||
2070 | idx1 = GetVarint(aKey1, szHdr1); | ||
2071 | d1 = szHdr1; | ||
2072 | idx2 = GetVarint(aKey2, szHdr2); | ||
2073 | d2 = szHdr2; | ||
2074 | nField = pKeyInfo->nField; | ||
2075 | while( idx1<szHdr1 && idx2<szHdr2 ){ | ||
2076 | u32 serial_type1; | ||
2077 | u32 serial_type2; | ||
2078 | |||
2079 | /* Read the serial types for the next element in each key. */ | ||
2080 | idx1 += GetVarint( aKey1+idx1, serial_type1 ); | ||
2081 | if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; | ||
2082 | idx2 += GetVarint( aKey2+idx2, serial_type2 ); | ||
2083 | if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break; | ||
2084 | |||
2085 | /* Extract the values to be compared. | ||
2086 | */ | ||
2087 | d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); | ||
2088 | d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); | ||
2089 | |||
2090 | /* Do the comparison | ||
2091 | */ | ||
2092 | rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0); | ||
2093 | if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1); | ||
2094 | if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2); | ||
2095 | if( rc!=0 ){ | ||
2096 | break; | ||
2097 | } | ||
2098 | i++; | ||
2099 | } | ||
2100 | |||
2101 | /* One of the keys ran out of fields, but all the fields up to that point | ||
2102 | ** were equal. If the incrKey flag is true, then the second key is | ||
2103 | ** treated as larger. | ||
2104 | */ | ||
2105 | if( rc==0 ){ | ||
2106 | if( pKeyInfo->incrKey ){ | ||
2107 | rc = -1; | ||
2108 | }else if( d1<nKey1 ){ | ||
2109 | rc = 1; | ||
2110 | }else if( d2<nKey2 ){ | ||
2111 | rc = -1; | ||
2112 | } | ||
2113 | }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField | ||
2114 | && pKeyInfo->aSortOrder[i] ){ | ||
2115 | rc = -rc; | ||
2116 | } | ||
2117 | |||
2118 | return rc; | ||
2119 | } | ||
2120 | |||
2121 | /* | ||
2122 | ** The argument is an index entry composed using the OP_MakeRecord opcode. | ||
2123 | ** The last entry in this record should be an integer (specifically | ||
2124 | ** an integer rowid). This routine returns the number of bytes in | ||
2125 | ** that integer. | ||
2126 | */ | ||
2127 | int sqlite3VdbeIdxRowidLen(const u8 *aKey){ | ||
2128 | u32 szHdr; /* Size of the header */ | ||
2129 | u32 typeRowid; /* Serial type of the rowid */ | ||
2130 | |||
2131 | sqlite3GetVarint32(aKey, &szHdr); | ||
2132 | sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid); | ||
2133 | return sqlite3VdbeSerialTypeLen(typeRowid); | ||
2134 | } | ||
2135 | |||
2136 | |||
2137 | /* | ||
2138 | ** pCur points at an index entry created using the OP_MakeRecord opcode. | ||
2139 | ** Read the rowid (the last field in the record) and store it in *rowid. | ||
2140 | ** Return SQLITE_OK if everything works, or an error code otherwise. | ||
2141 | */ | ||
2142 | int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ | ||
2143 | i64 nCellKey = 0; | ||
2144 | int rc; | ||
2145 | u32 szHdr; /* Size of the header */ | ||
2146 | u32 typeRowid; /* Serial type of the rowid */ | ||
2147 | u32 lenRowid; /* Size of the rowid */ | ||
2148 | Mem m, v; | ||
2149 | |||
2150 | sqlite3BtreeKeySize(pCur, &nCellKey); | ||
2151 | if( nCellKey<=0 ){ | ||
2152 | return SQLITE_CORRUPT_BKPT; | ||
2153 | } | ||
2154 | rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); | ||
2155 | if( rc ){ | ||
2156 | return rc; | ||
2157 | } | ||
2158 | sqlite3GetVarint32((u8*)m.z, &szHdr); | ||
2159 | sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); | ||
2160 | lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); | ||
2161 | sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); | ||
2162 | *rowid = v.u.i; | ||
2163 | sqlite3VdbeMemRelease(&m); | ||
2164 | return SQLITE_OK; | ||
2165 | } | ||
2166 | |||
2167 | /* | ||
2168 | ** Compare the key of the index entry that cursor pC is point to against | ||
2169 | ** the key string in pKey (of length nKey). Write into *pRes a number | ||
2170 | ** that is negative, zero, or positive if pC is less than, equal to, | ||
2171 | ** or greater than pKey. Return SQLITE_OK on success. | ||
2172 | ** | ||
2173 | ** pKey is either created without a rowid or is truncated so that it | ||
2174 | ** omits the rowid at the end. The rowid at the end of the index entry | ||
2175 | ** is ignored as well. | ||
2176 | */ | ||
2177 | int sqlite3VdbeIdxKeyCompare( | ||
2178 | Cursor *pC, /* The cursor to compare against */ | ||
2179 | int nKey, const u8 *pKey, /* The key to compare */ | ||
2180 | int *res /* Write the comparison result here */ | ||
2181 | ){ | ||
2182 | i64 nCellKey = 0; | ||
2183 | int rc; | ||
2184 | BtCursor *pCur = pC->pCursor; | ||
2185 | int lenRowid; | ||
2186 | Mem m; | ||
2187 | |||
2188 | sqlite3BtreeKeySize(pCur, &nCellKey); | ||
2189 | if( nCellKey<=0 ){ | ||
2190 | *res = 0; | ||
2191 | return SQLITE_OK; | ||
2192 | } | ||
2193 | rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); | ||
2194 | if( rc ){ | ||
2195 | return rc; | ||
2196 | } | ||
2197 | lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); | ||
2198 | *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); | ||
2199 | sqlite3VdbeMemRelease(&m); | ||
2200 | return SQLITE_OK; | ||
2201 | } | ||
2202 | |||
2203 | /* | ||
2204 | ** This routine sets the value to be returned by subsequent calls to | ||
2205 | ** sqlite3_changes() on the database handle 'db'. | ||
2206 | */ | ||
2207 | void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ | ||
2208 | assert( sqlite3_mutex_held(db->mutex) ); | ||
2209 | db->nChange = nChange; | ||
2210 | db->nTotalChange += nChange; | ||
2211 | } | ||
2212 | |||
2213 | /* | ||
2214 | ** Set a flag in the vdbe to update the change counter when it is finalised | ||
2215 | ** or reset. | ||
2216 | */ | ||
2217 | void sqlite3VdbeCountChanges(Vdbe *v){ | ||
2218 | v->changeCntOn = 1; | ||
2219 | } | ||
2220 | |||
2221 | /* | ||
2222 | ** Mark every prepared statement associated with a database connection | ||
2223 | ** as expired. | ||
2224 | ** | ||
2225 | ** An expired statement means that recompilation of the statement is | ||
2226 | ** recommend. Statements expire when things happen that make their | ||
2227 | ** programs obsolete. Removing user-defined functions or collating | ||
2228 | ** sequences, or changing an authorization function are the types of | ||
2229 | ** things that make prepared statements obsolete. | ||
2230 | */ | ||
2231 | void sqlite3ExpirePreparedStatements(sqlite3 *db){ | ||
2232 | Vdbe *p; | ||
2233 | for(p = db->pVdbe; p; p=p->pNext){ | ||
2234 | p->expired = 1; | ||
2235 | } | ||
2236 | } | ||
2237 | |||
2238 | /* | ||
2239 | ** Return the database associated with the Vdbe. | ||
2240 | */ | ||
2241 | sqlite3 *sqlite3VdbeDb(Vdbe *v){ | ||
2242 | return v->db; | ||
2243 | } | ||