diff options
Diffstat (limited to 'libraries/ode-0.9/ode/src/stepfast.cpp')
-rwxr-xr-x | libraries/ode-0.9/ode/src/stepfast.cpp | 1139 |
1 files changed, 0 insertions, 1139 deletions
diff --git a/libraries/ode-0.9/ode/src/stepfast.cpp b/libraries/ode-0.9/ode/src/stepfast.cpp deleted file mode 100755 index 35c45db..0000000 --- a/libraries/ode-0.9/ode/src/stepfast.cpp +++ /dev/null | |||
@@ -1,1139 +0,0 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * Fast iterative solver, David Whittaker. Email: david@csworkbench.com * | ||
7 | * * | ||
8 | * This library is free software; you can redistribute it and/or * | ||
9 | * modify it under the terms of EITHER: * | ||
10 | * (1) The GNU Lesser General Public License as published by the Free * | ||
11 | * Software Foundation; either version 2.1 of the License, or (at * | ||
12 | * your option) any later version. The text of the GNU Lesser * | ||
13 | * General Public License is included with this library in the * | ||
14 | * file LICENSE.TXT. * | ||
15 | * (2) The BSD-style license that is included with this library in * | ||
16 | * the file LICENSE-BSD.TXT. * | ||
17 | * * | ||
18 | * This library is distributed in the hope that it will be useful, * | ||
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
21 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
22 | * * | ||
23 | *************************************************************************/ | ||
24 | |||
25 | // This is the StepFast code by David Whittaker. This code is faster, but | ||
26 | // sometimes less stable than, the original "big matrix" code. | ||
27 | // Refer to the user's manual for more information. | ||
28 | // Note that this source file duplicates a lot of stuff from step.cpp, | ||
29 | // eventually we should move the common code to a third file. | ||
30 | |||
31 | #include "objects.h" | ||
32 | #include "joint.h" | ||
33 | #include <ode/config.h> | ||
34 | #include <ode/objects.h> | ||
35 | #include <ode/odemath.h> | ||
36 | #include <ode/rotation.h> | ||
37 | #include <ode/timer.h> | ||
38 | #include <ode/error.h> | ||
39 | #include <ode/matrix.h> | ||
40 | #include <ode/misc.h> | ||
41 | #include "lcp.h" | ||
42 | #include "step.h" | ||
43 | #include "util.h" | ||
44 | |||
45 | |||
46 | // misc defines | ||
47 | |||
48 | #define ALLOCA dALLOCA16 | ||
49 | |||
50 | #define RANDOM_JOINT_ORDER | ||
51 | //#define FAST_FACTOR //use a factorization approximation to the LCP solver (fast, theoretically less accurate) | ||
52 | #define SLOW_LCP //use the old LCP solver | ||
53 | //#define NO_ISLANDS //does not perform island creation code (3~4% of simulation time), body disabling doesn't work | ||
54 | //#define TIMING | ||
55 | |||
56 | |||
57 | static int autoEnableDepth = 2; | ||
58 | |||
59 | void dWorldSetAutoEnableDepthSF1 (dxWorld *world, int autodepth) | ||
60 | { | ||
61 | if (autodepth > 0) | ||
62 | autoEnableDepth = autodepth; | ||
63 | else | ||
64 | autoEnableDepth = 0; | ||
65 | } | ||
66 | |||
67 | int dWorldGetAutoEnableDepthSF1 (dxWorld *world) | ||
68 | { | ||
69 | return autoEnableDepth; | ||
70 | } | ||
71 | |||
72 | //little bit of math.... the _sym_ functions assume the return matrix will be symmetric | ||
73 | static void | ||
74 | Multiply2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip) | ||
75 | { | ||
76 | int i, j; | ||
77 | dReal sum, *aa, *ad, *bb, *cc; | ||
78 | dIASSERT (p > 0 && A && B && C); | ||
79 | bb = B; | ||
80 | for (i = 0; i < p; i++) | ||
81 | { | ||
82 | //aa is going accross the matrix, ad down | ||
83 | aa = ad = A; | ||
84 | cc = C; | ||
85 | for (j = i; j < p; j++) | ||
86 | { | ||
87 | sum = bb[0] * cc[0]; | ||
88 | sum += bb[1] * cc[1]; | ||
89 | sum += bb[2] * cc[2]; | ||
90 | sum += bb[4] * cc[4]; | ||
91 | sum += bb[5] * cc[5]; | ||
92 | sum += bb[6] * cc[6]; | ||
93 | *(aa++) = *ad = sum; | ||
94 | ad += Askip; | ||
95 | cc += 8; | ||
96 | } | ||
97 | bb += 8; | ||
98 | A += Askip + 1; | ||
99 | C += 8; | ||
100 | } | ||
101 | } | ||
102 | |||
103 | static void | ||
104 | MultiplyAdd2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip) | ||
105 | { | ||
106 | int i, j; | ||
107 | dReal sum, *aa, *ad, *bb, *cc; | ||
108 | dIASSERT (p > 0 && A && B && C); | ||
109 | bb = B; | ||
110 | for (i = 0; i < p; i++) | ||
111 | { | ||
112 | //aa is going accross the matrix, ad down | ||
113 | aa = ad = A; | ||
114 | cc = C; | ||
115 | for (j = i; j < p; j++) | ||
116 | { | ||
117 | sum = bb[0] * cc[0]; | ||
118 | sum += bb[1] * cc[1]; | ||
119 | sum += bb[2] * cc[2]; | ||
120 | sum += bb[4] * cc[4]; | ||
121 | sum += bb[5] * cc[5]; | ||
122 | sum += bb[6] * cc[6]; | ||
123 | *(aa++) += sum; | ||
124 | *ad += sum; | ||
125 | ad += Askip; | ||
126 | cc += 8; | ||
127 | } | ||
128 | bb += 8; | ||
129 | A += Askip + 1; | ||
130 | C += 8; | ||
131 | } | ||
132 | } | ||
133 | |||
134 | |||
135 | // this assumes the 4th and 8th rows of B are zero. | ||
136 | |||
137 | static void | ||
138 | Multiply0_p81 (dReal * A, dReal * B, dReal * C, int p) | ||
139 | { | ||
140 | int i; | ||
141 | dIASSERT (p > 0 && A && B && C); | ||
142 | dReal sum; | ||
143 | for (i = p; i; i--) | ||
144 | { | ||
145 | sum = B[0] * C[0]; | ||
146 | sum += B[1] * C[1]; | ||
147 | sum += B[2] * C[2]; | ||
148 | sum += B[4] * C[4]; | ||
149 | sum += B[5] * C[5]; | ||
150 | sum += B[6] * C[6]; | ||
151 | *(A++) = sum; | ||
152 | B += 8; | ||
153 | } | ||
154 | } | ||
155 | |||
156 | |||
157 | // this assumes the 4th and 8th rows of B are zero. | ||
158 | |||
159 | static void | ||
160 | MultiplyAdd0_p81 (dReal * A, dReal * B, dReal * C, int p) | ||
161 | { | ||
162 | int i; | ||
163 | dIASSERT (p > 0 && A && B && C); | ||
164 | dReal sum; | ||
165 | for (i = p; i; i--) | ||
166 | { | ||
167 | sum = B[0] * C[0]; | ||
168 | sum += B[1] * C[1]; | ||
169 | sum += B[2] * C[2]; | ||
170 | sum += B[4] * C[4]; | ||
171 | sum += B[5] * C[5]; | ||
172 | sum += B[6] * C[6]; | ||
173 | *(A++) += sum; | ||
174 | B += 8; | ||
175 | } | ||
176 | } | ||
177 | |||
178 | |||
179 | // this assumes the 4th and 8th rows of B are zero. | ||
180 | |||
181 | static void | ||
182 | Multiply1_8q1 (dReal * A, dReal * B, dReal * C, int q) | ||
183 | { | ||
184 | int k; | ||
185 | dReal sum; | ||
186 | dIASSERT (q > 0 && A && B && C); | ||
187 | sum = 0; | ||
188 | for (k = 0; k < q; k++) | ||
189 | sum += B[k * 8] * C[k]; | ||
190 | A[0] = sum; | ||
191 | sum = 0; | ||
192 | for (k = 0; k < q; k++) | ||
193 | sum += B[1 + k * 8] * C[k]; | ||
194 | A[1] = sum; | ||
195 | sum = 0; | ||
196 | for (k = 0; k < q; k++) | ||
197 | sum += B[2 + k * 8] * C[k]; | ||
198 | A[2] = sum; | ||
199 | sum = 0; | ||
200 | for (k = 0; k < q; k++) | ||
201 | sum += B[4 + k * 8] * C[k]; | ||
202 | A[4] = sum; | ||
203 | sum = 0; | ||
204 | for (k = 0; k < q; k++) | ||
205 | sum += B[5 + k * 8] * C[k]; | ||
206 | A[5] = sum; | ||
207 | sum = 0; | ||
208 | for (k = 0; k < q; k++) | ||
209 | sum += B[6 + k * 8] * C[k]; | ||
210 | A[6] = sum; | ||
211 | } | ||
212 | |||
213 | //**************************************************************************** | ||
214 | // body rotation | ||
215 | |||
216 | // return sin(x)/x. this has a singularity at 0 so special handling is needed | ||
217 | // for small arguments. | ||
218 | |||
219 | static inline dReal | ||
220 | sinc (dReal x) | ||
221 | { | ||
222 | // if |x| < 1e-4 then use a taylor series expansion. this two term expansion | ||
223 | // is actually accurate to one LS bit within this range if double precision | ||
224 | // is being used - so don't worry! | ||
225 | if (dFabs (x) < 1.0e-4) | ||
226 | return REAL (1.0) - x * x * REAL (0.166666666666666666667); | ||
227 | else | ||
228 | return dSin (x) / x; | ||
229 | } | ||
230 | |||
231 | |||
232 | // given a body b, apply its linear and angular rotation over the time | ||
233 | // interval h, thereby adjusting its position and orientation. | ||
234 | |||
235 | static inline void | ||
236 | moveAndRotateBody (dxBody * b, dReal h) | ||
237 | { | ||
238 | int j; | ||
239 | |||
240 | // handle linear velocity | ||
241 | for (j = 0; j < 3; j++) | ||
242 | b->posr.pos[j] += h * b->lvel[j]; | ||
243 | |||
244 | if (b->flags & dxBodyFlagFiniteRotation) | ||
245 | { | ||
246 | dVector3 irv; // infitesimal rotation vector | ||
247 | dQuaternion q; // quaternion for finite rotation | ||
248 | |||
249 | if (b->flags & dxBodyFlagFiniteRotationAxis) | ||
250 | { | ||
251 | // split the angular velocity vector into a component along the finite | ||
252 | // rotation axis, and a component orthogonal to it. | ||
253 | dVector3 frv, irv; // finite rotation vector | ||
254 | dReal k = dDOT (b->finite_rot_axis, b->avel); | ||
255 | frv[0] = b->finite_rot_axis[0] * k; | ||
256 | frv[1] = b->finite_rot_axis[1] * k; | ||
257 | frv[2] = b->finite_rot_axis[2] * k; | ||
258 | irv[0] = b->avel[0] - frv[0]; | ||
259 | irv[1] = b->avel[1] - frv[1]; | ||
260 | irv[2] = b->avel[2] - frv[2]; | ||
261 | |||
262 | // make a rotation quaternion q that corresponds to frv * h. | ||
263 | // compare this with the full-finite-rotation case below. | ||
264 | h *= REAL (0.5); | ||
265 | dReal theta = k * h; | ||
266 | q[0] = dCos (theta); | ||
267 | dReal s = sinc (theta) * h; | ||
268 | q[1] = frv[0] * s; | ||
269 | q[2] = frv[1] * s; | ||
270 | q[3] = frv[2] * s; | ||
271 | } | ||
272 | else | ||
273 | { | ||
274 | // make a rotation quaternion q that corresponds to w * h | ||
275 | dReal wlen = dSqrt (b->avel[0] * b->avel[0] + b->avel[1] * b->avel[1] + b->avel[2] * b->avel[2]); | ||
276 | h *= REAL (0.5); | ||
277 | dReal theta = wlen * h; | ||
278 | q[0] = dCos (theta); | ||
279 | dReal s = sinc (theta) * h; | ||
280 | q[1] = b->avel[0] * s; | ||
281 | q[2] = b->avel[1] * s; | ||
282 | q[3] = b->avel[2] * s; | ||
283 | } | ||
284 | |||
285 | // do the finite rotation | ||
286 | dQuaternion q2; | ||
287 | dQMultiply0 (q2, q, b->q); | ||
288 | for (j = 0; j < 4; j++) | ||
289 | b->q[j] = q2[j]; | ||
290 | |||
291 | // do the infitesimal rotation if required | ||
292 | if (b->flags & dxBodyFlagFiniteRotationAxis) | ||
293 | { | ||
294 | dReal dq[4]; | ||
295 | dWtoDQ (irv, b->q, dq); | ||
296 | for (j = 0; j < 4; j++) | ||
297 | b->q[j] += h * dq[j]; | ||
298 | } | ||
299 | } | ||
300 | else | ||
301 | { | ||
302 | // the normal way - do an infitesimal rotation | ||
303 | dReal dq[4]; | ||
304 | dWtoDQ (b->avel, b->q, dq); | ||
305 | for (j = 0; j < 4; j++) | ||
306 | b->q[j] += h * dq[j]; | ||
307 | } | ||
308 | |||
309 | // normalize the quaternion and convert it to a rotation matrix | ||
310 | dNormalize4 (b->q); | ||
311 | dQtoR (b->q, b->posr.R); | ||
312 | |||
313 | // notify all attached geoms that this body has moved | ||
314 | for (dxGeom * geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
315 | dGeomMoved (geom); | ||
316 | } | ||
317 | |||
318 | //**************************************************************************** | ||
319 | //This is an implementation of the iterated/relaxation algorithm. | ||
320 | //Here is a quick overview of the algorithm per Sergi Valverde's posts to the | ||
321 | //mailing list: | ||
322 | // | ||
323 | // for i=0..N-1 do | ||
324 | // for c = 0..C-1 do | ||
325 | // Solve constraint c-th | ||
326 | // Apply forces to constraint bodies | ||
327 | // next | ||
328 | // next | ||
329 | // Integrate bodies | ||
330 | |||
331 | void | ||
332 | dInternalStepFast (dxWorld * world, dxBody * body[2], dReal * GI[2], dReal * GinvI[2], dxJoint * joint, dxJoint::Info1 info, dxJoint::Info2 Jinfo, dReal stepsize) | ||
333 | { | ||
334 | int i, j, k; | ||
335 | # ifdef TIMING | ||
336 | dTimerNow ("constraint preprocessing"); | ||
337 | # endif | ||
338 | |||
339 | dReal stepsize1 = dRecip (stepsize); | ||
340 | |||
341 | int m = info.m; | ||
342 | // nothing to do if no constraints. | ||
343 | if (m <= 0) | ||
344 | return; | ||
345 | |||
346 | int nub = 0; | ||
347 | if (info.nub == info.m) | ||
348 | nub = m; | ||
349 | |||
350 | // compute A = J*invM*J'. first compute JinvM = J*invM. this has the same | ||
351 | // format as J so we just go through the constraints in J multiplying by | ||
352 | // the appropriate scalars and matrices. | ||
353 | # ifdef TIMING | ||
354 | dTimerNow ("compute A"); | ||
355 | # endif | ||
356 | dReal JinvM[2 * 6 * 8]; | ||
357 | //dSetZero (JinvM, 2 * m * 8); | ||
358 | |||
359 | dReal *Jsrc = Jinfo.J1l; | ||
360 | dReal *Jdst = JinvM; | ||
361 | if (body[0]) | ||
362 | { | ||
363 | for (j = m - 1; j >= 0; j--) | ||
364 | { | ||
365 | for (k = 0; k < 3; k++) | ||
366 | Jdst[k] = Jsrc[k] * body[0]->invMass; | ||
367 | dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[0]); | ||
368 | Jsrc += 8; | ||
369 | Jdst += 8; | ||
370 | } | ||
371 | } | ||
372 | if (body[1]) | ||
373 | { | ||
374 | Jsrc = Jinfo.J2l; | ||
375 | Jdst = JinvM + 8 * m; | ||
376 | for (j = m - 1; j >= 0; j--) | ||
377 | { | ||
378 | for (k = 0; k < 3; k++) | ||
379 | Jdst[k] = Jsrc[k] * body[1]->invMass; | ||
380 | dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[1]); | ||
381 | Jsrc += 8; | ||
382 | Jdst += 8; | ||
383 | } | ||
384 | } | ||
385 | |||
386 | |||
387 | // now compute A = JinvM * J'. | ||
388 | int mskip = dPAD (m); | ||
389 | dReal A[6 * 8]; | ||
390 | //dSetZero (A, 6 * 8); | ||
391 | |||
392 | if (body[0]) { | ||
393 | Multiply2_sym_p8p (A, JinvM, Jinfo.J1l, m, mskip); | ||
394 | if (body[1]) | ||
395 | MultiplyAdd2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l, | ||
396 | m, mskip); | ||
397 | } else { | ||
398 | if (body[1]) | ||
399 | Multiply2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l, | ||
400 | m, mskip); | ||
401 | } | ||
402 | |||
403 | // add cfm to the diagonal of A | ||
404 | for (i = 0; i < m; i++) | ||
405 | A[i * mskip + i] += Jinfo.cfm[i] * stepsize1; | ||
406 | |||
407 | // compute the right hand side `rhs' | ||
408 | # ifdef TIMING | ||
409 | dTimerNow ("compute rhs"); | ||
410 | # endif | ||
411 | dReal tmp1[16]; | ||
412 | //dSetZero (tmp1, 16); | ||
413 | // put v/h + invM*fe into tmp1 | ||
414 | for (i = 0; i < 2; i++) | ||
415 | { | ||
416 | if (!body[i]) | ||
417 | continue; | ||
418 | for (j = 0; j < 3; j++) | ||
419 | tmp1[i * 8 + j] = body[i]->facc[j] * body[i]->invMass + body[i]->lvel[j] * stepsize1; | ||
420 | dMULTIPLY0_331 (tmp1 + i * 8 + 4, GinvI[i], body[i]->tacc); | ||
421 | for (j = 0; j < 3; j++) | ||
422 | tmp1[i * 8 + 4 + j] += body[i]->avel[j] * stepsize1; | ||
423 | } | ||
424 | // put J*tmp1 into rhs | ||
425 | dReal rhs[6]; | ||
426 | //dSetZero (rhs, 6); | ||
427 | |||
428 | if (body[0]) { | ||
429 | Multiply0_p81 (rhs, Jinfo.J1l, tmp1, m); | ||
430 | if (body[1]) | ||
431 | MultiplyAdd0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m); | ||
432 | } else { | ||
433 | if (body[1]) | ||
434 | Multiply0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m); | ||
435 | } | ||
436 | |||
437 | // complete rhs | ||
438 | for (i = 0; i < m; i++) | ||
439 | rhs[i] = Jinfo.c[i] * stepsize1 - rhs[i]; | ||
440 | |||
441 | #ifdef SLOW_LCP | ||
442 | // solve the LCP problem and get lambda. | ||
443 | // this will destroy A but that's okay | ||
444 | # ifdef TIMING | ||
445 | dTimerNow ("solving LCP problem"); | ||
446 | # endif | ||
447 | dReal *lambda = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
448 | dReal *residual = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
449 | dReal lo[6], hi[6]; | ||
450 | memcpy (lo, Jinfo.lo, m * sizeof (dReal)); | ||
451 | memcpy (hi, Jinfo.hi, m * sizeof (dReal)); | ||
452 | dSolveLCP (m, A, lambda, rhs, residual, nub, lo, hi, Jinfo.findex); | ||
453 | #endif | ||
454 | |||
455 | // LCP Solver replacement: | ||
456 | // This algorithm goes like this: | ||
457 | // Do a straightforward LDLT factorization of the matrix A, solving for | ||
458 | // A*x = rhs | ||
459 | // For each x[i] that is outside of the bounds of lo[i] and hi[i], | ||
460 | // clamp x[i] into that range. | ||
461 | // Substitute into A the now known x's | ||
462 | // subtract the residual away from the rhs. | ||
463 | // Remove row and column i from L, updating the factorization | ||
464 | // place the known x's at the end of the array, keeping up with location in p | ||
465 | // Repeat until all constraints have been clamped or all are within bounds | ||
466 | // | ||
467 | // This is probably only faster in the single joint case where only one repeat is | ||
468 | // the norm. | ||
469 | |||
470 | #ifdef FAST_FACTOR | ||
471 | // factorize A (L*D*L'=A) | ||
472 | # ifdef TIMING | ||
473 | dTimerNow ("factorize A"); | ||
474 | # endif | ||
475 | dReal d[6]; | ||
476 | dReal L[6 * 8]; | ||
477 | memcpy (L, A, m * mskip * sizeof (dReal)); | ||
478 | dFactorLDLT (L, d, m, mskip); | ||
479 | |||
480 | // compute lambda | ||
481 | # ifdef TIMING | ||
482 | dTimerNow ("compute lambda"); | ||
483 | # endif | ||
484 | |||
485 | int left = m; //constraints left to solve. | ||
486 | int remove[6]; | ||
487 | dReal lambda[6]; | ||
488 | dReal x[6]; | ||
489 | int p[6]; | ||
490 | for (i = 0; i < 6; i++) | ||
491 | p[i] = i; | ||
492 | while (true) | ||
493 | { | ||
494 | memcpy (x, rhs, left * sizeof (dReal)); | ||
495 | dSolveLDLT (L, d, x, left, mskip); | ||
496 | |||
497 | int fixed = 0; | ||
498 | for (i = 0; i < left; i++) | ||
499 | { | ||
500 | j = p[i]; | ||
501 | remove[i] = false; | ||
502 | // This isn't the exact same use of findex as dSolveLCP.... since x[findex] | ||
503 | // may change after I've already clamped x[i], but it should be close | ||
504 | if (Jinfo.findex[j] > -1) | ||
505 | { | ||
506 | dReal f = fabs (Jinfo.hi[j] * x[p[Jinfo.findex[j]]]); | ||
507 | if (x[i] > f) | ||
508 | x[i] = f; | ||
509 | else if (x[i] < -f) | ||
510 | x[i] = -f; | ||
511 | else | ||
512 | continue; | ||
513 | } | ||
514 | else | ||
515 | { | ||
516 | if (x[i] > Jinfo.hi[j]) | ||
517 | x[i] = Jinfo.hi[j]; | ||
518 | else if (x[i] < Jinfo.lo[j]) | ||
519 | x[i] = Jinfo.lo[j]; | ||
520 | else | ||
521 | continue; | ||
522 | } | ||
523 | remove[i] = true; | ||
524 | fixed++; | ||
525 | } | ||
526 | if (fixed == 0 || fixed == left) //no change or all constraints solved | ||
527 | break; | ||
528 | |||
529 | for (i = 0; i < left; i++) //sub in to right hand side. | ||
530 | if (remove[i]) | ||
531 | for (j = 0; j < left; j++) | ||
532 | if (!remove[j]) | ||
533 | rhs[j] -= A[j * mskip + i] * x[i]; | ||
534 | |||
535 | for (int r = left - 1; r >= 0; r--) //eliminate row/col for fixed variables | ||
536 | { | ||
537 | if (remove[r]) | ||
538 | { | ||
539 | //dRemoveLDLT adapted for use without row pointers. | ||
540 | if (r == left - 1) | ||
541 | { | ||
542 | left--; | ||
543 | continue; // deleting last row/col is easy | ||
544 | } | ||
545 | else if (r == 0) | ||
546 | { | ||
547 | dReal a[6]; | ||
548 | for (i = 0; i < left; i++) | ||
549 | a[i] = -A[i * mskip]; | ||
550 | a[0] += REAL (1.0); | ||
551 | dLDLTAddTL (L, d, a, left, mskip); | ||
552 | } | ||
553 | else | ||
554 | { | ||
555 | dReal t[6]; | ||
556 | dReal a[6]; | ||
557 | for (i = 0; i < r; i++) | ||
558 | t[i] = L[r * mskip + i] / d[i]; | ||
559 | for (i = 0; i < left - r; i++) | ||
560 | a[i] = dDot (L + (r + i) * mskip, t, r) - A[(r + i) * mskip + r]; | ||
561 | a[0] += REAL (1.0); | ||
562 | dLDLTAddTL (L + r * mskip + r, d + r, a, left - r, mskip); | ||
563 | } | ||
564 | |||
565 | dRemoveRowCol (L, left, mskip, r); | ||
566 | //end dRemoveLDLT | ||
567 | |||
568 | left--; | ||
569 | if (r < (left - 1)) | ||
570 | { | ||
571 | dReal tx = x[r]; | ||
572 | memmove (d + r, d + r + 1, (left - r) * sizeof (dReal)); | ||
573 | memmove (rhs + r, rhs + r + 1, (left - r) * sizeof (dReal)); | ||
574 | //x will get written over by rhs anyway, no need to move it around | ||
575 | //just store the fixed value we just discovered in it. | ||
576 | x[left] = tx; | ||
577 | for (i = 0; i < m; i++) | ||
578 | if (p[i] > r && p[i] <= left) | ||
579 | p[i]--; | ||
580 | p[r] = left; | ||
581 | } | ||
582 | } | ||
583 | } | ||
584 | } | ||
585 | |||
586 | for (i = 0; i < m; i++) | ||
587 | lambda[i] = x[p[i]]; | ||
588 | # endif | ||
589 | // compute the constraint force `cforce' | ||
590 | # ifdef TIMING | ||
591 | dTimerNow ("compute constraint force"); | ||
592 | #endif | ||
593 | |||
594 | // compute cforce = J'*lambda | ||
595 | dJointFeedback *fb = joint->feedback; | ||
596 | dReal cforce[16]; | ||
597 | //dSetZero (cforce, 16); | ||
598 | |||
599 | if (fb) | ||
600 | { | ||
601 | // the user has requested feedback on the amount of force that this | ||
602 | // joint is applying to the bodies. we use a slightly slower | ||
603 | // computation that splits out the force components and puts them | ||
604 | // in the feedback structure. | ||
605 | dReal data1[8], data2[8]; | ||
606 | if (body[0]) | ||
607 | { | ||
608 | Multiply1_8q1 (data1, Jinfo.J1l, lambda, m); | ||
609 | dReal *cf1 = cforce; | ||
610 | cf1[0] = (fb->f1[0] = data1[0]); | ||
611 | cf1[1] = (fb->f1[1] = data1[1]); | ||
612 | cf1[2] = (fb->f1[2] = data1[2]); | ||
613 | cf1[4] = (fb->t1[0] = data1[4]); | ||
614 | cf1[5] = (fb->t1[1] = data1[5]); | ||
615 | cf1[6] = (fb->t1[2] = data1[6]); | ||
616 | } | ||
617 | if (body[1]) | ||
618 | { | ||
619 | Multiply1_8q1 (data2, Jinfo.J2l, lambda, m); | ||
620 | dReal *cf2 = cforce + 8; | ||
621 | cf2[0] = (fb->f2[0] = data2[0]); | ||
622 | cf2[1] = (fb->f2[1] = data2[1]); | ||
623 | cf2[2] = (fb->f2[2] = data2[2]); | ||
624 | cf2[4] = (fb->t2[0] = data2[4]); | ||
625 | cf2[5] = (fb->t2[1] = data2[5]); | ||
626 | cf2[6] = (fb->t2[2] = data2[6]); | ||
627 | } | ||
628 | } | ||
629 | else | ||
630 | { | ||
631 | // no feedback is required, let's compute cforce the faster way | ||
632 | if (body[0]) | ||
633 | Multiply1_8q1 (cforce, Jinfo.J1l, lambda, m); | ||
634 | if (body[1]) | ||
635 | Multiply1_8q1 (cforce + 8, Jinfo.J2l, lambda, m); | ||
636 | } | ||
637 | |||
638 | for (i = 0; i < 2; i++) | ||
639 | { | ||
640 | if (!body[i]) | ||
641 | continue; | ||
642 | for (j = 0; j < 3; j++) | ||
643 | { | ||
644 | body[i]->facc[j] += cforce[i * 8 + j]; | ||
645 | body[i]->tacc[j] += cforce[i * 8 + 4 + j]; | ||
646 | } | ||
647 | } | ||
648 | } | ||
649 | |||
650 | void | ||
651 | dInternalStepIslandFast (dxWorld * world, dxBody * const *bodies, int nb, dxJoint * const *_joints, int nj, dReal stepsize, int maxiterations) | ||
652 | { | ||
653 | # ifdef TIMING | ||
654 | dTimerNow ("preprocessing"); | ||
655 | # endif | ||
656 | dxBody *bodyPair[2], *body; | ||
657 | dReal *GIPair[2], *GinvIPair[2]; | ||
658 | dxJoint *joint; | ||
659 | int iter, b, j, i; | ||
660 | dReal ministep = stepsize / maxiterations; | ||
661 | |||
662 | // make a local copy of the joint array, because we might want to modify it. | ||
663 | // (the "dxJoint *const*" declaration says we're allowed to modify the joints | ||
664 | // but not the joint array, because the caller might need it unchanged). | ||
665 | dxJoint **joints = (dxJoint **) ALLOCA (nj * sizeof (dxJoint *)); | ||
666 | memcpy (joints, _joints, nj * sizeof (dxJoint *)); | ||
667 | |||
668 | // get m = total constraint dimension, nub = number of unbounded variables. | ||
669 | // create constraint offset array and number-of-rows array for all joints. | ||
670 | // the constraints are re-ordered as follows: the purely unbounded | ||
671 | // constraints, the mixed unbounded + LCP constraints, and last the purely | ||
672 | // LCP constraints. this assists the LCP solver to put all unbounded | ||
673 | // variables at the start for a quick factorization. | ||
674 | // | ||
675 | // joints with m=0 are inactive and are removed from the joints array | ||
676 | // entirely, so that the code that follows does not consider them. | ||
677 | // also number all active joints in the joint list (set their tag values). | ||
678 | // inactive joints receive a tag value of -1. | ||
679 | |||
680 | int m = 0; | ||
681 | dxJoint::Info1 * info = (dxJoint::Info1 *) ALLOCA (nj * sizeof (dxJoint::Info1)); | ||
682 | int *ofs = (int *) ALLOCA (nj * sizeof (int)); | ||
683 | for (i = 0, j = 0; j < nj; j++) | ||
684 | { // i=dest, j=src | ||
685 | joints[j]->vtable->getInfo1 (joints[j], info + i); | ||
686 | dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m); | ||
687 | if (info[i].m > 0) | ||
688 | { | ||
689 | joints[i] = joints[j]; | ||
690 | joints[i]->tag = i; | ||
691 | i++; | ||
692 | } | ||
693 | else | ||
694 | { | ||
695 | joints[j]->tag = -1; | ||
696 | } | ||
697 | } | ||
698 | nj = i; | ||
699 | |||
700 | // the purely unbounded constraints | ||
701 | for (i = 0; i < nj; i++) | ||
702 | { | ||
703 | ofs[i] = m; | ||
704 | m += info[i].m; | ||
705 | } | ||
706 | dReal *c = NULL; | ||
707 | dReal *cfm = NULL; | ||
708 | dReal *lo = NULL; | ||
709 | dReal *hi = NULL; | ||
710 | int *findex = NULL; | ||
711 | |||
712 | dReal *J = NULL; | ||
713 | dxJoint::Info2 * Jinfo = NULL; | ||
714 | |||
715 | if (m) | ||
716 | { | ||
717 | // create a constraint equation right hand side vector `c', a constraint | ||
718 | // force mixing vector `cfm', and LCP low and high bound vectors, and an | ||
719 | // 'findex' vector. | ||
720 | c = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
721 | cfm = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
722 | lo = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
723 | hi = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
724 | findex = (int *) ALLOCA (m * sizeof (int)); | ||
725 | dSetZero (c, m); | ||
726 | dSetValue (cfm, m, world->global_cfm); | ||
727 | dSetValue (lo, m, -dInfinity); | ||
728 | dSetValue (hi, m, dInfinity); | ||
729 | for (i = 0; i < m; i++) | ||
730 | findex[i] = -1; | ||
731 | |||
732 | // get jacobian data from constraints. a (2*m)x8 matrix will be created | ||
733 | // to store the two jacobian blocks from each constraint. it has this | ||
734 | // format: | ||
735 | // | ||
736 | // l l l 0 a a a 0 \ . | ||
737 | // l l l 0 a a a 0 }-- jacobian body 1 block for joint 0 (3 rows) | ||
738 | // l l l 0 a a a 0 / | ||
739 | // l l l 0 a a a 0 \ . | ||
740 | // l l l 0 a a a 0 }-- jacobian body 2 block for joint 0 (3 rows) | ||
741 | // l l l 0 a a a 0 / | ||
742 | // l l l 0 a a a 0 }--- jacobian body 1 block for joint 1 (1 row) | ||
743 | // l l l 0 a a a 0 }--- jacobian body 2 block for joint 1 (1 row) | ||
744 | // etc... | ||
745 | // | ||
746 | // (lll) = linear jacobian data | ||
747 | // (aaa) = angular jacobian data | ||
748 | // | ||
749 | # ifdef TIMING | ||
750 | dTimerNow ("create J"); | ||
751 | # endif | ||
752 | J = (dReal *) ALLOCA (2 * m * 8 * sizeof (dReal)); | ||
753 | dSetZero (J, 2 * m * 8); | ||
754 | Jinfo = (dxJoint::Info2 *) ALLOCA (nj * sizeof (dxJoint::Info2)); | ||
755 | for (i = 0; i < nj; i++) | ||
756 | { | ||
757 | Jinfo[i].rowskip = 8; | ||
758 | Jinfo[i].fps = dRecip (stepsize); | ||
759 | Jinfo[i].erp = world->global_erp; | ||
760 | Jinfo[i].J1l = J + 2 * 8 * ofs[i]; | ||
761 | Jinfo[i].J1a = Jinfo[i].J1l + 4; | ||
762 | Jinfo[i].J2l = Jinfo[i].J1l + 8 * info[i].m; | ||
763 | Jinfo[i].J2a = Jinfo[i].J2l + 4; | ||
764 | Jinfo[i].c = c + ofs[i]; | ||
765 | Jinfo[i].cfm = cfm + ofs[i]; | ||
766 | Jinfo[i].lo = lo + ofs[i]; | ||
767 | Jinfo[i].hi = hi + ofs[i]; | ||
768 | Jinfo[i].findex = findex + ofs[i]; | ||
769 | //joints[i]->vtable->getInfo2 (joints[i], Jinfo+i); | ||
770 | } | ||
771 | |||
772 | } | ||
773 | |||
774 | dReal *saveFacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal)); | ||
775 | dReal *saveTacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal)); | ||
776 | dReal *globalI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal)); | ||
777 | dReal *globalInvI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal)); | ||
778 | for (b = 0; b < nb; b++) | ||
779 | { | ||
780 | for (i = 0; i < 4; i++) | ||
781 | { | ||
782 | saveFacc[b * 4 + i] = bodies[b]->facc[i]; | ||
783 | saveTacc[b * 4 + i] = bodies[b]->tacc[i]; | ||
784 | } | ||
785 | bodies[b]->tag = b; | ||
786 | } | ||
787 | |||
788 | for (iter = 0; iter < maxiterations; iter++) | ||
789 | { | ||
790 | # ifdef TIMING | ||
791 | dTimerNow ("applying inertia and gravity"); | ||
792 | # endif | ||
793 | dReal tmp[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | ||
794 | |||
795 | for (b = 0; b < nb; b++) | ||
796 | { | ||
797 | body = bodies[b]; | ||
798 | |||
799 | // for all bodies, compute the inertia tensor and its inverse in the global | ||
800 | // frame, and compute the rotational force and add it to the torque | ||
801 | // accumulator. I and invI are vertically stacked 3x4 matrices, one per body. | ||
802 | // @@@ check computation of rotational force. | ||
803 | |||
804 | // compute inertia tensor in global frame | ||
805 | dMULTIPLY2_333 (tmp, body->mass.I, body->posr.R); | ||
806 | dMULTIPLY0_333 (globalI + b * 12, body->posr.R, tmp); | ||
807 | // compute inverse inertia tensor in global frame | ||
808 | dMULTIPLY2_333 (tmp, body->invI, body->posr.R); | ||
809 | dMULTIPLY0_333 (globalInvI + b * 12, body->posr.R, tmp); | ||
810 | |||
811 | for (i = 0; i < 4; i++) | ||
812 | body->tacc[i] = saveTacc[b * 4 + i]; | ||
813 | #ifdef dGYROSCOPIC | ||
814 | // compute rotational force | ||
815 | dMULTIPLY0_331 (tmp, globalI + b * 12, body->avel); | ||
816 | dCROSS (body->tacc, -=, body->avel, tmp); | ||
817 | #endif | ||
818 | |||
819 | // add the gravity force to all bodies | ||
820 | if ((body->flags & dxBodyNoGravity) == 0) | ||
821 | { | ||
822 | body->facc[0] = saveFacc[b * 4 + 0] + body->mass.mass * world->gravity[0]; | ||
823 | body->facc[1] = saveFacc[b * 4 + 1] + body->mass.mass * world->gravity[1]; | ||
824 | body->facc[2] = saveFacc[b * 4 + 2] + body->mass.mass * world->gravity[2]; | ||
825 | body->facc[3] = 0; | ||
826 | } else { | ||
827 | body->facc[0] = saveFacc[b * 4 + 0]; | ||
828 | body->facc[1] = saveFacc[b * 4 + 1]; | ||
829 | body->facc[2] = saveFacc[b * 4 + 2]; | ||
830 | body->facc[3] = 0; | ||
831 | } | ||
832 | |||
833 | } | ||
834 | |||
835 | #ifdef RANDOM_JOINT_ORDER | ||
836 | #ifdef TIMING | ||
837 | dTimerNow ("randomizing joint order"); | ||
838 | #endif | ||
839 | //randomize the order of the joints by looping through the array | ||
840 | //and swapping the current joint pointer with a random one before it. | ||
841 | for (j = 0; j < nj; j++) | ||
842 | { | ||
843 | joint = joints[j]; | ||
844 | dxJoint::Info1 i1 = info[j]; | ||
845 | dxJoint::Info2 i2 = Jinfo[j]; | ||
846 | const int r = dRandInt(j+1); | ||
847 | dIASSERT (r < nj); | ||
848 | joints[j] = joints[r]; | ||
849 | info[j] = info[r]; | ||
850 | Jinfo[j] = Jinfo[r]; | ||
851 | joints[r] = joint; | ||
852 | info[r] = i1; | ||
853 | Jinfo[r] = i2; | ||
854 | } | ||
855 | #endif | ||
856 | |||
857 | //now iterate through the random ordered joint array we created. | ||
858 | for (j = 0; j < nj; j++) | ||
859 | { | ||
860 | #ifdef TIMING | ||
861 | dTimerNow ("setting up joint"); | ||
862 | #endif | ||
863 | joint = joints[j]; | ||
864 | bodyPair[0] = joint->node[0].body; | ||
865 | bodyPair[1] = joint->node[1].body; | ||
866 | |||
867 | if (bodyPair[0] && (bodyPair[0]->flags & dxBodyDisabled)) | ||
868 | bodyPair[0] = 0; | ||
869 | if (bodyPair[1] && (bodyPair[1]->flags & dxBodyDisabled)) | ||
870 | bodyPair[1] = 0; | ||
871 | |||
872 | //if this joint is not connected to any enabled bodies, skip it. | ||
873 | if (!bodyPair[0] && !bodyPair[1]) | ||
874 | continue; | ||
875 | |||
876 | if (bodyPair[0]) | ||
877 | { | ||
878 | GIPair[0] = globalI + bodyPair[0]->tag * 12; | ||
879 | GinvIPair[0] = globalInvI + bodyPair[0]->tag * 12; | ||
880 | } | ||
881 | if (bodyPair[1]) | ||
882 | { | ||
883 | GIPair[1] = globalI + bodyPair[1]->tag * 12; | ||
884 | GinvIPair[1] = globalInvI + bodyPair[1]->tag * 12; | ||
885 | } | ||
886 | |||
887 | joints[j]->vtable->getInfo2 (joints[j], Jinfo + j); | ||
888 | |||
889 | //dInternalStepIslandFast is an exact copy of the old routine with one | ||
890 | //modification: the calculated forces are added back to the facc and tacc | ||
891 | //vectors instead of applying them to the bodies and moving them. | ||
892 | if (info[j].m > 0) | ||
893 | { | ||
894 | dInternalStepFast (world, bodyPair, GIPair, GinvIPair, joint, info[j], Jinfo[j], ministep); | ||
895 | } | ||
896 | } | ||
897 | // } | ||
898 | # ifdef TIMING | ||
899 | dTimerNow ("moving bodies"); | ||
900 | # endif | ||
901 | //Now we can simulate all the free floating bodies, and move them. | ||
902 | for (b = 0; b < nb; b++) | ||
903 | { | ||
904 | body = bodies[b]; | ||
905 | |||
906 | for (i = 0; i < 4; i++) | ||
907 | { | ||
908 | body->facc[i] *= ministep; | ||
909 | body->tacc[i] *= ministep; | ||
910 | } | ||
911 | |||
912 | //apply torque | ||
913 | dMULTIPLYADD0_331 (body->avel, globalInvI + b * 12, body->tacc); | ||
914 | |||
915 | //apply force | ||
916 | for (i = 0; i < 3; i++) | ||
917 | body->lvel[i] += body->invMass * body->facc[i]; | ||
918 | |||
919 | //move It! | ||
920 | moveAndRotateBody (body, ministep); | ||
921 | } | ||
922 | } | ||
923 | for (b = 0; b < nb; b++) | ||
924 | for (j = 0; j < 4; j++) | ||
925 | bodies[b]->facc[j] = bodies[b]->tacc[j] = 0; | ||
926 | } | ||
927 | |||
928 | |||
929 | #ifdef NO_ISLANDS | ||
930 | |||
931 | // Since the iterative algorithm doesn't care about islands of bodies, this is a | ||
932 | // faster algorithm that just sends it all the joints and bodies in one array. | ||
933 | // It's downfall is it's inability to handle disabled bodies as well as the old one. | ||
934 | static void | ||
935 | processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations) | ||
936 | { | ||
937 | // nothing to do if no bodies | ||
938 | if (world->nb <= 0) | ||
939 | return; | ||
940 | |||
941 | dInternalHandleAutoDisabling (world,stepsize); | ||
942 | |||
943 | # ifdef TIMING | ||
944 | dTimerStart ("creating joint and body arrays"); | ||
945 | # endif | ||
946 | dxBody **bodies, *body; | ||
947 | dxJoint **joints, *joint; | ||
948 | joints = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *)); | ||
949 | bodies = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *)); | ||
950 | |||
951 | int nj = 0; | ||
952 | for (joint = world->firstjoint; joint; joint = (dxJoint *) joint->next) | ||
953 | joints[nj++] = joint; | ||
954 | |||
955 | int nb = 0; | ||
956 | for (body = world->firstbody; body; body = (dxBody *) body->next) | ||
957 | bodies[nb++] = body; | ||
958 | |||
959 | dInternalStepIslandFast (world, bodies, nb, joints, nj, stepsize, maxiterations); | ||
960 | # ifdef TIMING | ||
961 | dTimerEnd (); | ||
962 | dTimerReport (stdout, 1); | ||
963 | # endif | ||
964 | } | ||
965 | |||
966 | #else | ||
967 | |||
968 | //**************************************************************************** | ||
969 | // island processing | ||
970 | |||
971 | // this groups all joints and bodies in a world into islands. all objects | ||
972 | // in an island are reachable by going through connected bodies and joints. | ||
973 | // each island can be simulated separately. | ||
974 | // note that joints that are not attached to anything will not be included | ||
975 | // in any island, an so they do not affect the simulation. | ||
976 | // | ||
977 | // this function starts new island from unvisited bodies. however, it will | ||
978 | // never start a new islands from a disabled body. thus islands of disabled | ||
979 | // bodies will not be included in the simulation. disabled bodies are | ||
980 | // re-enabled if they are found to be part of an active island. | ||
981 | |||
982 | static void | ||
983 | processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations) | ||
984 | { | ||
985 | #ifdef TIMING | ||
986 | dTimerStart ("Island Setup"); | ||
987 | #endif | ||
988 | dxBody *b, *bb, **body; | ||
989 | dxJoint *j, **joint; | ||
990 | |||
991 | // nothing to do if no bodies | ||
992 | if (world->nb <= 0) | ||
993 | return; | ||
994 | |||
995 | dInternalHandleAutoDisabling (world,stepsize); | ||
996 | |||
997 | // make arrays for body and joint lists (for a single island) to go into | ||
998 | body = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *)); | ||
999 | joint = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *)); | ||
1000 | int bcount = 0; // number of bodies in `body' | ||
1001 | int jcount = 0; // number of joints in `joint' | ||
1002 | int tbcount = 0; | ||
1003 | int tjcount = 0; | ||
1004 | |||
1005 | // set all body/joint tags to 0 | ||
1006 | for (b = world->firstbody; b; b = (dxBody *) b->next) | ||
1007 | b->tag = 0; | ||
1008 | for (j = world->firstjoint; j; j = (dxJoint *) j->next) | ||
1009 | j->tag = 0; | ||
1010 | |||
1011 | // allocate a stack of unvisited bodies in the island. the maximum size of | ||
1012 | // the stack can be the lesser of the number of bodies or joints, because | ||
1013 | // new bodies are only ever added to the stack by going through untagged | ||
1014 | // joints. all the bodies in the stack must be tagged! | ||
1015 | int stackalloc = (world->nj < world->nb) ? world->nj : world->nb; | ||
1016 | dxBody **stack = (dxBody **) ALLOCA (stackalloc * sizeof (dxBody *)); | ||
1017 | int *autostack = (int *) ALLOCA (stackalloc * sizeof (int)); | ||
1018 | |||
1019 | for (bb = world->firstbody; bb; bb = (dxBody *) bb->next) | ||
1020 | { | ||
1021 | #ifdef TIMING | ||
1022 | dTimerNow ("Island Processing"); | ||
1023 | #endif | ||
1024 | // get bb = the next enabled, untagged body, and tag it | ||
1025 | if (bb->tag || (bb->flags & dxBodyDisabled)) | ||
1026 | continue; | ||
1027 | bb->tag = 1; | ||
1028 | |||
1029 | // tag all bodies and joints starting from bb. | ||
1030 | int stacksize = 0; | ||
1031 | int autoDepth = autoEnableDepth; | ||
1032 | b = bb; | ||
1033 | body[0] = bb; | ||
1034 | bcount = 1; | ||
1035 | jcount = 0; | ||
1036 | goto quickstart; | ||
1037 | while (stacksize > 0) | ||
1038 | { | ||
1039 | b = stack[--stacksize]; // pop body off stack | ||
1040 | autoDepth = autostack[stacksize]; | ||
1041 | body[bcount++] = b; // put body on body list | ||
1042 | quickstart: | ||
1043 | |||
1044 | // traverse and tag all body's joints, add untagged connected bodies | ||
1045 | // to stack | ||
1046 | for (dxJointNode * n = b->firstjoint; n; n = n->next) | ||
1047 | { | ||
1048 | if (!n->joint->tag) | ||
1049 | { | ||
1050 | int thisDepth = autoEnableDepth; | ||
1051 | n->joint->tag = 1; | ||
1052 | joint[jcount++] = n->joint; | ||
1053 | if (n->body && !n->body->tag) | ||
1054 | { | ||
1055 | if (n->body->flags & dxBodyDisabled) | ||
1056 | thisDepth = autoDepth - 1; | ||
1057 | if (thisDepth < 0) | ||
1058 | continue; | ||
1059 | n->body->flags &= ~dxBodyDisabled; | ||
1060 | n->body->tag = 1; | ||
1061 | autostack[stacksize] = thisDepth; | ||
1062 | stack[stacksize++] = n->body; | ||
1063 | } | ||
1064 | } | ||
1065 | } | ||
1066 | dIASSERT (stacksize <= world->nb); | ||
1067 | dIASSERT (stacksize <= world->nj); | ||
1068 | } | ||
1069 | |||
1070 | // now do something with body and joint lists | ||
1071 | dInternalStepIslandFast (world, body, bcount, joint, jcount, stepsize, maxiterations); | ||
1072 | |||
1073 | // what we've just done may have altered the body/joint tag values. | ||
1074 | // we must make sure that these tags are nonzero. | ||
1075 | // also make sure all bodies are in the enabled state. | ||
1076 | int i; | ||
1077 | for (i = 0; i < bcount; i++) | ||
1078 | { | ||
1079 | body[i]->tag = 1; | ||
1080 | body[i]->flags &= ~dxBodyDisabled; | ||
1081 | } | ||
1082 | for (i = 0; i < jcount; i++) | ||
1083 | joint[i]->tag = 1; | ||
1084 | |||
1085 | tbcount += bcount; | ||
1086 | tjcount += jcount; | ||
1087 | } | ||
1088 | |||
1089 | #ifdef TIMING | ||
1090 | dMessage(0, "Total joints processed: %i, bodies: %i", tjcount, tbcount); | ||
1091 | #endif | ||
1092 | |||
1093 | // if debugging, check that all objects (except for disabled bodies, | ||
1094 | // unconnected joints, and joints that are connected to disabled bodies) | ||
1095 | // were tagged. | ||
1096 | # ifndef dNODEBUG | ||
1097 | for (b = world->firstbody; b; b = (dxBody *) b->next) | ||
1098 | { | ||
1099 | if (b->flags & dxBodyDisabled) | ||
1100 | { | ||
1101 | if (b->tag) | ||
1102 | dDebug (0, "disabled body tagged"); | ||
1103 | } | ||
1104 | else | ||
1105 | { | ||
1106 | if (!b->tag) | ||
1107 | dDebug (0, "enabled body not tagged"); | ||
1108 | } | ||
1109 | } | ||
1110 | for (j = world->firstjoint; j; j = (dxJoint *) j->next) | ||
1111 | { | ||
1112 | if ((j->node[0].body && (j->node[0].body->flags & dxBodyDisabled) == 0) || (j->node[1].body && (j->node[1].body->flags & dxBodyDisabled) == 0)) | ||
1113 | { | ||
1114 | if (!j->tag) | ||
1115 | dDebug (0, "attached enabled joint not tagged"); | ||
1116 | } | ||
1117 | else | ||
1118 | { | ||
1119 | if (j->tag) | ||
1120 | dDebug (0, "unattached or disabled joint tagged"); | ||
1121 | } | ||
1122 | } | ||
1123 | # endif | ||
1124 | |||
1125 | # ifdef TIMING | ||
1126 | dTimerEnd (); | ||
1127 | dTimerReport (stdout, 1); | ||
1128 | # endif | ||
1129 | } | ||
1130 | |||
1131 | #endif | ||
1132 | |||
1133 | |||
1134 | void dWorldStepFast1 (dWorldID w, dReal stepsize, int maxiterations) | ||
1135 | { | ||
1136 | dUASSERT (w, "bad world argument"); | ||
1137 | dUASSERT (stepsize > 0, "stepsize must be > 0"); | ||
1138 | processIslandsFast (w, stepsize, maxiterations); | ||
1139 | } | ||