diff options
Diffstat (limited to 'libraries/ode-0.9/ode/src/scrapbook.cpp')
-rw-r--r-- | libraries/ode-0.9/ode/src/scrapbook.cpp | 485 |
1 files changed, 0 insertions, 485 deletions
diff --git a/libraries/ode-0.9/ode/src/scrapbook.cpp b/libraries/ode-0.9/ode/src/scrapbook.cpp deleted file mode 100644 index 2621814..0000000 --- a/libraries/ode-0.9/ode/src/scrapbook.cpp +++ /dev/null | |||
@@ -1,485 +0,0 @@ | |||
1 | |||
2 | /* | ||
3 | |||
4 | this is code that was once useful but has now been obseleted. | ||
5 | |||
6 | this file should not be compiled as part of ODE! | ||
7 | |||
8 | */ | ||
9 | |||
10 | //*************************************************************************** | ||
11 | // intersect a line segment with a plane | ||
12 | |||
13 | extern "C" int dClipLineToBox (const dVector3 p1, const dVector3 p2, | ||
14 | const dVector3 p, const dMatrix3 R, | ||
15 | const dVector3 side) | ||
16 | { | ||
17 | // compute the start and end of the line (p1 and p2) relative to the box. | ||
18 | // we will do all subsequent computations in this box-relative coordinate | ||
19 | // system. we have to do a translation and rotation for each point. | ||
20 | dVector3 tmp,s,e; | ||
21 | tmp[0] = p1[0] - p[0]; | ||
22 | tmp[1] = p1[1] - p[1]; | ||
23 | tmp[2] = p1[2] - p[2]; | ||
24 | dMULTIPLY1_331 (s,R,tmp); | ||
25 | tmp[0] = p2[0] - p[0]; | ||
26 | tmp[1] = p2[1] - p[1]; | ||
27 | tmp[2] = p2[2] - p[2]; | ||
28 | dMULTIPLY1_331 (e,R,tmp); | ||
29 | |||
30 | // compute the vector 'v' from the start point to the end point | ||
31 | dVector3 v; | ||
32 | v[0] = e[0] - s[0]; | ||
33 | v[1] = e[1] - s[1]; | ||
34 | v[2] = e[2] - s[2]; | ||
35 | |||
36 | // a point on the line is defined by the parameter 't'. t=0 corresponds | ||
37 | // to the start of the line, t=1 corresponds to the end of the line. | ||
38 | // we will clip the line to the box by finding the range of t where a | ||
39 | // point on the line is inside the box. the currently known bounds for | ||
40 | // t and tlo..thi. | ||
41 | dReal tlo=0,thi=1; | ||
42 | |||
43 | // clip in the X/Y/Z direction | ||
44 | for (int i=0; i<3; i++) { | ||
45 | // first adjust s,e for the current t range. this is redundant for the | ||
46 | // first iteration, but never mind. | ||
47 | e[i] = s[i] + thi*v[i]; | ||
48 | s[i] = s[i] + tlo*v[i]; | ||
49 | // compute where t intersects the positive and negative sides. | ||
50 | dReal tp = ( side[i] - s[i])/v[i]; // @@@ handle case where denom=0 | ||
51 | dReal tm = (-side[i] - s[i])/v[i]; | ||
52 | // handle 9 intersection cases | ||
53 | if (s[i] <= -side[i]) { | ||
54 | tlo = tm; | ||
55 | if (e[i] <= -side[i]) return 0; | ||
56 | else if (e[i] >= side[i]) thi = tp; | ||
57 | } | ||
58 | else if (s[i] <= side[i]) { | ||
59 | if (e[i] <= -side[i]) thi = tm; | ||
60 | else if (e[i] >= side[i]) thi = tp; | ||
61 | } | ||
62 | else { | ||
63 | tlo = tp; | ||
64 | if (e[i] <= -side[i]) thi = tm; | ||
65 | else if (e[i] >= side[i]) return 0; | ||
66 | } | ||
67 | } | ||
68 | |||
69 | //... @@@ AT HERE @@@ | ||
70 | |||
71 | return 1; | ||
72 | } | ||
73 | |||
74 | |||
75 | //*************************************************************************** | ||
76 | // a nice try at C-B collision. unfortunately it doesn't work. the logic | ||
77 | // for testing for line-box intersection is correct, but unfortunately the | ||
78 | // closest-point distance estimates are often too large. as a result contact | ||
79 | // points are placed incorrectly. | ||
80 | |||
81 | |||
82 | int dCollideCB (const dxGeom *o1, const dxGeom *o2, int flags, | ||
83 | dContactGeom *contact, int skip) | ||
84 | { | ||
85 | int i; | ||
86 | |||
87 | dIASSERT (skip >= (int)sizeof(dContactGeom)); | ||
88 | dIASSERT (o1->_class->num == dCCylinderClass); | ||
89 | dIASSERT (o2->_class->num == dBoxClass); | ||
90 | contact->g1 = const_cast<dxGeom*> (o1); | ||
91 | contact->g2 = const_cast<dxGeom*> (o2); | ||
92 | dxCCylinder *cyl = (dxCCylinder*) CLASSDATA(o1); | ||
93 | dxBox *box = (dxBox*) CLASSDATA(o2); | ||
94 | |||
95 | // get p1,p2 = cylinder axis endpoints, get radius | ||
96 | dVector3 p1,p2; | ||
97 | dReal clen = cyl->lz * REAL(0.5); | ||
98 | p1[0] = o1->pos[0] + clen * o1->R[2]; | ||
99 | p1[1] = o1->pos[1] + clen * o1->R[6]; | ||
100 | p1[2] = o1->pos[2] + clen * o1->R[10]; | ||
101 | p2[0] = o1->pos[0] - clen * o1->R[2]; | ||
102 | p2[1] = o1->pos[1] - clen * o1->R[6]; | ||
103 | p2[2] = o1->pos[2] - clen * o1->R[10]; | ||
104 | dReal radius = cyl->radius; | ||
105 | |||
106 | // copy out box center, rotation matrix, and side array | ||
107 | dReal *c = o2->pos; | ||
108 | dReal *R = o2->R; | ||
109 | dReal *side = box->side; | ||
110 | |||
111 | // compute the start and end of the line (p1 and p2) relative to the box. | ||
112 | // we will do all subsequent computations in this box-relative coordinate | ||
113 | // system. we have to do a translation and rotation for each point. | ||
114 | dVector3 tmp3,s,e; | ||
115 | tmp3[0] = p1[0] - c[0]; | ||
116 | tmp3[1] = p1[1] - c[1]; | ||
117 | tmp3[2] = p1[2] - c[2]; | ||
118 | dMULTIPLY1_331 (s,R,tmp3); | ||
119 | tmp3[0] = p2[0] - c[0]; | ||
120 | tmp3[1] = p2[1] - c[1]; | ||
121 | tmp3[2] = p2[2] - c[2]; | ||
122 | dMULTIPLY1_331 (e,R,tmp3); | ||
123 | |||
124 | // compute the vector 'v' from the start point to the end point | ||
125 | dVector3 v; | ||
126 | v[0] = e[0] - s[0]; | ||
127 | v[1] = e[1] - s[1]; | ||
128 | v[2] = e[2] - s[2]; | ||
129 | |||
130 | // compute the half-sides of the box | ||
131 | dReal S0 = side[0] * REAL(0.5); | ||
132 | dReal S1 = side[1] * REAL(0.5); | ||
133 | dReal S2 = side[2] * REAL(0.5); | ||
134 | |||
135 | // compute the size of the bounding box around the line segment | ||
136 | dReal B0 = dFabs (v[0]); | ||
137 | dReal B1 = dFabs (v[1]); | ||
138 | dReal B2 = dFabs (v[2]); | ||
139 | |||
140 | // for all 6 separation axes, measure the penetration depth. if any depth is | ||
141 | // less than 0 then the objects don't penetrate at all so we can just | ||
142 | // return 0. find the axis with the smallest depth, and record its normal. | ||
143 | |||
144 | // note: normalR is set to point to a column of R if that is the smallest | ||
145 | // depth normal so far. otherwise normalR is 0 and normalC is set to a | ||
146 | // vector relative to the box. invert_normal is 1 if the sign of the normal | ||
147 | // should be flipped. | ||
148 | |||
149 | dReal depth,trial_depth,tmp,length; | ||
150 | const dReal *normalR=0; | ||
151 | dVector3 normalC; | ||
152 | int invert_normal = 0; | ||
153 | int code = 0; // 0=no contact, 1-3=face contact, 4-6=edge contact | ||
154 | |||
155 | depth = dInfinity; | ||
156 | |||
157 | // look at face-normal axes | ||
158 | |||
159 | #undef TEST | ||
160 | #define TEST(center,depth_expr,norm,contact_code) \ | ||
161 | tmp = (center); \ | ||
162 | trial_depth = radius + REAL(0.5) * ((depth_expr) - dFabs(tmp)); \ | ||
163 | if (trial_depth < 0) return 0; \ | ||
164 | if (trial_depth < depth) { \ | ||
165 | depth = trial_depth; \ | ||
166 | normalR = (norm); \ | ||
167 | invert_normal = (tmp < 0); \ | ||
168 | code = contact_code; \ | ||
169 | } | ||
170 | |||
171 | TEST (s[0]+e[0], side[0] + B0, R+0, 1); | ||
172 | TEST (s[1]+e[1], side[1] + B1, R+1, 2); | ||
173 | TEST (s[2]+e[2], side[2] + B2, R+2, 3); | ||
174 | |||
175 | // look at v x box-edge axes | ||
176 | |||
177 | #undef TEST | ||
178 | #define TEST(box_radius,line_offset,nx,ny,nz,contact_code) \ | ||
179 | tmp = (line_offset); \ | ||
180 | trial_depth = (box_radius) - dFabs(tmp); \ | ||
181 | length = dSqrt ((nx)*(nx) + (ny)*(ny) + (nz)*(nz)); \ | ||
182 | if (length > 0) { \ | ||
183 | length = dRecip(length); \ | ||
184 | trial_depth = trial_depth * length + radius; \ | ||
185 | if (trial_depth < 0) return 0; \ | ||
186 | if (trial_depth < depth) { \ | ||
187 | depth = trial_depth; \ | ||
188 | normalR = 0; \ | ||
189 | normalC[0] = (nx)*length; \ | ||
190 | normalC[1] = (ny)*length; \ | ||
191 | normalC[2] = (nz)*length; \ | ||
192 | invert_normal = (tmp < 0); \ | ||
193 | code = contact_code; \ | ||
194 | } \ | ||
195 | } | ||
196 | |||
197 | TEST (B2*S1+B1*S2,v[1]*s[2]-v[2]*s[1], 0,-v[2],v[1], 4); | ||
198 | TEST (B2*S0+B0*S2,v[2]*s[0]-v[0]*s[2], v[2],0,-v[0], 5); | ||
199 | TEST (B1*S0+B0*S1,v[0]*s[1]-v[1]*s[0], -v[1],v[0],0, 6); | ||
200 | |||
201 | #undef TEST | ||
202 | |||
203 | // if we get to this point, the box and ccylinder interpenetrate. | ||
204 | // compute the normal in global coordinates. | ||
205 | dReal *normal = contact[0].normal; | ||
206 | if (normalR) { | ||
207 | normal[0] = normalR[0]; | ||
208 | normal[1] = normalR[4]; | ||
209 | normal[2] = normalR[8]; | ||
210 | } | ||
211 | else { | ||
212 | dMULTIPLY0_331 (normal,R,normalC); | ||
213 | } | ||
214 | if (invert_normal) { | ||
215 | normal[0] = -normal[0]; | ||
216 | normal[1] = -normal[1]; | ||
217 | normal[2] = -normal[2]; | ||
218 | } | ||
219 | |||
220 | // set the depth | ||
221 | contact[0].depth = depth; | ||
222 | |||
223 | if (code == 0) { | ||
224 | return 0; // should never get here | ||
225 | } | ||
226 | else if (code >= 4) { | ||
227 | // handle edge contacts | ||
228 | // find an endpoint q1 on the intersecting edge of the box | ||
229 | dVector3 q1; | ||
230 | dReal sign[3]; | ||
231 | for (i=0; i<3; i++) q1[i] = c[i]; | ||
232 | sign[0] = (dDOT14(normal,R+0) > 0) ? REAL(1.0) : REAL(-1.0); | ||
233 | for (i=0; i<3; i++) q1[i] += sign[0] * S0 * R[i*4]; | ||
234 | sign[1] = (dDOT14(normal,R+1) > 0) ? REAL(1.0) : REAL(-1.0); | ||
235 | for (i=0; i<3; i++) q1[i] += sign[1] * S1 * R[i*4+1]; | ||
236 | sign[2] = (dDOT14(normal,R+2) > 0) ? REAL(1.0) : REAL(-1.0); | ||
237 | for (i=0; i<3; i++) q1[i] += sign[2] * S2 * R[i*4+2]; | ||
238 | |||
239 | // find the other endpoint q2 of the intersecting edge | ||
240 | dVector3 q2; | ||
241 | for (i=0; i<3; i++) | ||
242 | q2[i] = q1[i] - R[code-4 + i*4] * (sign[code-4] * side[code-4]); | ||
243 | |||
244 | // determine the closest point between the box edge and the line segment | ||
245 | dVector3 cp1,cp2; | ||
246 | dClosestLineSegmentPoints (q1,q2, p1,p2, cp1,cp2); | ||
247 | for (i=0; i<3; i++) contact[0].pos[i] = cp1[i] - REAL(0.5)*normal[i]*depth; | ||
248 | return 1; | ||
249 | } | ||
250 | else { | ||
251 | // handle face contacts. | ||
252 | // @@@ temporary: make deepest vertex on the line the contact point. | ||
253 | // @@@ this kind of works, but we sometimes need two contact points for | ||
254 | // @@@ stability. | ||
255 | |||
256 | // compute 'v' in global coordinates | ||
257 | dVector3 gv; | ||
258 | for (i=0; i<3; i++) gv[i] = p2[i] - p1[i]; | ||
259 | |||
260 | if (dDOT (normal,gv) > 0) { | ||
261 | for (i=0; i<3; i++) | ||
262 | contact[0].pos[i] = p1[i] + (depth*REAL(0.5)-radius)*normal[i]; | ||
263 | } | ||
264 | else { | ||
265 | for (i=0; i<3; i++) | ||
266 | contact[0].pos[i] = p2[i] + (depth*REAL(0.5)-radius)*normal[i]; | ||
267 | } | ||
268 | return 1; | ||
269 | } | ||
270 | } | ||
271 | |||
272 | //*************************************************************************** | ||
273 | // this function works, it's just not being used for anything at the moment: | ||
274 | |||
275 | // given a box (R,side), `R' is the rotation matrix for the box, and `side' | ||
276 | // is a vector of x/y/z side lengths, return the size of the interval of the | ||
277 | // box projected along the given axis. if the axis has unit length then the | ||
278 | // return value will be the actual diameter, otherwise the result will be | ||
279 | // scaled by the axis length. | ||
280 | |||
281 | static inline dReal boxDiameter (const dMatrix3 R, const dVector3 side, | ||
282 | const dVector3 axis) | ||
283 | { | ||
284 | dVector3 q; | ||
285 | dMULTIPLY1_331 (q,R,axis); // transform axis to body-relative | ||
286 | return dFabs(q[0])*side[0] + dFabs(q[1])*side[1] + dFabs(q[2])*side[2]; | ||
287 | } | ||
288 | |||
289 | //*************************************************************************** | ||
290 | // the old capped cylinder to capped cylinder collision code. this fails to | ||
291 | // detect cap-to-cap contact points when the cylinder axis are aligned, but | ||
292 | // other that that it is pretty robust. | ||
293 | |||
294 | // this returns at most one contact point when the two cylinder's axes are not | ||
295 | // aligned, and at most two (for stability) when they are aligned. | ||
296 | // the algorithm minimizes the distance between two "sample spheres" that are | ||
297 | // positioned along the cylinder axes according to: | ||
298 | // sphere1 = pos1 + alpha1 * axis1 | ||
299 | // sphere2 = pos2 + alpha2 * axis2 | ||
300 | // alpha1 and alpha2 are limited to +/- half the length of the cylinders. | ||
301 | // the algorithm works by finding a solution that has both alphas free, or | ||
302 | // a solution that has one or both alphas fixed to the ends of the cylinder. | ||
303 | |||
304 | int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2, | ||
305 | int flags, dContactGeom *contact, int skip) | ||
306 | { | ||
307 | int i; | ||
308 | const dReal tolerance = REAL(1e-5); | ||
309 | |||
310 | dIASSERT (skip >= (int)sizeof(dContactGeom)); | ||
311 | dIASSERT (o1->type == dCCylinderClass); | ||
312 | dIASSERT (o2->type == dCCylinderClass); | ||
313 | dxCCylinder *cyl1 = (dxCCylinder*) o1; | ||
314 | dxCCylinder *cyl2 = (dxCCylinder*) o2; | ||
315 | |||
316 | contact->g1 = o1; | ||
317 | contact->g2 = o2; | ||
318 | |||
319 | // copy out some variables, for convenience | ||
320 | dReal lz1 = cyl1->lz * REAL(0.5); | ||
321 | dReal lz2 = cyl2->lz * REAL(0.5); | ||
322 | dReal *pos1 = o1->pos; | ||
323 | dReal *pos2 = o2->pos; | ||
324 | dReal axis1[3],axis2[3]; | ||
325 | axis1[0] = o1->R[2]; | ||
326 | axis1[1] = o1->R[6]; | ||
327 | axis1[2] = o1->R[10]; | ||
328 | axis2[0] = o2->R[2]; | ||
329 | axis2[1] = o2->R[6]; | ||
330 | axis2[2] = o2->R[10]; | ||
331 | |||
332 | dReal alpha1,alpha2,sphere1[3],sphere2[3]; | ||
333 | int fix1 = 0; // 0 if alpha1 is free, +/-1 to fix at +/- lz1 | ||
334 | int fix2 = 0; // 0 if alpha2 is free, +/-1 to fix at +/- lz2 | ||
335 | |||
336 | for (int count=0; count<9; count++) { | ||
337 | // find a trial solution by fixing or not fixing the alphas | ||
338 | if (fix1) { | ||
339 | if (fix2) { | ||
340 | // alpha1 and alpha2 are fixed, so the solution is easy | ||
341 | if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; | ||
342 | if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; | ||
343 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; | ||
344 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; | ||
345 | } | ||
346 | else { | ||
347 | // fix alpha1 but let alpha2 be free | ||
348 | if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; | ||
349 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; | ||
350 | alpha2 = (axis2[0]*(sphere1[0]-pos2[0]) + | ||
351 | axis2[1]*(sphere1[1]-pos2[1]) + | ||
352 | axis2[2]*(sphere1[2]-pos2[2])); | ||
353 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; | ||
354 | } | ||
355 | } | ||
356 | else { | ||
357 | if (fix2) { | ||
358 | // fix alpha2 but let alpha1 be free | ||
359 | if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; | ||
360 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; | ||
361 | alpha1 = (axis1[0]*(sphere2[0]-pos1[0]) + | ||
362 | axis1[1]*(sphere2[1]-pos1[1]) + | ||
363 | axis1[2]*(sphere2[2]-pos1[2])); | ||
364 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; | ||
365 | } | ||
366 | else { | ||
367 | // let alpha1 and alpha2 be free | ||
368 | // compute determinant of d(d^2)\d(alpha) jacobian | ||
369 | dReal a1a2 = dDOT (axis1,axis2); | ||
370 | dReal det = REAL(1.0)-a1a2*a1a2; | ||
371 | if (det < tolerance) { | ||
372 | // the cylinder axes (almost) parallel, so we will generate up to two | ||
373 | // contacts. the solution matrix is rank deficient so alpha1 and | ||
374 | // alpha2 are related by: | ||
375 | // alpha2 = alpha1 + (pos1-pos2)'*axis1 (if axis1==axis2) | ||
376 | // or alpha2 = -(alpha1 + (pos1-pos2)'*axis1) (if axis1==-axis2) | ||
377 | // first compute where the two cylinders overlap in alpha1 space: | ||
378 | if (a1a2 < 0) { | ||
379 | axis2[0] = -axis2[0]; | ||
380 | axis2[1] = -axis2[1]; | ||
381 | axis2[2] = -axis2[2]; | ||
382 | } | ||
383 | dReal q[3]; | ||
384 | for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i]; | ||
385 | dReal k = dDOT (axis1,q); | ||
386 | dReal a1lo = -lz1; | ||
387 | dReal a1hi = lz1; | ||
388 | dReal a2lo = -lz2 - k; | ||
389 | dReal a2hi = lz2 - k; | ||
390 | dReal lo = (a1lo > a2lo) ? a1lo : a2lo; | ||
391 | dReal hi = (a1hi < a2hi) ? a1hi : a2hi; | ||
392 | if (lo <= hi) { | ||
393 | int num_contacts = flags & NUMC_MASK; | ||
394 | if (num_contacts >= 2 && lo < hi) { | ||
395 | // generate up to two contacts. if one of those contacts is | ||
396 | // not made, fall back on the one-contact strategy. | ||
397 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i]; | ||
398 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i]; | ||
399 | int n1 = dCollideSpheres (sphere1,cyl1->radius, | ||
400 | sphere2,cyl2->radius,contact); | ||
401 | if (n1) { | ||
402 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i]; | ||
403 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i]; | ||
404 | dContactGeom *c2 = CONTACT(contact,skip); | ||
405 | int n2 = dCollideSpheres (sphere1,cyl1->radius, | ||
406 | sphere2,cyl2->radius, c2); | ||
407 | if (n2) { | ||
408 | c2->g1 = o1; | ||
409 | c2->g2 = o2; | ||
410 | return 2; | ||
411 | } | ||
412 | } | ||
413 | } | ||
414 | |||
415 | // just one contact to generate, so put it in the middle of | ||
416 | // the range | ||
417 | alpha1 = (lo + hi) * REAL(0.5); | ||
418 | alpha2 = alpha1 + k; | ||
419 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; | ||
420 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; | ||
421 | return dCollideSpheres (sphere1,cyl1->radius, | ||
422 | sphere2,cyl2->radius,contact); | ||
423 | } | ||
424 | else return 0; | ||
425 | } | ||
426 | det = REAL(1.0)/det; | ||
427 | dReal delta[3]; | ||
428 | for (i=0; i<3; i++) delta[i] = pos1[i] - pos2[i]; | ||
429 | dReal q1 = dDOT (delta,axis1); | ||
430 | dReal q2 = dDOT (delta,axis2); | ||
431 | alpha1 = det*(a1a2*q2-q1); | ||
432 | alpha2 = det*(q2-a1a2*q1); | ||
433 | for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; | ||
434 | for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; | ||
435 | } | ||
436 | } | ||
437 | |||
438 | // if the alphas are outside their allowed ranges then fix them and | ||
439 | // try again | ||
440 | if (fix1==0) { | ||
441 | if (alpha1 < -lz1) { | ||
442 | fix1 = -1; | ||
443 | continue; | ||
444 | } | ||
445 | if (alpha1 > lz1) { | ||
446 | fix1 = 1; | ||
447 | continue; | ||
448 | } | ||
449 | } | ||
450 | if (fix2==0) { | ||
451 | if (alpha2 < -lz2) { | ||
452 | fix2 = -1; | ||
453 | continue; | ||
454 | } | ||
455 | if (alpha2 > lz2) { | ||
456 | fix2 = 1; | ||
457 | continue; | ||
458 | } | ||
459 | } | ||
460 | |||
461 | // unfix the alpha variables if the local distance gradient indicates | ||
462 | // that we are not yet at the minimum | ||
463 | dReal tmp[3]; | ||
464 | for (i=0; i<3; i++) tmp[i] = sphere1[i] - sphere2[i]; | ||
465 | if (fix1) { | ||
466 | dReal gradient = dDOT (tmp,axis1); | ||
467 | if ((fix1 > 0 && gradient > 0) || (fix1 < 0 && gradient < 0)) { | ||
468 | fix1 = 0; | ||
469 | continue; | ||
470 | } | ||
471 | } | ||
472 | if (fix2) { | ||
473 | dReal gradient = -dDOT (tmp,axis2); | ||
474 | if ((fix2 > 0 && gradient > 0) || (fix2 < 0 && gradient < 0)) { | ||
475 | fix2 = 0; | ||
476 | continue; | ||
477 | } | ||
478 | } | ||
479 | return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact); | ||
480 | } | ||
481 | // if we go through the loop too much, then give up. we should NEVER get to | ||
482 | // this point (i hope). | ||
483 | dMessage (0,"dCollideCC(): too many iterations"); | ||
484 | return 0; | ||
485 | } | ||