diff options
Diffstat (limited to 'libraries/ode-0.9/ode/src/collision_util.cpp')
-rw-r--r-- | libraries/ode-0.9/ode/src/collision_util.cpp | 612 |
1 files changed, 0 insertions, 612 deletions
diff --git a/libraries/ode-0.9/ode/src/collision_util.cpp b/libraries/ode-0.9/ode/src/collision_util.cpp deleted file mode 100644 index 460cc20..0000000 --- a/libraries/ode-0.9/ode/src/collision_util.cpp +++ /dev/null | |||
@@ -1,612 +0,0 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | /* | ||
24 | |||
25 | some useful collision utility stuff. this includes some API utility | ||
26 | functions that are defined in the public header files. | ||
27 | |||
28 | */ | ||
29 | |||
30 | #include <ode/common.h> | ||
31 | #include <ode/collision.h> | ||
32 | #include <ode/odemath.h> | ||
33 | #include "collision_util.h" | ||
34 | |||
35 | //**************************************************************************** | ||
36 | |||
37 | int dCollideSpheres (dVector3 p1, dReal r1, | ||
38 | dVector3 p2, dReal r2, dContactGeom *c) | ||
39 | { | ||
40 | // printf ("d=%.2f (%.2f %.2f %.2f) (%.2f %.2f %.2f) r1=%.2f r2=%.2f\n", | ||
41 | // d,p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],r1,r2); | ||
42 | |||
43 | dReal d = dDISTANCE (p1,p2); | ||
44 | if (d > (r1 + r2)) return 0; | ||
45 | if (d <= 0) { | ||
46 | c->pos[0] = p1[0]; | ||
47 | c->pos[1] = p1[1]; | ||
48 | c->pos[2] = p1[2]; | ||
49 | c->normal[0] = 1; | ||
50 | c->normal[1] = 0; | ||
51 | c->normal[2] = 0; | ||
52 | c->depth = r1 + r2; | ||
53 | } | ||
54 | else { | ||
55 | dReal d1 = dRecip (d); | ||
56 | c->normal[0] = (p1[0]-p2[0])*d1; | ||
57 | c->normal[1] = (p1[1]-p2[1])*d1; | ||
58 | c->normal[2] = (p1[2]-p2[2])*d1; | ||
59 | dReal k = REAL(0.5) * (r2 - r1 - d); | ||
60 | c->pos[0] = p1[0] + c->normal[0]*k; | ||
61 | c->pos[1] = p1[1] + c->normal[1]*k; | ||
62 | c->pos[2] = p1[2] + c->normal[2]*k; | ||
63 | c->depth = r1 + r2 - d; | ||
64 | } | ||
65 | return 1; | ||
66 | } | ||
67 | |||
68 | |||
69 | void dLineClosestApproach (const dVector3 pa, const dVector3 ua, | ||
70 | const dVector3 pb, const dVector3 ub, | ||
71 | dReal *alpha, dReal *beta) | ||
72 | { | ||
73 | dVector3 p; | ||
74 | p[0] = pb[0] - pa[0]; | ||
75 | p[1] = pb[1] - pa[1]; | ||
76 | p[2] = pb[2] - pa[2]; | ||
77 | dReal uaub = dDOT(ua,ub); | ||
78 | dReal q1 = dDOT(ua,p); | ||
79 | dReal q2 = -dDOT(ub,p); | ||
80 | dReal d = 1-uaub*uaub; | ||
81 | if (d <= REAL(0.0001)) { | ||
82 | // @@@ this needs to be made more robust | ||
83 | *alpha = 0; | ||
84 | *beta = 0; | ||
85 | } | ||
86 | else { | ||
87 | d = dRecip(d); | ||
88 | *alpha = (q1 + uaub*q2)*d; | ||
89 | *beta = (uaub*q1 + q2)*d; | ||
90 | } | ||
91 | } | ||
92 | |||
93 | |||
94 | // given two line segments A and B with endpoints a1-a2 and b1-b2, return the | ||
95 | // points on A and B that are closest to each other (in cp1 and cp2). | ||
96 | // in the case of parallel lines where there are multiple solutions, a | ||
97 | // solution involving the endpoint of at least one line will be returned. | ||
98 | // this will work correctly for zero length lines, e.g. if a1==a2 and/or | ||
99 | // b1==b2. | ||
100 | // | ||
101 | // the algorithm works by applying the voronoi clipping rule to the features | ||
102 | // of the line segments. the three features of each line segment are the two | ||
103 | // endpoints and the line between them. the voronoi clipping rule states that, | ||
104 | // for feature X on line A and feature Y on line B, the closest points PA and | ||
105 | // PB between X and Y are globally the closest points if PA is in V(Y) and | ||
106 | // PB is in V(X), where V(X) is the voronoi region of X. | ||
107 | |||
108 | void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2, | ||
109 | const dVector3 b1, const dVector3 b2, | ||
110 | dVector3 cp1, dVector3 cp2) | ||
111 | { | ||
112 | dVector3 a1a2,b1b2,a1b1,a1b2,a2b1,a2b2,n; | ||
113 | dReal la,lb,k,da1,da2,da3,da4,db1,db2,db3,db4,det; | ||
114 | |||
115 | #define SET2(a,b) a[0]=b[0]; a[1]=b[1]; a[2]=b[2]; | ||
116 | #define SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2]; | ||
117 | |||
118 | // check vertex-vertex features | ||
119 | |||
120 | SET3 (a1a2,a2,-,a1); | ||
121 | SET3 (b1b2,b2,-,b1); | ||
122 | SET3 (a1b1,b1,-,a1); | ||
123 | da1 = dDOT(a1a2,a1b1); | ||
124 | db1 = dDOT(b1b2,a1b1); | ||
125 | if (da1 <= 0 && db1 >= 0) { | ||
126 | SET2 (cp1,a1); | ||
127 | SET2 (cp2,b1); | ||
128 | return; | ||
129 | } | ||
130 | |||
131 | SET3 (a1b2,b2,-,a1); | ||
132 | da2 = dDOT(a1a2,a1b2); | ||
133 | db2 = dDOT(b1b2,a1b2); | ||
134 | if (da2 <= 0 && db2 <= 0) { | ||
135 | SET2 (cp1,a1); | ||
136 | SET2 (cp2,b2); | ||
137 | return; | ||
138 | } | ||
139 | |||
140 | SET3 (a2b1,b1,-,a2); | ||
141 | da3 = dDOT(a1a2,a2b1); | ||
142 | db3 = dDOT(b1b2,a2b1); | ||
143 | if (da3 >= 0 && db3 >= 0) { | ||
144 | SET2 (cp1,a2); | ||
145 | SET2 (cp2,b1); | ||
146 | return; | ||
147 | } | ||
148 | |||
149 | SET3 (a2b2,b2,-,a2); | ||
150 | da4 = dDOT(a1a2,a2b2); | ||
151 | db4 = dDOT(b1b2,a2b2); | ||
152 | if (da4 >= 0 && db4 <= 0) { | ||
153 | SET2 (cp1,a2); | ||
154 | SET2 (cp2,b2); | ||
155 | return; | ||
156 | } | ||
157 | |||
158 | // check edge-vertex features. | ||
159 | // if one or both of the lines has zero length, we will never get to here, | ||
160 | // so we do not have to worry about the following divisions by zero. | ||
161 | |||
162 | la = dDOT(a1a2,a1a2); | ||
163 | if (da1 >= 0 && da3 <= 0) { | ||
164 | k = da1 / la; | ||
165 | SET3 (n,a1b1,-,k*a1a2); | ||
166 | if (dDOT(b1b2,n) >= 0) { | ||
167 | SET3 (cp1,a1,+,k*a1a2); | ||
168 | SET2 (cp2,b1); | ||
169 | return; | ||
170 | } | ||
171 | } | ||
172 | |||
173 | if (da2 >= 0 && da4 <= 0) { | ||
174 | k = da2 / la; | ||
175 | SET3 (n,a1b2,-,k*a1a2); | ||
176 | if (dDOT(b1b2,n) <= 0) { | ||
177 | SET3 (cp1,a1,+,k*a1a2); | ||
178 | SET2 (cp2,b2); | ||
179 | return; | ||
180 | } | ||
181 | } | ||
182 | |||
183 | lb = dDOT(b1b2,b1b2); | ||
184 | if (db1 <= 0 && db2 >= 0) { | ||
185 | k = -db1 / lb; | ||
186 | SET3 (n,-a1b1,-,k*b1b2); | ||
187 | if (dDOT(a1a2,n) >= 0) { | ||
188 | SET2 (cp1,a1); | ||
189 | SET3 (cp2,b1,+,k*b1b2); | ||
190 | return; | ||
191 | } | ||
192 | } | ||
193 | |||
194 | if (db3 <= 0 && db4 >= 0) { | ||
195 | k = -db3 / lb; | ||
196 | SET3 (n,-a2b1,-,k*b1b2); | ||
197 | if (dDOT(a1a2,n) <= 0) { | ||
198 | SET2 (cp1,a2); | ||
199 | SET3 (cp2,b1,+,k*b1b2); | ||
200 | return; | ||
201 | } | ||
202 | } | ||
203 | |||
204 | // it must be edge-edge | ||
205 | |||
206 | k = dDOT(a1a2,b1b2); | ||
207 | det = la*lb - k*k; | ||
208 | if (det <= 0) { | ||
209 | // this should never happen, but just in case... | ||
210 | SET2(cp1,a1); | ||
211 | SET2(cp2,b1); | ||
212 | return; | ||
213 | } | ||
214 | det = dRecip (det); | ||
215 | dReal alpha = (lb*da1 - k*db1) * det; | ||
216 | dReal beta = ( k*da1 - la*db1) * det; | ||
217 | SET3 (cp1,a1,+,alpha*a1a2); | ||
218 | SET3 (cp2,b1,+,beta*b1b2); | ||
219 | |||
220 | # undef SET2 | ||
221 | # undef SET3 | ||
222 | } | ||
223 | |||
224 | |||
225 | // a simple root finding algorithm is used to find the value of 't' that | ||
226 | // satisfies: | ||
227 | // d|D(t)|^2/dt = 0 | ||
228 | // where: | ||
229 | // |D(t)| = |p(t)-b(t)| | ||
230 | // where p(t) is a point on the line parameterized by t: | ||
231 | // p(t) = p1 + t*(p2-p1) | ||
232 | // and b(t) is that same point clipped to the boundary of the box. in box- | ||
233 | // relative coordinates d|D(t)|^2/dt is the sum of three x,y,z components | ||
234 | // each of which looks like this: | ||
235 | // | ||
236 | // t_lo / | ||
237 | // ______/ -->t | ||
238 | // / t_hi | ||
239 | // / | ||
240 | // | ||
241 | // t_lo and t_hi are the t values where the line passes through the planes | ||
242 | // corresponding to the sides of the box. the algorithm computes d|D(t)|^2/dt | ||
243 | // in a piecewise fashion from t=0 to t=1, stopping at the point where | ||
244 | // d|D(t)|^2/dt crosses from negative to positive. | ||
245 | |||
246 | void dClosestLineBoxPoints (const dVector3 p1, const dVector3 p2, | ||
247 | const dVector3 c, const dMatrix3 R, | ||
248 | const dVector3 side, | ||
249 | dVector3 lret, dVector3 bret) | ||
250 | { | ||
251 | int i; | ||
252 | |||
253 | // compute the start and delta of the line p1-p2 relative to the box. | ||
254 | // we will do all subsequent computations in this box-relative coordinate | ||
255 | // system. we have to do a translation and rotation for each point. | ||
256 | dVector3 tmp,s,v; | ||
257 | tmp[0] = p1[0] - c[0]; | ||
258 | tmp[1] = p1[1] - c[1]; | ||
259 | tmp[2] = p1[2] - c[2]; | ||
260 | dMULTIPLY1_331 (s,R,tmp); | ||
261 | tmp[0] = p2[0] - p1[0]; | ||
262 | tmp[1] = p2[1] - p1[1]; | ||
263 | tmp[2] = p2[2] - p1[2]; | ||
264 | dMULTIPLY1_331 (v,R,tmp); | ||
265 | |||
266 | // mirror the line so that v has all components >= 0 | ||
267 | dVector3 sign; | ||
268 | for (i=0; i<3; i++) { | ||
269 | if (v[i] < 0) { | ||
270 | s[i] = -s[i]; | ||
271 | v[i] = -v[i]; | ||
272 | sign[i] = -1; | ||
273 | } | ||
274 | else sign[i] = 1; | ||
275 | } | ||
276 | |||
277 | // compute v^2 | ||
278 | dVector3 v2; | ||
279 | v2[0] = v[0]*v[0]; | ||
280 | v2[1] = v[1]*v[1]; | ||
281 | v2[2] = v[2]*v[2]; | ||
282 | |||
283 | // compute the half-sides of the box | ||
284 | dReal h[3]; | ||
285 | h[0] = REAL(0.5) * side[0]; | ||
286 | h[1] = REAL(0.5) * side[1]; | ||
287 | h[2] = REAL(0.5) * side[2]; | ||
288 | |||
289 | // region is -1,0,+1 depending on which side of the box planes each | ||
290 | // coordinate is on. tanchor is the next t value at which there is a | ||
291 | // transition, or the last one if there are no more. | ||
292 | int region[3]; | ||
293 | dReal tanchor[3]; | ||
294 | |||
295 | // Denormals are a problem, because we divide by v[i], and then | ||
296 | // multiply that by 0. Alas, infinity times 0 is infinity (!) | ||
297 | // We also use v2[i], which is v[i] squared. Here's how the epsilons | ||
298 | // are chosen: | ||
299 | // float epsilon = 1.175494e-038 (smallest non-denormal number) | ||
300 | // double epsilon = 2.225074e-308 (smallest non-denormal number) | ||
301 | // For single precision, choose an epsilon such that v[i] squared is | ||
302 | // not a denormal; this is for performance. | ||
303 | // For double precision, choose an epsilon such that v[i] is not a | ||
304 | // denormal; this is for correctness. (Jon Watte on mailinglist) | ||
305 | |||
306 | #if defined( dSINGLE ) | ||
307 | const dReal tanchor_eps = REAL(1e-19); | ||
308 | #else | ||
309 | const dReal tanchor_eps = REAL(1e-307); | ||
310 | #endif | ||
311 | |||
312 | // find the region and tanchor values for p1 | ||
313 | for (i=0; i<3; i++) { | ||
314 | if (v[i] > tanchor_eps) { | ||
315 | if (s[i] < -h[i]) { | ||
316 | region[i] = -1; | ||
317 | tanchor[i] = (-h[i]-s[i])/v[i]; | ||
318 | } | ||
319 | else { | ||
320 | region[i] = (s[i] > h[i]); | ||
321 | tanchor[i] = (h[i]-s[i])/v[i]; | ||
322 | } | ||
323 | } | ||
324 | else { | ||
325 | region[i] = 0; | ||
326 | tanchor[i] = 2; // this will never be a valid tanchor | ||
327 | } | ||
328 | } | ||
329 | |||
330 | // compute d|d|^2/dt for t=0. if it's >= 0 then p1 is the closest point | ||
331 | dReal t=0; | ||
332 | dReal dd2dt = 0; | ||
333 | for (i=0; i<3; i++) dd2dt -= (region[i] ? v2[i] : 0) * tanchor[i]; | ||
334 | if (dd2dt >= 0) goto got_answer; | ||
335 | |||
336 | do { | ||
337 | // find the point on the line that is at the next clip plane boundary | ||
338 | dReal next_t = 1; | ||
339 | for (i=0; i<3; i++) { | ||
340 | if (tanchor[i] > t && tanchor[i] < 1 && tanchor[i] < next_t) | ||
341 | next_t = tanchor[i]; | ||
342 | } | ||
343 | |||
344 | // compute d|d|^2/dt for the next t | ||
345 | dReal next_dd2dt = 0; | ||
346 | for (i=0; i<3; i++) { | ||
347 | next_dd2dt += (region[i] ? v2[i] : 0) * (next_t - tanchor[i]); | ||
348 | } | ||
349 | |||
350 | // if the sign of d|d|^2/dt has changed, solution = the crossover point | ||
351 | if (next_dd2dt >= 0) { | ||
352 | dReal m = (next_dd2dt-dd2dt)/(next_t - t); | ||
353 | t -= dd2dt/m; | ||
354 | goto got_answer; | ||
355 | } | ||
356 | |||
357 | // advance to the next anchor point / region | ||
358 | for (i=0; i<3; i++) { | ||
359 | if (tanchor[i] == next_t) { | ||
360 | tanchor[i] = (h[i]-s[i])/v[i]; | ||
361 | region[i]++; | ||
362 | } | ||
363 | } | ||
364 | t = next_t; | ||
365 | dd2dt = next_dd2dt; | ||
366 | } | ||
367 | while (t < 1); | ||
368 | t = 1; | ||
369 | |||
370 | got_answer: | ||
371 | |||
372 | // compute closest point on the line | ||
373 | for (i=0; i<3; i++) lret[i] = p1[i] + t*tmp[i]; // note: tmp=p2-p1 | ||
374 | |||
375 | // compute closest point on the box | ||
376 | for (i=0; i<3; i++) { | ||
377 | tmp[i] = sign[i] * (s[i] + t*v[i]); | ||
378 | if (tmp[i] < -h[i]) tmp[i] = -h[i]; | ||
379 | else if (tmp[i] > h[i]) tmp[i] = h[i]; | ||
380 | } | ||
381 | dMULTIPLY0_331 (s,R,tmp); | ||
382 | for (i=0; i<3; i++) bret[i] = s[i] + c[i]; | ||
383 | } | ||
384 | |||
385 | |||
386 | // given boxes (p1,R1,side1) and (p1,R1,side1), return 1 if they intersect | ||
387 | // or 0 if not. | ||
388 | |||
389 | int dBoxTouchesBox (const dVector3 p1, const dMatrix3 R1, | ||
390 | const dVector3 side1, const dVector3 p2, | ||
391 | const dMatrix3 R2, const dVector3 side2) | ||
392 | { | ||
393 | // two boxes are disjoint if (and only if) there is a separating axis | ||
394 | // perpendicular to a face from one box or perpendicular to an edge from | ||
395 | // either box. the following tests are derived from: | ||
396 | // "OBB Tree: A Hierarchical Structure for Rapid Interference Detection", | ||
397 | // S.Gottschalk, M.C.Lin, D.Manocha., Proc of ACM Siggraph 1996. | ||
398 | |||
399 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2. | ||
400 | // Qij is abs(Rij) | ||
401 | dVector3 p,pp; | ||
402 | dReal A1,A2,A3,B1,B2,B3,R11,R12,R13,R21,R22,R23,R31,R32,R33, | ||
403 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33; | ||
404 | |||
405 | // get vector from centers of box 1 to box 2, relative to box 1 | ||
406 | p[0] = p2[0] - p1[0]; | ||
407 | p[1] = p2[1] - p1[1]; | ||
408 | p[2] = p2[2] - p1[2]; | ||
409 | dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 | ||
410 | |||
411 | // get side lengths / 2 | ||
412 | A1 = side1[0]*REAL(0.5); A2 = side1[1]*REAL(0.5); A3 = side1[2]*REAL(0.5); | ||
413 | B1 = side2[0]*REAL(0.5); B2 = side2[1]*REAL(0.5); B3 = side2[2]*REAL(0.5); | ||
414 | |||
415 | // for the following tests, excluding computation of Rij, in the worst case, | ||
416 | // 15 compares, 60 adds, 81 multiplies, and 24 absolutes. | ||
417 | // notation: R1=[u1 u2 u3], R2=[v1 v2 v3] | ||
418 | |||
419 | // separating axis = u1,u2,u3 | ||
420 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); | ||
421 | Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); | ||
422 | if (dFabs(pp[0]) > (A1 + B1*Q11 + B2*Q12 + B3*Q13)) return 0; | ||
423 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); | ||
424 | Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); | ||
425 | if (dFabs(pp[1]) > (A2 + B1*Q21 + B2*Q22 + B3*Q23)) return 0; | ||
426 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); | ||
427 | Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); | ||
428 | if (dFabs(pp[2]) > (A3 + B1*Q31 + B2*Q32 + B3*Q33)) return 0; | ||
429 | |||
430 | // separating axis = v1,v2,v3 | ||
431 | if (dFabs(dDOT41(R2+0,p)) > (A1*Q11 + A2*Q21 + A3*Q31 + B1)) return 0; | ||
432 | if (dFabs(dDOT41(R2+1,p)) > (A1*Q12 + A2*Q22 + A3*Q32 + B2)) return 0; | ||
433 | if (dFabs(dDOT41(R2+2,p)) > (A1*Q13 + A2*Q23 + A3*Q33 + B3)) return 0; | ||
434 | |||
435 | // separating axis = u1 x (v1,v2,v3) | ||
436 | if (dFabs(pp[2]*R21-pp[1]*R31) > A2*Q31 + A3*Q21 + B2*Q13 + B3*Q12) return 0; | ||
437 | if (dFabs(pp[2]*R22-pp[1]*R32) > A2*Q32 + A3*Q22 + B1*Q13 + B3*Q11) return 0; | ||
438 | if (dFabs(pp[2]*R23-pp[1]*R33) > A2*Q33 + A3*Q23 + B1*Q12 + B2*Q11) return 0; | ||
439 | |||
440 | // separating axis = u2 x (v1,v2,v3) | ||
441 | if (dFabs(pp[0]*R31-pp[2]*R11) > A1*Q31 + A3*Q11 + B2*Q23 + B3*Q22) return 0; | ||
442 | if (dFabs(pp[0]*R32-pp[2]*R12) > A1*Q32 + A3*Q12 + B1*Q23 + B3*Q21) return 0; | ||
443 | if (dFabs(pp[0]*R33-pp[2]*R13) > A1*Q33 + A3*Q13 + B1*Q22 + B2*Q21) return 0; | ||
444 | |||
445 | // separating axis = u3 x (v1,v2,v3) | ||
446 | if (dFabs(pp[1]*R11-pp[0]*R21) > A1*Q21 + A2*Q11 + B2*Q33 + B3*Q32) return 0; | ||
447 | if (dFabs(pp[1]*R12-pp[0]*R22) > A1*Q22 + A2*Q12 + B1*Q33 + B3*Q31) return 0; | ||
448 | if (dFabs(pp[1]*R13-pp[0]*R23) > A1*Q23 + A2*Q13 + B1*Q32 + B2*Q31) return 0; | ||
449 | |||
450 | return 1; | ||
451 | } | ||
452 | |||
453 | //**************************************************************************** | ||
454 | // other utility functions | ||
455 | |||
456 | void dInfiniteAABB (dxGeom *geom, dReal aabb[6]) | ||
457 | { | ||
458 | aabb[0] = -dInfinity; | ||
459 | aabb[1] = dInfinity; | ||
460 | aabb[2] = -dInfinity; | ||
461 | aabb[3] = dInfinity; | ||
462 | aabb[4] = -dInfinity; | ||
463 | aabb[5] = dInfinity; | ||
464 | } | ||
465 | |||
466 | |||
467 | //**************************************************************************** | ||
468 | // Helpers for Croteam's collider - by Nguyen Binh | ||
469 | |||
470 | int dClipEdgeToPlane( dVector3 &vEpnt0, dVector3 &vEpnt1, const dVector4& plPlane) | ||
471 | { | ||
472 | // calculate distance of edge points to plane | ||
473 | dReal fDistance0 = dPointPlaneDistance( vEpnt0 ,plPlane ); | ||
474 | dReal fDistance1 = dPointPlaneDistance( vEpnt1 ,plPlane ); | ||
475 | |||
476 | // if both points are behind the plane | ||
477 | if ( fDistance0 < 0 && fDistance1 < 0 ) | ||
478 | { | ||
479 | // do nothing | ||
480 | return 0; | ||
481 | // if both points in front of the plane | ||
482 | } | ||
483 | else if ( fDistance0 > 0 && fDistance1 > 0 ) | ||
484 | { | ||
485 | // accept them | ||
486 | return 1; | ||
487 | // if we have edge/plane intersection | ||
488 | } else if ((fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0)) | ||
489 | { | ||
490 | |||
491 | // find intersection point of edge and plane | ||
492 | dVector3 vIntersectionPoint; | ||
493 | vIntersectionPoint[0]= vEpnt0[0]-(vEpnt0[0]-vEpnt1[0])*fDistance0/(fDistance0-fDistance1); | ||
494 | vIntersectionPoint[1]= vEpnt0[1]-(vEpnt0[1]-vEpnt1[1])*fDistance0/(fDistance0-fDistance1); | ||
495 | vIntersectionPoint[2]= vEpnt0[2]-(vEpnt0[2]-vEpnt1[2])*fDistance0/(fDistance0-fDistance1); | ||
496 | |||
497 | // clamp correct edge to intersection point | ||
498 | if ( fDistance0 < 0 ) | ||
499 | { | ||
500 | dVector3Copy(vIntersectionPoint,vEpnt0); | ||
501 | } else | ||
502 | { | ||
503 | dVector3Copy(vIntersectionPoint,vEpnt1); | ||
504 | } | ||
505 | return 1; | ||
506 | } | ||
507 | return 1; | ||
508 | } | ||
509 | |||
510 | // clip polygon with plane and generate new polygon points | ||
511 | void dClipPolyToPlane( const dVector3 avArrayIn[], const int ctIn, | ||
512 | dVector3 avArrayOut[], int &ctOut, | ||
513 | const dVector4 &plPlane ) | ||
514 | { | ||
515 | // start with no output points | ||
516 | ctOut = 0; | ||
517 | |||
518 | int i0 = ctIn-1; | ||
519 | |||
520 | // for each edge in input polygon | ||
521 | for (int i1=0; i1<ctIn; i0=i1, i1++) { | ||
522 | |||
523 | |||
524 | // calculate distance of edge points to plane | ||
525 | dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane ); | ||
526 | dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane ); | ||
527 | |||
528 | // if first point is in front of plane | ||
529 | if( fDistance0 >= 0 ) { | ||
530 | // emit point | ||
531 | avArrayOut[ctOut][0] = avArrayIn[i0][0]; | ||
532 | avArrayOut[ctOut][1] = avArrayIn[i0][1]; | ||
533 | avArrayOut[ctOut][2] = avArrayIn[i0][2]; | ||
534 | ctOut++; | ||
535 | } | ||
536 | |||
537 | // if points are on different sides | ||
538 | if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) { | ||
539 | |||
540 | // find intersection point of edge and plane | ||
541 | dVector3 vIntersectionPoint; | ||
542 | vIntersectionPoint[0]= avArrayIn[i0][0] - | ||
543 | (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1); | ||
544 | vIntersectionPoint[1]= avArrayIn[i0][1] - | ||
545 | (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1); | ||
546 | vIntersectionPoint[2]= avArrayIn[i0][2] - | ||
547 | (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1); | ||
548 | |||
549 | // emit intersection point | ||
550 | avArrayOut[ctOut][0] = vIntersectionPoint[0]; | ||
551 | avArrayOut[ctOut][1] = vIntersectionPoint[1]; | ||
552 | avArrayOut[ctOut][2] = vIntersectionPoint[2]; | ||
553 | ctOut++; | ||
554 | } | ||
555 | } | ||
556 | |||
557 | } | ||
558 | |||
559 | void dClipPolyToCircle(const dVector3 avArrayIn[], const int ctIn, | ||
560 | dVector3 avArrayOut[], int &ctOut, | ||
561 | const dVector4 &plPlane ,dReal fRadius) | ||
562 | { | ||
563 | // start with no output points | ||
564 | ctOut = 0; | ||
565 | |||
566 | int i0 = ctIn-1; | ||
567 | |||
568 | // for each edge in input polygon | ||
569 | for (int i1=0; i1<ctIn; i0=i1, i1++) | ||
570 | { | ||
571 | // calculate distance of edge points to plane | ||
572 | dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane ); | ||
573 | dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane ); | ||
574 | |||
575 | // if first point is in front of plane | ||
576 | if( fDistance0 >= 0 ) | ||
577 | { | ||
578 | // emit point | ||
579 | if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius) | ||
580 | { | ||
581 | avArrayOut[ctOut][0] = avArrayIn[i0][0]; | ||
582 | avArrayOut[ctOut][1] = avArrayIn[i0][1]; | ||
583 | avArrayOut[ctOut][2] = avArrayIn[i0][2]; | ||
584 | ctOut++; | ||
585 | } | ||
586 | } | ||
587 | |||
588 | // if points are on different sides | ||
589 | if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) | ||
590 | { | ||
591 | |||
592 | // find intersection point of edge and plane | ||
593 | dVector3 vIntersectionPoint; | ||
594 | vIntersectionPoint[0]= avArrayIn[i0][0] - | ||
595 | (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1); | ||
596 | vIntersectionPoint[1]= avArrayIn[i0][1] - | ||
597 | (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1); | ||
598 | vIntersectionPoint[2]= avArrayIn[i0][2] - | ||
599 | (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1); | ||
600 | |||
601 | // emit intersection point | ||
602 | if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius) | ||
603 | { | ||
604 | avArrayOut[ctOut][0] = vIntersectionPoint[0]; | ||
605 | avArrayOut[ctOut][1] = vIntersectionPoint[1]; | ||
606 | avArrayOut[ctOut][2] = vIntersectionPoint[2]; | ||
607 | ctOut++; | ||
608 | } | ||
609 | } | ||
610 | } | ||
611 | } | ||
612 | |||