diff options
Diffstat (limited to 'libraries/ode-0.9/OPCODE/OPC_BoxPruning.cpp')
-rw-r--r-- | libraries/ode-0.9/OPCODE/OPC_BoxPruning.cpp | 367 |
1 files changed, 0 insertions, 367 deletions
diff --git a/libraries/ode-0.9/OPCODE/OPC_BoxPruning.cpp b/libraries/ode-0.9/OPCODE/OPC_BoxPruning.cpp deleted file mode 100644 index 6906160..0000000 --- a/libraries/ode-0.9/OPCODE/OPC_BoxPruning.cpp +++ /dev/null | |||
@@ -1,367 +0,0 @@ | |||
1 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
2 | /* | ||
3 | * OPCODE - Optimized Collision Detection | ||
4 | * Copyright (C) 2001 Pierre Terdiman | ||
5 | * Homepage: http://www.codercorner.com/Opcode.htm | ||
6 | */ | ||
7 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
8 | |||
9 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
10 | /** | ||
11 | * Contains code for box pruning. | ||
12 | * \file IceBoxPruning.cpp | ||
13 | * \author Pierre Terdiman | ||
14 | * \date January, 29, 2000 | ||
15 | */ | ||
16 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
17 | |||
18 | /* | ||
19 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
20 | You could use a complex sweep-and-prune as implemented in I-Collide. | ||
21 | You could use a complex hashing scheme as implemented in V-Clip or recently in ODE it seems. | ||
22 | You could use a "Recursive Dimensional Clustering" algorithm as implemented in GPG2. | ||
23 | |||
24 | Or you could use this. | ||
25 | Faster ? I don't know. Probably not. It would be a shame. But who knows ? | ||
26 | Easier ? Definitely. Enjoy the sheer simplicity. | ||
27 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
28 | */ | ||
29 | |||
30 | |||
31 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
32 | // Precompiled Header | ||
33 | #include "Stdafx.h" | ||
34 | |||
35 | using namespace Opcode; | ||
36 | |||
37 | inline_ void FindRunningIndex(udword& index, float* array, udword* sorted, int last, float max) | ||
38 | { | ||
39 | int First=index; | ||
40 | while(First<=last) | ||
41 | { | ||
42 | index = (First+last)>>1; | ||
43 | |||
44 | if(max>array[sorted[index]]) First = index+1; | ||
45 | else last = index-1; | ||
46 | } | ||
47 | } | ||
48 | // ### could be log(n) ! | ||
49 | // and maybe use cmp integers | ||
50 | |||
51 | // InsertionSort has better coherence, RadixSort is better for one-shot queries. | ||
52 | #define PRUNING_SORTER RadixSort | ||
53 | //#define PRUNING_SORTER InsertionSort | ||
54 | |||
55 | // Static for coherence | ||
56 | static PRUNING_SORTER* gCompletePruningSorter = null; | ||
57 | static PRUNING_SORTER* gBipartitePruningSorter0 = null; | ||
58 | static PRUNING_SORTER* gBipartitePruningSorter1 = null; | ||
59 | inline_ PRUNING_SORTER* GetCompletePruningSorter() | ||
60 | { | ||
61 | if(!gCompletePruningSorter) gCompletePruningSorter = new PRUNING_SORTER; | ||
62 | return gCompletePruningSorter; | ||
63 | } | ||
64 | inline_ PRUNING_SORTER* GetBipartitePruningSorter0() | ||
65 | { | ||
66 | if(!gBipartitePruningSorter0) gBipartitePruningSorter0 = new PRUNING_SORTER; | ||
67 | return gBipartitePruningSorter0; | ||
68 | } | ||
69 | inline_ PRUNING_SORTER* GetBipartitePruningSorter1() | ||
70 | { | ||
71 | if(!gBipartitePruningSorter1) gBipartitePruningSorter1 = new PRUNING_SORTER; | ||
72 | return gBipartitePruningSorter1; | ||
73 | } | ||
74 | void ReleasePruningSorters() | ||
75 | { | ||
76 | DELETESINGLE(gBipartitePruningSorter1); | ||
77 | DELETESINGLE(gBipartitePruningSorter0); | ||
78 | DELETESINGLE(gCompletePruningSorter); | ||
79 | } | ||
80 | |||
81 | |||
82 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
83 | /** | ||
84 | * Bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set. | ||
85 | * \param nb0 [in] number of boxes in the first set | ||
86 | * \param array0 [in] array of boxes for the first set | ||
87 | * \param nb1 [in] number of boxes in the second set | ||
88 | * \param array1 [in] array of boxes for the second set | ||
89 | * \param pairs [out] array of overlapping pairs | ||
90 | * \param axes [in] projection order (0,2,1 is often best) | ||
91 | * \return true if success. | ||
92 | */ | ||
93 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
94 | bool Opcode::BipartiteBoxPruning(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs, const Axes& axes) | ||
95 | { | ||
96 | // Checkings | ||
97 | if(!nb0 || !array0 || !nb1 || !array1) return false; | ||
98 | |||
99 | // Catch axes | ||
100 | udword Axis0 = axes.mAxis0; | ||
101 | udword Axis1 = axes.mAxis1; | ||
102 | udword Axis2 = axes.mAxis2; | ||
103 | |||
104 | // Allocate some temporary data | ||
105 | float* MinPosList0 = new float[nb0]; | ||
106 | float* MinPosList1 = new float[nb1]; | ||
107 | |||
108 | // 1) Build main lists using the primary axis | ||
109 | for(udword i=0;i<nb0;i++) MinPosList0[i] = array0[i]->GetMin(Axis0); | ||
110 | for(udword i=0;i<nb1;i++) MinPosList1[i] = array1[i]->GetMin(Axis0); | ||
111 | |||
112 | // 2) Sort the lists | ||
113 | PRUNING_SORTER* RS0 = GetBipartitePruningSorter0(); | ||
114 | PRUNING_SORTER* RS1 = GetBipartitePruningSorter1(); | ||
115 | const udword* Sorted0 = RS0->Sort(MinPosList0, nb0).GetRanks(); | ||
116 | const udword* Sorted1 = RS1->Sort(MinPosList1, nb1).GetRanks(); | ||
117 | |||
118 | // 3) Prune the lists | ||
119 | udword Index0, Index1; | ||
120 | |||
121 | const udword* const LastSorted0 = &Sorted0[nb0]; | ||
122 | const udword* const LastSorted1 = &Sorted1[nb1]; | ||
123 | const udword* RunningAddress0 = Sorted0; | ||
124 | const udword* RunningAddress1 = Sorted1; | ||
125 | |||
126 | while(RunningAddress1<LastSorted1 && Sorted0<LastSorted0) | ||
127 | { | ||
128 | Index0 = *Sorted0++; | ||
129 | |||
130 | while(RunningAddress1<LastSorted1 && MinPosList1[*RunningAddress1]<MinPosList0[Index0]) RunningAddress1++; | ||
131 | |||
132 | const udword* RunningAddress2_1 = RunningAddress1; | ||
133 | |||
134 | while(RunningAddress2_1<LastSorted1 && MinPosList1[Index1 = *RunningAddress2_1++]<=array0[Index0]->GetMax(Axis0)) | ||
135 | { | ||
136 | if(array0[Index0]->Intersect(*array1[Index1], Axis1)) | ||
137 | { | ||
138 | if(array0[Index0]->Intersect(*array1[Index1], Axis2)) | ||
139 | { | ||
140 | pairs.AddPair(Index0, Index1); | ||
141 | } | ||
142 | } | ||
143 | } | ||
144 | } | ||
145 | |||
146 | //// | ||
147 | |||
148 | while(RunningAddress0<LastSorted0 && Sorted1<LastSorted1) | ||
149 | { | ||
150 | Index0 = *Sorted1++; | ||
151 | |||
152 | while(RunningAddress0<LastSorted0 && MinPosList0[*RunningAddress0]<=MinPosList1[Index0]) RunningAddress0++; | ||
153 | |||
154 | const udword* RunningAddress2_0 = RunningAddress0; | ||
155 | |||
156 | while(RunningAddress2_0<LastSorted0 && MinPosList0[Index1 = *RunningAddress2_0++]<=array1[Index0]->GetMax(Axis0)) | ||
157 | { | ||
158 | if(array0[Index1]->Intersect(*array1[Index0], Axis1)) | ||
159 | { | ||
160 | if(array0[Index1]->Intersect(*array1[Index0], Axis2)) | ||
161 | { | ||
162 | pairs.AddPair(Index1, Index0); | ||
163 | } | ||
164 | } | ||
165 | |||
166 | } | ||
167 | } | ||
168 | |||
169 | DELETEARRAY(MinPosList1); | ||
170 | DELETEARRAY(MinPosList0); | ||
171 | |||
172 | return true; | ||
173 | } | ||
174 | |||
175 | #define ORIGINAL_VERSION | ||
176 | //#define JOAKIM | ||
177 | |||
178 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
179 | /** | ||
180 | * Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set. | ||
181 | * \param nb [in] number of boxes | ||
182 | * \param array [in] array of boxes | ||
183 | * \param pairs [out] array of overlapping pairs | ||
184 | * \param axes [in] projection order (0,2,1 is often best) | ||
185 | * \return true if success. | ||
186 | */ | ||
187 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
188 | bool Opcode::CompleteBoxPruning(udword nb, const AABB** array, Pairs& pairs, const Axes& axes) | ||
189 | { | ||
190 | // Checkings | ||
191 | if(!nb || !array) return false; | ||
192 | |||
193 | // Catch axes | ||
194 | udword Axis0 = axes.mAxis0; | ||
195 | udword Axis1 = axes.mAxis1; | ||
196 | udword Axis2 = axes.mAxis2; | ||
197 | |||
198 | #ifdef ORIGINAL_VERSION | ||
199 | // Allocate some temporary data | ||
200 | // float* PosList = new float[nb]; | ||
201 | float* PosList = new float[nb+1]; | ||
202 | |||
203 | // 1) Build main list using the primary axis | ||
204 | for(udword i=0;i<nb;i++) PosList[i] = array[i]->GetMin(Axis0); | ||
205 | PosList[nb++] = MAX_FLOAT; | ||
206 | |||
207 | // 2) Sort the list | ||
208 | PRUNING_SORTER* RS = GetCompletePruningSorter(); | ||
209 | const udword* Sorted = RS->Sort(PosList, nb).GetRanks(); | ||
210 | |||
211 | // 3) Prune the list | ||
212 | const udword* const LastSorted = &Sorted[nb]; | ||
213 | const udword* RunningAddress = Sorted; | ||
214 | udword Index0, Index1; | ||
215 | while(RunningAddress<LastSorted && Sorted<LastSorted) | ||
216 | { | ||
217 | Index0 = *Sorted++; | ||
218 | |||
219 | // while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]); | ||
220 | while(PosList[*RunningAddress++]<PosList[Index0]); | ||
221 | |||
222 | if(RunningAddress<LastSorted) | ||
223 | { | ||
224 | const udword* RunningAddress2 = RunningAddress; | ||
225 | |||
226 | // while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0)) | ||
227 | while(PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0)) | ||
228 | { | ||
229 | // if(Index0!=Index1) | ||
230 | // { | ||
231 | if(array[Index0]->Intersect(*array[Index1], Axis1)) | ||
232 | { | ||
233 | if(array[Index0]->Intersect(*array[Index1], Axis2)) | ||
234 | { | ||
235 | pairs.AddPair(Index0, Index1); | ||
236 | } | ||
237 | } | ||
238 | // } | ||
239 | } | ||
240 | } | ||
241 | } | ||
242 | |||
243 | DELETEARRAY(PosList); | ||
244 | #endif | ||
245 | |||
246 | #ifdef JOAKIM | ||
247 | // Allocate some temporary data | ||
248 | // float* PosList = new float[nb]; | ||
249 | float* MinList = new float[nb+1]; | ||
250 | |||
251 | // 1) Build main list using the primary axis | ||
252 | for(udword i=0;i<nb;i++) MinList[i] = array[i]->GetMin(Axis0); | ||
253 | MinList[nb] = MAX_FLOAT; | ||
254 | |||
255 | // 2) Sort the list | ||
256 | PRUNING_SORTER* RS = GetCompletePruningSorter(); | ||
257 | udword* Sorted = RS->Sort(MinList, nb+1).GetRanks(); | ||
258 | |||
259 | // 3) Prune the list | ||
260 | // const udword* const LastSorted = &Sorted[nb]; | ||
261 | // const udword* const LastSorted = &Sorted[nb-1]; | ||
262 | const udword* RunningAddress = Sorted; | ||
263 | udword Index0, Index1; | ||
264 | |||
265 | // while(RunningAddress<LastSorted && Sorted<LastSorted) | ||
266 | // while(RunningAddress<LastSorted) | ||
267 | while(RunningAddress<&Sorted[nb]) | ||
268 | // while(Sorted<LastSorted) | ||
269 | { | ||
270 | // Index0 = *Sorted++; | ||
271 | Index0 = *RunningAddress++; | ||
272 | |||
273 | // while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]); | ||
274 | // while(PosList[*RunningAddress++]<PosList[Index0]); | ||
275 | //RunningAddress = Sorted; | ||
276 | // if(RunningAddress<LastSorted) | ||
277 | { | ||
278 | const udword* RunningAddress2 = RunningAddress; | ||
279 | |||
280 | // while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0)) | ||
281 | |||
282 | // float CurrentMin = array[Index0]->GetMin(Axis0); | ||
283 | float CurrentMax = array[Index0]->GetMax(Axis0); | ||
284 | |||
285 | while(MinList[Index1 = *RunningAddress2] <= CurrentMax) | ||
286 | // while(PosList[Index1 = *RunningAddress] <= CurrentMax) | ||
287 | { | ||
288 | // if(Index0!=Index1) | ||
289 | // { | ||
290 | if(array[Index0]->Intersect(*array[Index1], Axis1)) | ||
291 | { | ||
292 | if(array[Index0]->Intersect(*array[Index1], Axis2)) | ||
293 | { | ||
294 | pairs.AddPair(Index0, Index1); | ||
295 | } | ||
296 | } | ||
297 | // } | ||
298 | |||
299 | RunningAddress2++; | ||
300 | // RunningAddress++; | ||
301 | } | ||
302 | } | ||
303 | } | ||
304 | |||
305 | DELETEARRAY(MinList); | ||
306 | #endif | ||
307 | |||
308 | return true; | ||
309 | } | ||
310 | |||
311 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
312 | // Brute-force versions are kept: | ||
313 | // - to check the optimized versions return the correct list of intersections | ||
314 | // - to check the speed of the optimized code against the brute-force one | ||
315 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
316 | |||
317 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
318 | /** | ||
319 | * Brute-force bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set. | ||
320 | * \param nb0 [in] number of boxes in the first set | ||
321 | * \param array0 [in] array of boxes for the first set | ||
322 | * \param nb1 [in] number of boxes in the second set | ||
323 | * \param array1 [in] array of boxes for the second set | ||
324 | * \param pairs [out] array of overlapping pairs | ||
325 | * \return true if success. | ||
326 | */ | ||
327 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
328 | bool Opcode::BruteForceBipartiteBoxTest(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs) | ||
329 | { | ||
330 | // Checkings | ||
331 | if(!nb0 || !array0 || !nb1 || !array1) return false; | ||
332 | |||
333 | // Brute-force nb0*nb1 overlap tests | ||
334 | for(udword i=0;i<nb0;i++) | ||
335 | { | ||
336 | for(udword j=0;j<nb1;j++) | ||
337 | { | ||
338 | if(array0[i]->Intersect(*array1[j])) pairs.AddPair(i, j); | ||
339 | } | ||
340 | } | ||
341 | return true; | ||
342 | } | ||
343 | |||
344 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
345 | /** | ||
346 | * Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set. | ||
347 | * \param nb [in] number of boxes | ||
348 | * \param array [in] array of boxes | ||
349 | * \param pairs [out] array of overlapping pairs | ||
350 | * \return true if success. | ||
351 | */ | ||
352 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
353 | bool Opcode::BruteForceCompleteBoxTest(udword nb, const AABB** array, Pairs& pairs) | ||
354 | { | ||
355 | // Checkings | ||
356 | if(!nb || !array) return false; | ||
357 | |||
358 | // Brute-force n(n-1)/2 overlap tests | ||
359 | for(udword i=0;i<nb;i++) | ||
360 | { | ||
361 | for(udword j=i+1;j<nb;j++) | ||
362 | { | ||
363 | if(array[i]->Intersect(*array[j])) pairs.AddPair(i, j); | ||
364 | } | ||
365 | } | ||
366 | return true; | ||
367 | } | ||