aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/ScriptEngine
diff options
context:
space:
mode:
Diffstat (limited to 'OpenSim/Region/ScriptEngine')
-rw-r--r--OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs31
-rw-r--r--OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs97
2 files changed, 92 insertions, 36 deletions
diff --git a/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs b/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs
index 443e7a5..d6316b2 100644
--- a/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs
+++ b/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs
@@ -468,26 +468,21 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
468 468
469 //Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke 469 //Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke
470 470
471 // Old implementation of llRot2Euler. Normalization not required as Atan2 function will 471 // Using algorithm based off http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf
472 // only return values >= -PI (-180 degrees) and <= PI (180 degrees). 472 // to avoid issues with singularity and rounding with Y rotation of +/- PI/2
473
474 public LSL_Vector llRot2Euler(LSL_Rotation r) 473 public LSL_Vector llRot2Euler(LSL_Rotation r)
475 { 474 {
476 m_host.AddScriptLPS(1); 475 LSL_Vector v = new LSL_Vector(0.0, 0.0, 1.0) * r; // Z axis unit vector unaffected by Z rotation component of r.
477 //This implementation is from http://lslwiki.net/lslwiki/wakka.php?wakka=LibraryRotationFunctions. ckrinke 476 double m = LSL_Vector.Mag(v); // Just in case v isn't normalized, need magnitude for Asin() operation later.
478 LSL_Rotation t = new LSL_Rotation(r.x * r.x, r.y * r.y, r.z * r.z, r.s * r.s); 477 if (m == 0.0) return new LSL_Vector();
479 double m = (t.x + t.y + t.z + t.s); 478 double x = Math.Atan2(-v.y, v.z);
480 if (m == 0) return new LSL_Vector(); 479 double sin = v.x / m;
481 double n = 2 * (r.y * r.s + r.x * r.z); 480 if (sin < -0.999999 || sin > 0.999999) x = 0.0; // Force X rotation to 0 at the singularities.
482 double p = m * m - n * n; 481 double y = Math.Asin(sin);
483 if (p > 0) 482 // Rotate X axis unit vector by r and unwind the X and Y rotations leaving only the Z rotation
484 return new LSL_Vector(Math.Atan2(2.0 * (r.x * r.s - r.y * r.z), (-t.x - t.y + t.z + t.s)), 483 v = new LSL_Vector(1.0, 0.0, 0.0) * ((r * new LSL_Rotation(Math.Sin(-x / 2.0), 0.0, 0.0, Math.Cos(-x / 2.0))) * new LSL_Rotation(0.0, Math.Sin(-y / 2.0), 0.0, Math.Cos(-y / 2.0)));
485 Math.Atan2(n, Math.Sqrt(p)), 484 double z = Math.Atan2(v.y, v.x);
486 Math.Atan2(2.0 * (r.z * r.s - r.x * r.y), (t.x - t.y - t.z + t.s))); 485 return new LSL_Vector(x, y, z);
487 else if (n > 0)
488 return new LSL_Vector(0.0, Math.PI * 0.5, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z));
489 else
490 return new LSL_Vector(0.0, -Math.PI * 0.5, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z));
491 } 486 }
492 487
493 /* From wiki: 488 /* From wiki:
diff --git a/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs b/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs
index 0cbad41..7594691 100644
--- a/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs
+++ b/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs
@@ -142,30 +142,91 @@ namespace OpenSim.Region.ScriptEngine.Shared.Tests
142 public void TestllRot2Euler() 142 public void TestllRot2Euler()
143 { 143 {
144 // 180, 90 and zero degree rotations. 144 // 180, 90 and zero degree rotations.
145 CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f), new LSL_Types.Vector3(Math.PI, 0.0f, 0.0f)); 145 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f));
146 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 1.0f, 0.0f, 0.0f), new LSL_Types.Vector3(Math.PI, 0.0f, Math.PI)); 146 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, 0.707107f));
147 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f), new LSL_Types.Vector3(0.0f, 0.0f, Math.PI)); 147 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f));
148 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f), new LSL_Types.Vector3(0.0f, 0.0f, 0.0f)); 148 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, -0.707107f));
149 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f), new LSL_Types.Vector3(0, -Math.PI / 2.0f, Math.PI / 2.0f)); 149 CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, 0.707107f));
150 CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.0f, -0.707107f), new LSL_Types.Vector3(Math.PI / 2.0f, 0.0f, 0.0f)); 150 CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, 0.5f, 0.5f));
151 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.707107f, 0.0f));
152 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, -0.5f));
153 CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f));
154 CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, -0.707107f, 0.0f, 0.0f));
155 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -1.0f, 0.0f, 0.0f));
156 CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, -0.707107f, 0.0f, 0.0f));
157 CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, -0.707107f));
158 CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, -0.5f, -0.5f));
159 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, -0.707107f, 0.0f));
160 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, 0.5f));
161 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, 0.707107f));
162 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f));
163 CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.707107f, 0.0f));
164 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, 0.5f, -0.5f));
165 CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, -0.707107f));
166 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, -0.5f));
167 CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, -0.707107f, 0.0f));
168 CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, -0.5f, 0.5f));
169
151 // A couple of messy rotations. 170 // A couple of messy rotations.
152 CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f), new LSL_Types.Vector3(0.037818f, 0.166447f, -0.095595f)); 171 CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f));
153 CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f), new LSL_Types.Vector3(-1.954769f, -0.174533f, 1.151917f)); 172 CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f));
173
174 // Some deliberately malicious rotations (intended on provoking singularity errors)
175 // The "f" suffexes are deliberately omitted.
176 CheckllRot2Euler(new LSL_Types.Quaternion(0.50001f, 0.50001f, 0.50001f, 0.50001f));
177 // More malice. The "f" suffixes are deliberately omitted.
178 CheckllRot2Euler(new LSL_Types.Quaternion(-0.701055, 0.092296, 0.701055, -0.092296));
179 CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683010, 0.183005, 0.683010));
180 CheckllRot2Euler(new LSL_Types.Quaternion(-0.430460, -0.560982, 0.430460, 0.560982));
181 CheckllRot2Euler(new LSL_Types.Quaternion(-0.701066, 0.092301, -0.701066, 0.092301));
182 CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, -0.683010, 0.183013, 0.683010));
183 CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683014, -0.183005, -0.683014));
184 CheckllRot2Euler(new LSL_Types.Quaternion(-0.353556, 0.612375, 0.353556, -0.612375));
185 CheckllRot2Euler(new LSL_Types.Quaternion(0.353554, -0.612385, -0.353554, 0.612385));
186 CheckllRot2Euler(new LSL_Types.Quaternion(-0.560989, 0.430450, 0.560989, -0.430450));
187 CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, 0.683009, -0.183013, 0.683009));
188 CheckllRot2Euler(new LSL_Types.Quaternion(0.430457, -0.560985, -0.430457, 0.560985));
189 CheckllRot2Euler(new LSL_Types.Quaternion(0.353552, 0.612360, -0.353552, -0.612360));
190 CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500003, 0.499991, -0.500003));
191 CheckllRot2Euler(new LSL_Types.Quaternion(-0.353555, -0.612385, -0.353555, -0.612385));
192 CheckllRot2Euler(new LSL_Types.Quaternion(0.701066, -0.092301, -0.701066, 0.092301));
193 CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500007, 0.499991, -0.500007));
194 CheckllRot2Euler(new LSL_Types.Quaternion(-0.683002, 0.183016, -0.683002, 0.183016));
195 CheckllRot2Euler(new LSL_Types.Quaternion(0.430458, 0.560982, 0.430458, 0.560982));
196 CheckllRot2Euler(new LSL_Types.Quaternion(0.499991, -0.500003, -0.499991, 0.500003));
197 CheckllRot2Euler(new LSL_Types.Quaternion(-0.183009, 0.683011, -0.183009, 0.683011));
198 CheckllRot2Euler(new LSL_Types.Quaternion(0.560975, -0.430457, 0.560975, -0.430457));
199 CheckllRot2Euler(new LSL_Types.Quaternion(0.701055, 0.092300, 0.701055, 0.092300));
200 CheckllRot2Euler(new LSL_Types.Quaternion(-0.560990, 0.430459, -0.560990, 0.430459));
201 CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059));
154 } 202 }
155 203
156 private void CheckllRot2Euler(LSL_Types.Quaternion rot, LSL_Types.Vector3 eulerCheck) 204 // Testing Rot2Euler this way instead of comparing against expected angles because
205 // 1. There are several ways to get to the original Quaternion. For example a rotation
206 // of PI and -PI will give the same result. But PI and -PI aren't equal.
207 // 2. This method checks to see if the calculated angles from a quaternion can be used
208 // to create a new quaternion to produce the same rotation.
209 // However, can't compare the newly calculated quaternion against the original because
210 // once again, there are multiple quaternions that give the same result. For instance
211 // <X, Y, Z, S> == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed
212 // and will still result in the same rotation if the values for X, Y, Z are also changed
213 // to compensate.
214 // However, if two quaternions represent the same rotation, then multiplying the first
215 // quaternion by the conjugate of the second, will give a third quaternion representing
216 // a zero rotation. This can be tested for by looking at the X, Y, Z values which should
217 // be zero.
218 private void CheckllRot2Euler(LSL_Types.Quaternion rot)
157 { 219 {
158 // Call LSL function to convert quaternion rotaion to euler radians. 220 // Call LSL function to convert quaternion rotaion to euler radians.
159 LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot); 221 LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot);
160 // Check upper and lower bounds of x, y and z. 222 // Now use the euler radians to recalculate a new quaternion rotation
161 // This type of check is performed as opposed to comparing for equal numbers, in order to allow slight 223 LSL_Types.Quaternion newRot = m_lslApi.llEuler2Rot(eulerCalc);
162 // differences in accuracy. 224 // Multiple original quaternion by conjugate of quaternion calculated with angles.
163 Assert.Greater(eulerCalc.x, eulerCheck.x - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler X lower bounds check fail"); 225 LSL_Types.Quaternion check = rot * new LSL_Types.Quaternion(-newRot.x, -newRot.y, -newRot.z, newRot.s);
164 Assert.Less(eulerCalc.x, eulerCheck.x + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler X upper bounds check fail"); 226
165 Assert.Greater(eulerCalc.y, eulerCheck.y - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Y lower bounds check fail"); 227 Assert.AreEqual(0.0, check.x, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler X bounds check fail");
166 Assert.Less(eulerCalc.y, eulerCheck.y + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Y upper bounds check fail"); 228 Assert.AreEqual(0.0, check.y, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Y bounds check fail");
167 Assert.Greater(eulerCalc.z, eulerCheck.z - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Z lower bounds check fail"); 229 Assert.AreEqual(0.0, check.z, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Z bounds check fail");
168 Assert.Less(eulerCalc.z, eulerCheck.z + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Z upper bounds check fail");
169 } 230 }
170 231
171 [Test] 232 [Test]