diff options
Diffstat (limited to 'OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs')
-rw-r--r-- | OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs | 849 |
1 files changed, 849 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs new file mode 100644 index 0000000..80218e7 --- /dev/null +++ b/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs | |||
@@ -0,0 +1,849 @@ | |||
1 | /* | ||
2 | * Copyright (c) Contributors, http://opensimulator.org/ | ||
3 | * See CONTRIBUTORS.TXT for a full list of copyright holders. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are met: | ||
7 | * * Redistributions of source code must retain the above copyright | ||
8 | * notice, this list of conditions and the following disclaimer. | ||
9 | * * Redistributions in binary form must reproduce the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer in the | ||
11 | * documentation and/or other materials provided with the distribution. | ||
12 | * * Neither the name of the OpenSimulator Project nor the | ||
13 | * names of its contributors may be used to endorse or promote products | ||
14 | * derived from this software without specific prior written permission. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY | ||
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
19 | * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY | ||
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | ||
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | */ | ||
27 | |||
28 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
29 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
30 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
31 | * characteristics and Kinetic motion. | ||
32 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
33 | * (dynamics) and the associated settings. Old Linear and angular | ||
34 | * motors for dynamic motion have been replace with MoveLinear() | ||
35 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
36 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
37 | * switch between 'VEHICLE' parameter use and general dynamics | ||
38 | * settings use. | ||
39 | */ | ||
40 | |||
41 | // Ubit 2012 | ||
42 | |||
43 | using System; | ||
44 | using System.Collections.Generic; | ||
45 | using System.Reflection; | ||
46 | using System.Runtime.InteropServices; | ||
47 | using log4net; | ||
48 | using OpenMetaverse; | ||
49 | using OdeAPI; | ||
50 | using OpenSim.Framework; | ||
51 | using OpenSim.Region.Physics.Manager; | ||
52 | |||
53 | namespace OpenSim.Region.Physics.OdePlugin | ||
54 | { | ||
55 | public class ODEDynamics | ||
56 | { | ||
57 | public Vehicle Type | ||
58 | { | ||
59 | get { return m_type; } | ||
60 | } | ||
61 | |||
62 | private OdePrim rootPrim; | ||
63 | private OdeScene _pParentScene; | ||
64 | |||
65 | // Vehicle properties | ||
66 | private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
67 | private Quaternion m_RollreferenceFrame = Quaternion.Identity; // what hell is this ? | ||
68 | |||
69 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
70 | |||
71 | private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: | ||
72 | // HOVER_TERRAIN_ONLY | ||
73 | // HOVER_GLOBAL_HEIGHT | ||
74 | // NO_DEFLECTION_UP | ||
75 | // HOVER_WATER_ONLY | ||
76 | // HOVER_UP_ONLY | ||
77 | // LIMIT_MOTOR_UP | ||
78 | // LIMIT_ROLL_ONLY | ||
79 | private Vector3 m_BlockingEndPoint = Vector3.Zero; // not sl | ||
80 | |||
81 | // Linear properties | ||
82 | private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time | ||
83 | private Vector3 m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
84 | private float m_linearMotorDecayTimescale = 120; | ||
85 | private float m_linearMotorTimescale = 1000; | ||
86 | private Vector3 m_lastLinearVelocityVector = Vector3.Zero; | ||
87 | private Vector3 m_linearMotorOffset = Vector3.Zero; | ||
88 | |||
89 | //Angular properties | ||
90 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
91 | private float m_angularMotorTimescale = 1000; // motor angular velocity ramp up rate | ||
92 | private float m_angularMotorDecayTimescale = 120; // motor angular velocity decay rate | ||
93 | private Vector3 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // body angular velocity decay rate | ||
94 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
95 | |||
96 | //Deflection properties | ||
97 | private float m_angularDeflectionEfficiency = 0; | ||
98 | private float m_angularDeflectionTimescale = 1000; | ||
99 | private float m_linearDeflectionEfficiency = 0; | ||
100 | private float m_linearDeflectionTimescale = 1000; | ||
101 | |||
102 | //Banking properties | ||
103 | private float m_bankingEfficiency = 0; | ||
104 | private float m_bankingMix = 0; | ||
105 | private float m_bankingTimescale = 0; | ||
106 | |||
107 | //Hover and Buoyancy properties | ||
108 | private float m_VhoverHeight = 0f; | ||
109 | private float m_VhoverEfficiency = 0f; | ||
110 | private float m_VhoverTimescale = 1000f; | ||
111 | private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. | ||
112 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
113 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
114 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
115 | |||
116 | //Attractor properties | ||
117 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
118 | private float m_verticalAttractionTimescale = 1000f; // Timescale > 300 means no vert attractor. | ||
119 | |||
120 | // auxiliar | ||
121 | private Vector3 m_dir = Vector3.Zero; // velocity applied to body | ||
122 | |||
123 | private float m_lmEfect = 0; // current linear motor eficiency | ||
124 | private float m_amEfect = 0; // current angular motor eficiency | ||
125 | |||
126 | |||
127 | public ODEDynamics(OdePrim rootp) | ||
128 | { | ||
129 | rootPrim = rootp; | ||
130 | _pParentScene = rootPrim._parent_scene; | ||
131 | } | ||
132 | |||
133 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
134 | { | ||
135 | float len; | ||
136 | float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; | ||
137 | float timestep = _pParentScene.ODE_STEPSIZE; | ||
138 | |||
139 | switch (pParam) | ||
140 | { | ||
141 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
142 | if (pValue < 0f) pValue = 0f; | ||
143 | if (pValue > 1f) pValue = 1f; | ||
144 | m_angularDeflectionEfficiency = pValue; | ||
145 | break; | ||
146 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
147 | if (pValue < timestep) pValue = timestep; | ||
148 | m_angularDeflectionTimescale = pValue; | ||
149 | break; | ||
150 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
151 | // if (pValue < timestep) pValue = timestep; | ||
152 | // try to make impulses to work a bit better | ||
153 | if (pValue < 0.5f) pValue = 0.5f; | ||
154 | else if (pValue > 120) pValue = 120; | ||
155 | m_angularMotorDecayTimescale = pValue * invtimestep; | ||
156 | break; | ||
157 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
158 | if (pValue < timestep) pValue = timestep; | ||
159 | m_angularMotorTimescale = pValue; | ||
160 | break; | ||
161 | case Vehicle.BANKING_EFFICIENCY: | ||
162 | if (pValue < -1f) pValue = -1f; | ||
163 | if (pValue > 1f) pValue = 1f; | ||
164 | m_bankingEfficiency = pValue; | ||
165 | break; | ||
166 | case Vehicle.BANKING_MIX: | ||
167 | if (pValue < 0f) pValue = 0f; | ||
168 | if (pValue > 1f) pValue = 1f; | ||
169 | m_bankingMix = pValue; | ||
170 | break; | ||
171 | case Vehicle.BANKING_TIMESCALE: | ||
172 | if (pValue < timestep) pValue = timestep; | ||
173 | m_bankingTimescale = pValue; | ||
174 | break; | ||
175 | case Vehicle.BUOYANCY: | ||
176 | if (pValue < -1f) pValue = -1f; | ||
177 | if (pValue > 1f) pValue = 1f; | ||
178 | m_VehicleBuoyancy = pValue; | ||
179 | break; | ||
180 | case Vehicle.HOVER_EFFICIENCY: | ||
181 | if (pValue < 0f) pValue = 0f; | ||
182 | if (pValue > 1f) pValue = 1f; | ||
183 | m_VhoverEfficiency = pValue; | ||
184 | break; | ||
185 | case Vehicle.HOVER_HEIGHT: | ||
186 | m_VhoverHeight = pValue; | ||
187 | break; | ||
188 | case Vehicle.HOVER_TIMESCALE: | ||
189 | if (pValue < timestep) pValue = timestep; | ||
190 | m_VhoverTimescale = pValue; | ||
191 | break; | ||
192 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
193 | if (pValue < 0f) pValue = 0f; | ||
194 | if (pValue > 1f) pValue = 1f; | ||
195 | m_linearDeflectionEfficiency = pValue; | ||
196 | break; | ||
197 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
198 | if (pValue < timestep) pValue = timestep; | ||
199 | m_linearDeflectionTimescale = pValue; | ||
200 | break; | ||
201 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
202 | // if (pValue < timestep) pValue = timestep; | ||
203 | // try to make impulses to work a bit better | ||
204 | if (pValue < 0.5f) pValue = 0.5f; | ||
205 | else if (pValue > 120) pValue = 120; | ||
206 | m_linearMotorDecayTimescale = pValue * invtimestep; | ||
207 | break; | ||
208 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
209 | if (pValue < timestep) pValue = timestep; | ||
210 | m_linearMotorTimescale = pValue; | ||
211 | break; | ||
212 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
213 | if (pValue < 0f) pValue = 0f; | ||
214 | if (pValue > 1f) pValue = 1f; | ||
215 | m_verticalAttractionEfficiency = pValue; | ||
216 | break; | ||
217 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
218 | if (pValue < timestep) pValue = timestep; | ||
219 | m_verticalAttractionTimescale = pValue; | ||
220 | break; | ||
221 | |||
222 | // These are vector properties but the engine lets you use a single float value to | ||
223 | // set all of the components to the same value | ||
224 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
225 | if (pValue < timestep) pValue = timestep; | ||
226 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
227 | break; | ||
228 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
229 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
230 | len = m_angularMotorDirection.Length(); | ||
231 | if (len > 12.566f) | ||
232 | m_angularMotorDirection *= (12.566f / len); | ||
233 | m_amEfect = 1.0f; // turn it on | ||
234 | break; | ||
235 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
236 | if (pValue < timestep) pValue = timestep; | ||
237 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
238 | break; | ||
239 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
240 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
241 | len = m_linearMotorDirection.Length(); | ||
242 | if (len > 30.0f) | ||
243 | m_linearMotorDirection *= (30.0f / len); | ||
244 | m_lmEfect = 1.0f; // turn it on | ||
245 | break; | ||
246 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
247 | m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
248 | len = m_linearMotorOffset.Length(); | ||
249 | if (len > 100.0f) | ||
250 | m_linearMotorOffset *= (100.0f / len); | ||
251 | break; | ||
252 | } | ||
253 | }//end ProcessFloatVehicleParam | ||
254 | |||
255 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
256 | { | ||
257 | float len; | ||
258 | float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; | ||
259 | float timestep = _pParentScene.ODE_STEPSIZE; | ||
260 | switch (pParam) | ||
261 | { | ||
262 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
263 | if (pValue.X < timestep) pValue.X = timestep; | ||
264 | if (pValue.Y < timestep) pValue.Y = timestep; | ||
265 | if (pValue.Z < timestep) pValue.Z = timestep; | ||
266 | |||
267 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
268 | break; | ||
269 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
270 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
271 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
272 | len = m_angularMotorDirection.Length(); | ||
273 | if (len > 12.566f) | ||
274 | m_angularMotorDirection *= (12.566f / len); | ||
275 | m_amEfect = 1.0f; // turn it on | ||
276 | break; | ||
277 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
278 | if (pValue.X < timestep) pValue.X = timestep; | ||
279 | if (pValue.Y < timestep) pValue.Y = timestep; | ||
280 | if (pValue.Z < timestep) pValue.Z = timestep; | ||
281 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
282 | break; | ||
283 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
284 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
285 | len = m_linearMotorDirection.Length(); | ||
286 | if (len > 30.0f) | ||
287 | m_linearMotorDirection *= (30.0f / len); | ||
288 | m_lmEfect = 1.0f; // turn it on | ||
289 | break; | ||
290 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
291 | m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
292 | len = m_linearMotorOffset.Length(); | ||
293 | if (len > 100.0f) | ||
294 | m_linearMotorOffset *= (100.0f / len); | ||
295 | break; | ||
296 | case Vehicle.BLOCK_EXIT: | ||
297 | m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
298 | break; | ||
299 | } | ||
300 | }//end ProcessVectorVehicleParam | ||
301 | |||
302 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
303 | { | ||
304 | switch (pParam) | ||
305 | { | ||
306 | case Vehicle.REFERENCE_FRAME: | ||
307 | m_referenceFrame = Quaternion.Inverse(pValue); | ||
308 | break; | ||
309 | case Vehicle.ROLL_FRAME: | ||
310 | m_RollreferenceFrame = pValue; | ||
311 | break; | ||
312 | } | ||
313 | }//end ProcessRotationVehicleParam | ||
314 | |||
315 | internal void ProcessVehicleFlags(int pParam, bool remove) | ||
316 | { | ||
317 | if (remove) | ||
318 | { | ||
319 | m_flags &= ~((VehicleFlag)pParam); | ||
320 | } | ||
321 | else | ||
322 | { | ||
323 | m_flags |= (VehicleFlag)pParam; | ||
324 | } | ||
325 | }//end ProcessVehicleFlags | ||
326 | |||
327 | internal void ProcessTypeChange(Vehicle pType) | ||
328 | { | ||
329 | float invtimestep = _pParentScene.ODE_STEPSIZE; | ||
330 | m_lmEfect = 0; | ||
331 | m_amEfect = 0; | ||
332 | |||
333 | m_linearMotorDirection = Vector3.Zero; | ||
334 | m_angularMotorDirection = Vector3.Zero; | ||
335 | |||
336 | m_BlockingEndPoint = Vector3.Zero; | ||
337 | m_RollreferenceFrame = Quaternion.Identity; | ||
338 | m_linearMotorOffset = Vector3.Zero; | ||
339 | |||
340 | m_referenceFrame = Quaternion.Identity; | ||
341 | |||
342 | // Set Defaults For Type | ||
343 | m_type = pType; | ||
344 | switch (pType) | ||
345 | { | ||
346 | case Vehicle.TYPE_NONE: | ||
347 | m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
348 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
349 | m_linearMotorTimescale = 1000; | ||
350 | m_linearMotorDecayTimescale = 120 * invtimestep; | ||
351 | m_angularMotorTimescale = 1000; | ||
352 | m_angularMotorDecayTimescale = 1000 * invtimestep; | ||
353 | m_VhoverHeight = 0; | ||
354 | m_VhoverTimescale = 1000; | ||
355 | m_VehicleBuoyancy = 0; | ||
356 | m_flags = (VehicleFlag)0; | ||
357 | break; | ||
358 | |||
359 | case Vehicle.TYPE_SLED: | ||
360 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
361 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
362 | m_linearMotorTimescale = 1000; | ||
363 | m_linearMotorDecayTimescale = 120 * invtimestep; | ||
364 | m_angularMotorTimescale = 1000; | ||
365 | m_angularMotorDecayTimescale = 120 * invtimestep; | ||
366 | m_VhoverHeight = 0; | ||
367 | m_VhoverEfficiency = 1; | ||
368 | m_VhoverTimescale = 10; | ||
369 | m_VehicleBuoyancy = 0; | ||
370 | m_linearDeflectionEfficiency = 1; | ||
371 | m_linearDeflectionTimescale = 1; | ||
372 | m_angularDeflectionEfficiency = 0; | ||
373 | m_angularDeflectionTimescale = 1000; | ||
374 | m_bankingEfficiency = 0; | ||
375 | m_bankingMix = 1; | ||
376 | m_bankingTimescale = 10; | ||
377 | m_flags &= | ||
378 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
379 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
380 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
381 | break; | ||
382 | case Vehicle.TYPE_CAR: | ||
383 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
384 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
385 | m_linearMotorTimescale = 1; | ||
386 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
387 | m_angularMotorTimescale = 1; | ||
388 | m_angularMotorDecayTimescale = 0.8f * invtimestep; | ||
389 | m_VhoverHeight = 0; | ||
390 | m_VhoverEfficiency = 0; | ||
391 | m_VhoverTimescale = 1000; | ||
392 | m_VehicleBuoyancy = 0; | ||
393 | m_linearDeflectionEfficiency = 1; | ||
394 | m_linearDeflectionTimescale = 2; | ||
395 | m_angularDeflectionEfficiency = 0; | ||
396 | m_angularDeflectionTimescale = 10; | ||
397 | m_verticalAttractionEfficiency = 1f; | ||
398 | m_verticalAttractionTimescale = 10f; | ||
399 | m_bankingEfficiency = -0.2f; | ||
400 | m_bankingMix = 1; | ||
401 | m_bankingTimescale = 1; | ||
402 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
403 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | | ||
404 | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY); | ||
405 | break; | ||
406 | case Vehicle.TYPE_BOAT: | ||
407 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
408 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
409 | m_linearMotorTimescale = 5; | ||
410 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
411 | m_angularMotorTimescale = 4; | ||
412 | m_angularMotorDecayTimescale = 4 * invtimestep; | ||
413 | m_VhoverHeight = 0; | ||
414 | m_VhoverEfficiency = 0.5f; | ||
415 | m_VhoverTimescale = 2; | ||
416 | m_VehicleBuoyancy = 1; | ||
417 | m_linearDeflectionEfficiency = 0.5f; | ||
418 | m_linearDeflectionTimescale = 3; | ||
419 | m_angularDeflectionEfficiency = 0.5f; | ||
420 | m_angularDeflectionTimescale = 5; | ||
421 | m_verticalAttractionEfficiency = 0.5f; | ||
422 | m_verticalAttractionTimescale = 5f; | ||
423 | m_bankingEfficiency = -0.3f; | ||
424 | m_bankingMix = 0.8f; | ||
425 | m_bankingTimescale = 1; | ||
426 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | | ||
427 | VehicleFlag.HOVER_GLOBAL_HEIGHT | | ||
428 | VehicleFlag.HOVER_UP_ONLY | | ||
429 | VehicleFlag.LIMIT_ROLL_ONLY); | ||
430 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | | ||
431 | VehicleFlag.LIMIT_MOTOR_UP | | ||
432 | VehicleFlag.HOVER_WATER_ONLY); | ||
433 | break; | ||
434 | case Vehicle.TYPE_AIRPLANE: | ||
435 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
436 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
437 | m_linearMotorTimescale = 2; | ||
438 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
439 | m_angularMotorTimescale = 4; | ||
440 | m_angularMotorDecayTimescale = 8 * invtimestep; | ||
441 | m_VhoverHeight = 0; | ||
442 | m_VhoverEfficiency = 0.5f; | ||
443 | m_VhoverTimescale = 1000; | ||
444 | m_VehicleBuoyancy = 0; | ||
445 | m_linearDeflectionEfficiency = 0.5f; | ||
446 | m_linearDeflectionTimescale = 0.5f; | ||
447 | m_angularDeflectionEfficiency = 1; | ||
448 | m_angularDeflectionTimescale = 2; | ||
449 | m_verticalAttractionEfficiency = 0.9f; | ||
450 | m_verticalAttractionTimescale = 2f; | ||
451 | m_bankingEfficiency = 1; | ||
452 | m_bankingMix = 0.7f; | ||
453 | m_bankingTimescale = 2; | ||
454 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | | ||
455 | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
456 | VehicleFlag.HOVER_GLOBAL_HEIGHT | | ||
457 | VehicleFlag.HOVER_UP_ONLY | | ||
458 | VehicleFlag.NO_DEFLECTION_UP | | ||
459 | VehicleFlag.LIMIT_MOTOR_UP); | ||
460 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
461 | break; | ||
462 | case Vehicle.TYPE_BALLOON: | ||
463 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
464 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
465 | m_linearMotorTimescale = 5; | ||
466 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
467 | m_angularMotorTimescale = 6; | ||
468 | m_angularMotorDecayTimescale = 10 * invtimestep; | ||
469 | m_VhoverHeight = 5; | ||
470 | m_VhoverEfficiency = 0.8f; | ||
471 | m_VhoverTimescale = 10; | ||
472 | m_VehicleBuoyancy = 1; | ||
473 | m_linearDeflectionEfficiency = 0; | ||
474 | m_linearDeflectionTimescale = 5 * invtimestep; | ||
475 | m_angularDeflectionEfficiency = 0; | ||
476 | m_angularDeflectionTimescale = 5; | ||
477 | m_verticalAttractionEfficiency = 0f; | ||
478 | m_verticalAttractionTimescale = 1000f; | ||
479 | m_bankingEfficiency = 0; | ||
480 | m_bankingMix = 0.7f; | ||
481 | m_bankingTimescale = 5; | ||
482 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | | ||
483 | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
484 | VehicleFlag.HOVER_UP_ONLY | | ||
485 | VehicleFlag.NO_DEFLECTION_UP | | ||
486 | VehicleFlag.LIMIT_MOTOR_UP); | ||
487 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | | ||
488 | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
489 | break; | ||
490 | } | ||
491 | |||
492 | }//end SetDefaultsForType | ||
493 | |||
494 | internal void Stop() | ||
495 | { | ||
496 | m_lmEfect = 0; | ||
497 | m_amEfect = 0; | ||
498 | } | ||
499 | |||
500 | public static Vector3 Xrot(Quaternion rot) | ||
501 | { | ||
502 | Vector3 vec; | ||
503 | rot.Normalize(); // just in case | ||
504 | vec.X = 2 * (rot.X * rot.X + rot.W * rot.W) - 1; | ||
505 | vec.Y = 2 * (rot.X * rot.Y + rot.Z * rot.W); | ||
506 | vec.Z = 2 * (rot.X * rot.Z - rot.Y * rot.W); | ||
507 | return vec; | ||
508 | } | ||
509 | |||
510 | public static Vector3 Zrot(Quaternion rot) | ||
511 | { | ||
512 | Vector3 vec; | ||
513 | rot.Normalize(); // just in case | ||
514 | vec.X = 2 * (rot.X * rot.Z + rot.Y * rot.W); | ||
515 | vec.Y = 2 * (rot.Y * rot.Z - rot.X * rot.W); | ||
516 | vec.Z = 2 * (rot.Z * rot.Z + rot.W * rot.W) - 1; | ||
517 | |||
518 | return vec; | ||
519 | } | ||
520 | |||
521 | private const float halfpi = 0.5f * (float)Math.PI; | ||
522 | |||
523 | public static Vector3 ubitRot2Euler(Quaternion rot) | ||
524 | { | ||
525 | // returns roll in X | ||
526 | // pitch in Y | ||
527 | // yaw in Z | ||
528 | Vector3 vec; | ||
529 | |||
530 | // assuming rot is normalised | ||
531 | // rot.Normalize(); | ||
532 | |||
533 | float zX = rot.X * rot.Z + rot.Y * rot.W; | ||
534 | |||
535 | if (zX < -0.49999f) | ||
536 | { | ||
537 | vec.X = 0; | ||
538 | vec.Y = -halfpi; | ||
539 | vec.Z = (float)(-2d * Math.Atan(rot.X / rot.W)); | ||
540 | } | ||
541 | else if (zX > 0.49999f) | ||
542 | { | ||
543 | vec.X = 0; | ||
544 | vec.Y = halfpi; | ||
545 | vec.Z = (float)(2d * Math.Atan(rot.X / rot.W)); | ||
546 | } | ||
547 | else | ||
548 | { | ||
549 | vec.Y = (float)Math.Asin(2 * zX); | ||
550 | |||
551 | float sqw = rot.W * rot.W; | ||
552 | |||
553 | float minuszY = rot.X * rot.W - rot.Y * rot.Z; | ||
554 | float zZ = rot.Z * rot.Z + sqw - 0.5f; | ||
555 | |||
556 | vec.X = (float)Math.Atan2(minuszY, zZ); | ||
557 | |||
558 | float yX = rot.Z * rot.W - rot.X * rot.Y; //( have negative ?) | ||
559 | float yY = rot.X * rot.X + sqw - 0.5f; | ||
560 | vec.Z = (float)Math.Atan2(yX, yY); | ||
561 | } | ||
562 | return vec; | ||
563 | } | ||
564 | |||
565 | public static void GetRollPitch(Quaternion rot, out float roll, out float pitch) | ||
566 | { | ||
567 | // assuming rot is normalised | ||
568 | // rot.Normalize(); | ||
569 | |||
570 | float zX = rot.X * rot.Z + rot.Y * rot.W; | ||
571 | |||
572 | if (zX < -0.49999f) | ||
573 | { | ||
574 | roll = 0; | ||
575 | pitch = -halfpi; | ||
576 | } | ||
577 | else if (zX > 0.49999f) | ||
578 | { | ||
579 | roll = 0; | ||
580 | pitch = halfpi; | ||
581 | } | ||
582 | else | ||
583 | { | ||
584 | pitch = (float)Math.Asin(2 * zX); | ||
585 | |||
586 | float minuszY = rot.X * rot.W - rot.Y * rot.Z; | ||
587 | float zZ = rot.Z * rot.Z + rot.W * rot.W - 0.5f; | ||
588 | |||
589 | roll = (float)Math.Atan2(minuszY, zZ); | ||
590 | } | ||
591 | return ; | ||
592 | } | ||
593 | |||
594 | internal void Step()//float pTimestep) | ||
595 | { | ||
596 | IntPtr Body = rootPrim.Body; | ||
597 | |||
598 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
599 | Quaternion objrotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
600 | Quaternion rotq = objrotq; // rotq = rotation of object | ||
601 | rotq *= m_referenceFrame; // rotq is now rotation in vehicle reference frame | ||
602 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
603 | |||
604 | d.Vector3 dvtmp; | ||
605 | Vector3 tmpV; | ||
606 | Vector3 curVel; // velocity in world | ||
607 | Vector3 curAngVel; // angular velocity in world | ||
608 | Vector3 force = Vector3.Zero; // actually linear aceleration until mult by mass in world frame | ||
609 | Vector3 torque = Vector3.Zero;// actually angular aceleration until mult by Inertia in vehicle frame | ||
610 | d.Vector3 dtorque = new d.Vector3(); | ||
611 | |||
612 | dvtmp = d.BodyGetLinearVel(Body); | ||
613 | curVel.X = dvtmp.X; | ||
614 | curVel.Y = dvtmp.Y; | ||
615 | curVel.Z = dvtmp.Z; | ||
616 | Vector3 curLocalVel = curVel * irotq; // current velocity in local | ||
617 | |||
618 | dvtmp = d.BodyGetAngularVel(Body); | ||
619 | curAngVel.X = dvtmp.X; | ||
620 | curAngVel.Y = dvtmp.Y; | ||
621 | curAngVel.Z = dvtmp.Z; | ||
622 | Vector3 curLocalAngVel = curAngVel * irotq; // current angular velocity in local | ||
623 | |||
624 | // linear motor | ||
625 | if (m_lmEfect > 0.01 && m_linearMotorTimescale < 1000) | ||
626 | { | ||
627 | tmpV = m_linearMotorDirection - curLocalVel; // velocity error | ||
628 | tmpV *= m_lmEfect / m_linearMotorTimescale; // error to correct in this timestep | ||
629 | tmpV *= rotq; // to world | ||
630 | |||
631 | if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0) | ||
632 | tmpV.Z = 0; | ||
633 | |||
634 | if (m_linearMotorOffset.X != 0 || m_linearMotorOffset.Y != 0 || m_linearMotorOffset.Z != 0) | ||
635 | { | ||
636 | // have offset, do it now | ||
637 | tmpV *= rootPrim.Mass; | ||
638 | d.BodyAddForceAtRelPos(Body, tmpV.X, tmpV.Y, tmpV.Z, m_linearMotorOffset.X, m_linearMotorOffset.Y, m_linearMotorOffset.Z); | ||
639 | } | ||
640 | else | ||
641 | { | ||
642 | force.X += tmpV.X; | ||
643 | force.Y += tmpV.Y; | ||
644 | force.Z += tmpV.Z; | ||
645 | } | ||
646 | m_lmEfect *= (1.0f - 1.0f / m_linearMotorDecayTimescale); | ||
647 | } | ||
648 | else | ||
649 | m_lmEfect = 0; | ||
650 | |||
651 | // friction | ||
652 | if (curLocalVel.X != 0 || curLocalVel.Y != 0 || curLocalVel.Z != 0) | ||
653 | { | ||
654 | tmpV.X = -curLocalVel.X / m_linearFrictionTimescale.X; | ||
655 | tmpV.Y = -curLocalVel.Y / m_linearFrictionTimescale.Y; | ||
656 | tmpV.Z = -curLocalVel.Z / m_linearFrictionTimescale.Z; | ||
657 | tmpV *= rotq; // to world | ||
658 | force.X += tmpV.X; | ||
659 | force.Y += tmpV.Y; | ||
660 | force.Z += tmpV.Z; | ||
661 | } | ||
662 | |||
663 | // hover | ||
664 | if (m_VhoverTimescale < 300) | ||
665 | { | ||
666 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
667 | |||
668 | // default to global | ||
669 | float perr = m_VhoverHeight - pos.Z;; | ||
670 | |||
671 | if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) | ||
672 | { | ||
673 | perr += _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
674 | } | ||
675 | else if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) | ||
676 | { | ||
677 | perr += _pParentScene.GetWaterLevel(); | ||
678 | } | ||
679 | else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == 0) | ||
680 | { | ||
681 | float t = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
682 | float w = _pParentScene.GetWaterLevel(); | ||
683 | if (t > w) | ||
684 | perr += t; | ||
685 | else | ||
686 | perr += w; | ||
687 | } | ||
688 | |||
689 | if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == 0 || perr > 0) | ||
690 | { | ||
691 | force.Z += (perr / m_VhoverTimescale / m_VhoverTimescale - curVel.Z * m_VhoverEfficiency) / _pParentScene.ODE_STEPSIZE; | ||
692 | force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); | ||
693 | } | ||
694 | else // no buoyancy | ||
695 | force.Z += _pParentScene.gravityz; | ||
696 | } | ||
697 | else | ||
698 | { | ||
699 | // default gravity and buoancy | ||
700 | force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); | ||
701 | } | ||
702 | |||
703 | // linear deflection | ||
704 | if (m_linearDeflectionEfficiency > 0) | ||
705 | { | ||
706 | float len = curVel.Length(); | ||
707 | Vector3 atAxis; | ||
708 | atAxis = Xrot(rotq); // where are we pointing to | ||
709 | atAxis *= len; // make it same size as world velocity vector | ||
710 | tmpV = -atAxis; // oposite direction | ||
711 | atAxis -= curVel; // error to one direction | ||
712 | len = atAxis.LengthSquared(); | ||
713 | tmpV -= curVel; // error to oposite | ||
714 | float lens = tmpV.LengthSquared(); | ||
715 | if (len > 0.01 || lens > 0.01) // do nothing if close enougth | ||
716 | { | ||
717 | if (len < lens) | ||
718 | tmpV = atAxis; | ||
719 | |||
720 | tmpV *= (m_linearDeflectionEfficiency / m_linearDeflectionTimescale); // error to correct in this timestep | ||
721 | force.X += tmpV.X; | ||
722 | force.Y += tmpV.Y; | ||
723 | if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) == 0) | ||
724 | force.Z += tmpV.Z; | ||
725 | } | ||
726 | } | ||
727 | |||
728 | // angular motor | ||
729 | if (m_amEfect > 0.01 && m_angularMotorTimescale < 1000) | ||
730 | { | ||
731 | tmpV = m_angularMotorDirection - curLocalAngVel; // velocity error | ||
732 | tmpV *= m_amEfect / m_angularMotorTimescale; // error to correct in this timestep | ||
733 | torque.X += tmpV.X; | ||
734 | torque.Y += tmpV.Y; | ||
735 | torque.Z += tmpV.Z; | ||
736 | m_amEfect *= (1 - 1.0f / m_angularMotorDecayTimescale); | ||
737 | } | ||
738 | else | ||
739 | m_amEfect = 0; | ||
740 | |||
741 | // angular friction | ||
742 | if (curLocalAngVel.X != 0 || curLocalAngVel.Y != 0 || curLocalAngVel.Z != 0) | ||
743 | { | ||
744 | torque.X -= curLocalAngVel.X / m_angularFrictionTimescale.X; | ||
745 | torque.Y -= curLocalAngVel.Y / m_angularFrictionTimescale.Y; | ||
746 | torque.Z -= curLocalAngVel.Z / m_angularFrictionTimescale.Z; | ||
747 | } | ||
748 | |||
749 | // angular deflection | ||
750 | if (m_angularDeflectionEfficiency > 0) | ||
751 | { | ||
752 | Vector3 dirv; | ||
753 | |||
754 | if (curLocalVel.X > 0.01f) | ||
755 | dirv = curLocalVel; | ||
756 | else if (curLocalVel.X < -0.01f) | ||
757 | // use oposite | ||
758 | dirv = -curLocalVel; | ||
759 | else | ||
760 | { | ||
761 | // make it fall into small positive x case | ||
762 | dirv.X = 0.01f; | ||
763 | dirv.Y = curLocalVel.Y; | ||
764 | dirv.Z = curLocalVel.Z; | ||
765 | } | ||
766 | |||
767 | float ftmp = m_angularDeflectionEfficiency / m_angularDeflectionTimescale; | ||
768 | |||
769 | if (Math.Abs(dirv.Z) > 0.01) | ||
770 | { | ||
771 | torque.Y += - (float)Math.Atan2(dirv.Z, dirv.X) * ftmp; | ||
772 | } | ||
773 | |||
774 | if (Math.Abs(dirv.Y) > 0.01) | ||
775 | { | ||
776 | torque.Z += (float)Math.Atan2(dirv.Y, dirv.X) * ftmp; | ||
777 | } | ||
778 | } | ||
779 | |||
780 | // vertical atractor | ||
781 | if (m_verticalAttractionTimescale < 300) | ||
782 | { | ||
783 | float roll; | ||
784 | float pitch; | ||
785 | |||
786 | GetRollPitch(irotq, out roll, out pitch); | ||
787 | |||
788 | float ftmp = 1.0f / m_verticalAttractionTimescale / m_verticalAttractionTimescale / _pParentScene.ODE_STEPSIZE; | ||
789 | float ftmp2 = m_verticalAttractionEfficiency / _pParentScene.ODE_STEPSIZE; | ||
790 | |||
791 | if (Math.Abs(roll) > 0.01) // roll | ||
792 | { | ||
793 | torque.X -= -roll * ftmp + curLocalAngVel.X * ftmp2; | ||
794 | } | ||
795 | |||
796 | if (Math.Abs(pitch) > 0.01 && ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) == 0)) // pitch | ||
797 | { | ||
798 | torque.Y -= -pitch * ftmp + curLocalAngVel.Y * ftmp2; | ||
799 | } | ||
800 | |||
801 | if (m_bankingEfficiency != 0 && Math.Abs(roll) > 0.01) | ||
802 | { | ||
803 | float broll = roll * m_bankingEfficiency; ; | ||
804 | if (m_bankingMix != 0) | ||
805 | { | ||
806 | float vfact = Math.Abs(curLocalVel.X) / 10.0f; | ||
807 | if (vfact > 1.0f) vfact = 1.0f; | ||
808 | if (curLocalVel.X >= 0) | ||
809 | broll *= ((1 - m_bankingMix) + vfact); | ||
810 | else | ||
811 | broll *= -((1 - m_bankingMix) + vfact); | ||
812 | } | ||
813 | broll = (broll - curLocalAngVel.Z) / m_bankingTimescale; | ||
814 | // torque.Z += broll; | ||
815 | |||
816 | // make z rot be in world Z not local as seems to be in sl | ||
817 | tmpV.X = 0; | ||
818 | tmpV.Y = 0; | ||
819 | tmpV.Z = broll; | ||
820 | tmpV *= irotq; | ||
821 | |||
822 | torque.X += tmpV.X; | ||
823 | torque.Y += tmpV.Y; | ||
824 | torque.Z += tmpV.Z; | ||
825 | } | ||
826 | } | ||
827 | |||
828 | d.Mass dmass; | ||
829 | d.BodyGetMass(Body,out dmass); | ||
830 | |||
831 | if (force.X != 0 || force.Y != 0 || force.Z != 0) | ||
832 | { | ||
833 | force *= dmass.mass; | ||
834 | d.BodySetForce(Body, force.X, force.Y, force.Z); | ||
835 | } | ||
836 | |||
837 | if (torque.X != 0 || torque.Y != 0 || torque.Z != 0) | ||
838 | { | ||
839 | torque *= m_referenceFrame; // to object frame | ||
840 | dtorque.X = torque.X; | ||
841 | dtorque.Y = torque.Y; | ||
842 | dtorque.Z = torque.Z; | ||
843 | |||
844 | d.MultiplyM3V3(out dvtmp, ref dmass.I, ref dtorque); | ||
845 | d.BodyAddRelTorque(Body, dvtmp.X, dvtmp.Y, dvtmp.Z); // add torque in object frame | ||
846 | } | ||
847 | } | ||
848 | } | ||
849 | } | ||