diff options
Diffstat (limited to 'OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs')
-rw-r--r-- | OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs | 722 |
1 files changed, 722 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs new file mode 100644 index 0000000..14d5caa --- /dev/null +++ b/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs | |||
@@ -0,0 +1,722 @@ | |||
1 | /* | ||
2 | * Copyright (c) Contributors, http://opensimulator.org/ | ||
3 | * See CONTRIBUTORS.TXT for a full list of copyright holders. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are met: | ||
7 | * * Redistributions of source code must retain the above copyright | ||
8 | * notice, this list of conditions and the following disclaimer. | ||
9 | * * Redistributions in binary form must reproduce the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer in the | ||
11 | * documentation and/or other materials provided with the distribution. | ||
12 | * * Neither the name of the OpenSimulator Project nor the | ||
13 | * names of its contributors may be used to endorse or promote products | ||
14 | * derived from this software without specific prior written permission. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY | ||
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
19 | * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY | ||
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | ||
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | * | ||
27 | * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
28 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
29 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
30 | * characteristics and Kinetic motion. | ||
31 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
32 | * (dynamics) and the associated settings. Old Linear and angular | ||
33 | * motors for dynamic motion have been replace with MoveLinear() | ||
34 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
35 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
36 | * switch between 'VEHICLE' parameter use and general dynamics | ||
37 | * settings use. | ||
38 | * | ||
39 | */ | ||
40 | |||
41 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
42 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
43 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
44 | * characteristics and Kinetic motion. | ||
45 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
46 | * (dynamics) and the associated settings. Old Linear and angular | ||
47 | * motors for dynamic motion have been replace with MoveLinear() | ||
48 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
49 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
50 | * switch between 'VEHICLE' parameter use and general dynamics | ||
51 | * settings use. | ||
52 | */ | ||
53 | |||
54 | using System; | ||
55 | using System.Collections.Generic; | ||
56 | using System.Reflection; | ||
57 | using System.Runtime.InteropServices; | ||
58 | using log4net; | ||
59 | using OpenMetaverse; | ||
60 | using Ode.NET; | ||
61 | using OpenSim.Framework; | ||
62 | using OpenSim.Region.Physics.Manager; | ||
63 | |||
64 | namespace OpenSim.Region.Physics.OdePlugin | ||
65 | { | ||
66 | public class ODEDynamics | ||
67 | { | ||
68 | public Vehicle Type | ||
69 | { | ||
70 | get { return m_type; } | ||
71 | } | ||
72 | |||
73 | public IntPtr Body | ||
74 | { | ||
75 | get { return m_body; } | ||
76 | } | ||
77 | |||
78 | private int frcount = 0; // Used to limit dynamics debug output to | ||
79 | // every 100th frame | ||
80 | |||
81 | // private OdeScene m_parentScene = null; | ||
82 | private IntPtr m_body = IntPtr.Zero; | ||
83 | // private IntPtr m_jointGroup = IntPtr.Zero; | ||
84 | // private IntPtr m_aMotor = IntPtr.Zero; | ||
85 | |||
86 | // Vehicle properties | ||
87 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
88 | // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
89 | private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: | ||
90 | // HOVER_TERRAIN_ONLY | ||
91 | // HOVER_GLOBAL_HEIGHT | ||
92 | // NO_DEFLECTION_UP | ||
93 | // HOVER_WATER_ONLY | ||
94 | // HOVER_UP_ONLY | ||
95 | // LIMIT_MOTOR_UP | ||
96 | // LIMIT_ROLL_ONLY | ||
97 | |||
98 | // Linear properties | ||
99 | private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity | ||
100 | //requested by LSL | ||
101 | private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL | ||
102 | private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL | ||
103 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL | ||
104 | |||
105 | private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor | ||
106 | private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity | ||
107 | private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity | ||
108 | |||
109 | //Angular properties | ||
110 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
111 | private int m_angularMotorApply = 0; // application frame counter | ||
112 | private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity | ||
113 | private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate | ||
114 | private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate | ||
115 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate | ||
116 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
117 | // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body | ||
118 | |||
119 | //Deflection properties | ||
120 | // private float m_angularDeflectionEfficiency = 0; | ||
121 | // private float m_angularDeflectionTimescale = 0; | ||
122 | // private float m_linearDeflectionEfficiency = 0; | ||
123 | // private float m_linearDeflectionTimescale = 0; | ||
124 | |||
125 | //Banking properties | ||
126 | // private float m_bankingEfficiency = 0; | ||
127 | // private float m_bankingMix = 0; | ||
128 | // private float m_bankingTimescale = 0; | ||
129 | |||
130 | //Hover and Buoyancy properties | ||
131 | private float m_VhoverHeight = 0f; | ||
132 | // private float m_VhoverEfficiency = 0f; | ||
133 | private float m_VhoverTimescale = 0f; | ||
134 | private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height | ||
135 | private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle. | ||
136 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
137 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
138 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
139 | |||
140 | //Attractor properties | ||
141 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
142 | private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. | ||
143 | |||
144 | |||
145 | |||
146 | |||
147 | |||
148 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
149 | { | ||
150 | switch (pParam) | ||
151 | { | ||
152 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
153 | if (pValue < 0.01f) pValue = 0.01f; | ||
154 | // m_angularDeflectionEfficiency = pValue; | ||
155 | break; | ||
156 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
157 | if (pValue < 0.01f) pValue = 0.01f; | ||
158 | // m_angularDeflectionTimescale = pValue; | ||
159 | break; | ||
160 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
161 | if (pValue < 0.01f) pValue = 0.01f; | ||
162 | m_angularMotorDecayTimescale = pValue; | ||
163 | break; | ||
164 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
165 | if (pValue < 0.01f) pValue = 0.01f; | ||
166 | m_angularMotorTimescale = pValue; | ||
167 | break; | ||
168 | case Vehicle.BANKING_EFFICIENCY: | ||
169 | if (pValue < 0.01f) pValue = 0.01f; | ||
170 | // m_bankingEfficiency = pValue; | ||
171 | break; | ||
172 | case Vehicle.BANKING_MIX: | ||
173 | if (pValue < 0.01f) pValue = 0.01f; | ||
174 | // m_bankingMix = pValue; | ||
175 | break; | ||
176 | case Vehicle.BANKING_TIMESCALE: | ||
177 | if (pValue < 0.01f) pValue = 0.01f; | ||
178 | // m_bankingTimescale = pValue; | ||
179 | break; | ||
180 | case Vehicle.BUOYANCY: | ||
181 | if (pValue < -1f) pValue = -1f; | ||
182 | if (pValue > 1f) pValue = 1f; | ||
183 | m_VehicleBuoyancy = pValue; | ||
184 | break; | ||
185 | // case Vehicle.HOVER_EFFICIENCY: | ||
186 | // if (pValue < 0f) pValue = 0f; | ||
187 | // if (pValue > 1f) pValue = 1f; | ||
188 | // m_VhoverEfficiency = pValue; | ||
189 | // break; | ||
190 | case Vehicle.HOVER_HEIGHT: | ||
191 | m_VhoverHeight = pValue; | ||
192 | break; | ||
193 | case Vehicle.HOVER_TIMESCALE: | ||
194 | if (pValue < 0.01f) pValue = 0.01f; | ||
195 | m_VhoverTimescale = pValue; | ||
196 | break; | ||
197 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
198 | if (pValue < 0.01f) pValue = 0.01f; | ||
199 | // m_linearDeflectionEfficiency = pValue; | ||
200 | break; | ||
201 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
202 | if (pValue < 0.01f) pValue = 0.01f; | ||
203 | // m_linearDeflectionTimescale = pValue; | ||
204 | break; | ||
205 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
206 | if (pValue < 0.01f) pValue = 0.01f; | ||
207 | m_linearMotorDecayTimescale = pValue; | ||
208 | break; | ||
209 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
210 | if (pValue < 0.01f) pValue = 0.01f; | ||
211 | m_linearMotorTimescale = pValue; | ||
212 | break; | ||
213 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
214 | if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable | ||
215 | if (pValue > 1.0f) pValue = 1.0f; | ||
216 | m_verticalAttractionEfficiency = pValue; | ||
217 | break; | ||
218 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
219 | if (pValue < 0.01f) pValue = 0.01f; | ||
220 | m_verticalAttractionTimescale = pValue; | ||
221 | break; | ||
222 | |||
223 | // These are vector properties but the engine lets you use a single float value to | ||
224 | // set all of the components to the same value | ||
225 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
226 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
227 | break; | ||
228 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
229 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
230 | m_angularMotorApply = 10; | ||
231 | break; | ||
232 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
233 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
234 | break; | ||
235 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
236 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
237 | UpdateLinDecay(); | ||
238 | break; | ||
239 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
240 | // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
241 | break; | ||
242 | |||
243 | } | ||
244 | |||
245 | }//end ProcessFloatVehicleParam | ||
246 | |||
247 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
248 | { | ||
249 | switch (pParam) | ||
250 | { | ||
251 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
252 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
253 | break; | ||
254 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
255 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
256 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
257 | if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; | ||
258 | if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; | ||
259 | if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; | ||
260 | if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; | ||
261 | if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; | ||
262 | if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; | ||
263 | m_angularMotorApply = 10; | ||
264 | break; | ||
265 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
266 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
267 | break; | ||
268 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
269 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting | ||
270 | UpdateLinDecay(); | ||
271 | break; | ||
272 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
273 | // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
274 | break; | ||
275 | } | ||
276 | |||
277 | }//end ProcessVectorVehicleParam | ||
278 | |||
279 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
280 | { | ||
281 | switch (pParam) | ||
282 | { | ||
283 | case Vehicle.REFERENCE_FRAME: | ||
284 | // m_referenceFrame = pValue; | ||
285 | break; | ||
286 | } | ||
287 | |||
288 | }//end ProcessRotationVehicleParam | ||
289 | |||
290 | internal void ProcessFlagsVehicleSet(int flags) | ||
291 | { | ||
292 | m_flags |= (VehicleFlag)flags; | ||
293 | } | ||
294 | |||
295 | internal void ProcessFlagsVehicleRemove(int flags) | ||
296 | { | ||
297 | m_flags &= ~((VehicleFlag)flags); | ||
298 | } | ||
299 | |||
300 | internal void ProcessTypeChange(Vehicle pType) | ||
301 | { | ||
302 | // Set Defaults For Type | ||
303 | m_type = pType; | ||
304 | switch (pType) | ||
305 | { | ||
306 | case Vehicle.TYPE_SLED: | ||
307 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
308 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
309 | // m_lLinMotorVel = Vector3.Zero; | ||
310 | m_linearMotorTimescale = 1000; | ||
311 | m_linearMotorDecayTimescale = 120; | ||
312 | m_angularMotorDirection = Vector3.Zero; | ||
313 | m_angularMotorTimescale = 1000; | ||
314 | m_angularMotorDecayTimescale = 120; | ||
315 | m_VhoverHeight = 0; | ||
316 | // m_VhoverEfficiency = 1; | ||
317 | m_VhoverTimescale = 10; | ||
318 | m_VehicleBuoyancy = 0; | ||
319 | // m_linearDeflectionEfficiency = 1; | ||
320 | // m_linearDeflectionTimescale = 1; | ||
321 | // m_angularDeflectionEfficiency = 1; | ||
322 | // m_angularDeflectionTimescale = 1000; | ||
323 | // m_bankingEfficiency = 0; | ||
324 | // m_bankingMix = 1; | ||
325 | // m_bankingTimescale = 10; | ||
326 | // m_referenceFrame = Quaternion.Identity; | ||
327 | m_flags &= | ||
328 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
329 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
330 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
331 | break; | ||
332 | case Vehicle.TYPE_CAR: | ||
333 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
334 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
335 | // m_lLinMotorVel = Vector3.Zero; | ||
336 | m_linearMotorTimescale = 1; | ||
337 | m_linearMotorDecayTimescale = 60; | ||
338 | m_angularMotorDirection = Vector3.Zero; | ||
339 | m_angularMotorTimescale = 1; | ||
340 | m_angularMotorDecayTimescale = 0.8f; | ||
341 | m_VhoverHeight = 0; | ||
342 | // m_VhoverEfficiency = 0; | ||
343 | m_VhoverTimescale = 1000; | ||
344 | m_VehicleBuoyancy = 0; | ||
345 | // // m_linearDeflectionEfficiency = 1; | ||
346 | // // m_linearDeflectionTimescale = 2; | ||
347 | // // m_angularDeflectionEfficiency = 0; | ||
348 | // m_angularDeflectionTimescale = 10; | ||
349 | m_verticalAttractionEfficiency = 1f; | ||
350 | m_verticalAttractionTimescale = 10f; | ||
351 | // m_bankingEfficiency = -0.2f; | ||
352 | // m_bankingMix = 1; | ||
353 | // m_bankingTimescale = 1; | ||
354 | // m_referenceFrame = Quaternion.Identity; | ||
355 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
356 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | | ||
357 | VehicleFlag.LIMIT_MOTOR_UP); | ||
358 | break; | ||
359 | case Vehicle.TYPE_BOAT: | ||
360 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
361 | m_angularFrictionTimescale = new Vector3(10,10,10); | ||
362 | // m_lLinMotorVel = Vector3.Zero; | ||
363 | m_linearMotorTimescale = 5; | ||
364 | m_linearMotorDecayTimescale = 60; | ||
365 | m_angularMotorDirection = Vector3.Zero; | ||
366 | m_angularMotorTimescale = 4; | ||
367 | m_angularMotorDecayTimescale = 4; | ||
368 | m_VhoverHeight = 0; | ||
369 | // m_VhoverEfficiency = 0.5f; | ||
370 | m_VhoverTimescale = 2; | ||
371 | m_VehicleBuoyancy = 1; | ||
372 | // m_linearDeflectionEfficiency = 0.5f; | ||
373 | // m_linearDeflectionTimescale = 3; | ||
374 | // m_angularDeflectionEfficiency = 0.5f; | ||
375 | // m_angularDeflectionTimescale = 5; | ||
376 | m_verticalAttractionEfficiency = 0.5f; | ||
377 | m_verticalAttractionTimescale = 5f; | ||
378 | // m_bankingEfficiency = -0.3f; | ||
379 | // m_bankingMix = 0.8f; | ||
380 | // m_bankingTimescale = 1; | ||
381 | // m_referenceFrame = Quaternion.Identity; | ||
382 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | | ||
383 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
384 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | | ||
385 | VehicleFlag.LIMIT_MOTOR_UP); | ||
386 | break; | ||
387 | case Vehicle.TYPE_AIRPLANE: | ||
388 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
389 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
390 | // m_lLinMotorVel = Vector3.Zero; | ||
391 | m_linearMotorTimescale = 2; | ||
392 | m_linearMotorDecayTimescale = 60; | ||
393 | m_angularMotorDirection = Vector3.Zero; | ||
394 | m_angularMotorTimescale = 4; | ||
395 | m_angularMotorDecayTimescale = 4; | ||
396 | m_VhoverHeight = 0; | ||
397 | // m_VhoverEfficiency = 0.5f; | ||
398 | m_VhoverTimescale = 1000; | ||
399 | m_VehicleBuoyancy = 0; | ||
400 | // m_linearDeflectionEfficiency = 0.5f; | ||
401 | // m_linearDeflectionTimescale = 3; | ||
402 | // m_angularDeflectionEfficiency = 1; | ||
403 | // m_angularDeflectionTimescale = 2; | ||
404 | m_verticalAttractionEfficiency = 0.9f; | ||
405 | m_verticalAttractionTimescale = 2f; | ||
406 | // m_bankingEfficiency = 1; | ||
407 | // m_bankingMix = 0.7f; | ||
408 | // m_bankingTimescale = 2; | ||
409 | // m_referenceFrame = Quaternion.Identity; | ||
410 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
411 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
412 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
413 | break; | ||
414 | case Vehicle.TYPE_BALLOON: | ||
415 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
416 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
417 | m_linearMotorTimescale = 5; | ||
418 | m_linearMotorDecayTimescale = 60; | ||
419 | m_angularMotorDirection = Vector3.Zero; | ||
420 | m_angularMotorTimescale = 6; | ||
421 | m_angularMotorDecayTimescale = 10; | ||
422 | m_VhoverHeight = 5; | ||
423 | // m_VhoverEfficiency = 0.8f; | ||
424 | m_VhoverTimescale = 10; | ||
425 | m_VehicleBuoyancy = 1; | ||
426 | // m_linearDeflectionEfficiency = 0; | ||
427 | // m_linearDeflectionTimescale = 5; | ||
428 | // m_angularDeflectionEfficiency = 0; | ||
429 | // m_angularDeflectionTimescale = 5; | ||
430 | m_verticalAttractionEfficiency = 1f; | ||
431 | m_verticalAttractionTimescale = 100f; | ||
432 | // m_bankingEfficiency = 0; | ||
433 | // m_bankingMix = 0.7f; | ||
434 | // m_bankingTimescale = 5; | ||
435 | // m_referenceFrame = Quaternion.Identity; | ||
436 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
437 | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
438 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
439 | break; | ||
440 | |||
441 | } | ||
442 | }//end SetDefaultsForType | ||
443 | |||
444 | internal void Enable(IntPtr pBody, OdeScene pParentScene) | ||
445 | { | ||
446 | if (m_type == Vehicle.TYPE_NONE) | ||
447 | return; | ||
448 | |||
449 | m_body = pBody; | ||
450 | } | ||
451 | |||
452 | internal void Step(float pTimestep, OdeScene pParentScene) | ||
453 | { | ||
454 | if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE) | ||
455 | return; | ||
456 | frcount++; // used to limit debug comment output | ||
457 | if (frcount > 24) | ||
458 | frcount = 0; | ||
459 | |||
460 | MoveLinear(pTimestep, pParentScene); | ||
461 | MoveAngular(pTimestep); | ||
462 | }// end Step | ||
463 | |||
464 | internal void Halt() | ||
465 | { // Kill all motions, when non-physical | ||
466 | m_linearMotorDirection = Vector3.Zero; | ||
467 | m_lLinMotorDVel = Vector3.Zero; | ||
468 | m_lLinObjectVel = Vector3.Zero; | ||
469 | m_wLinObjectVel = Vector3.Zero; | ||
470 | m_angularMotorDirection = Vector3.Zero; | ||
471 | m_angularMotorVelocity = Vector3.Zero; | ||
472 | m_lastAngularVelocity = Vector3.Zero; | ||
473 | } | ||
474 | |||
475 | private void UpdateLinDecay() | ||
476 | { | ||
477 | if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X; | ||
478 | if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y; | ||
479 | if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z; | ||
480 | } // else let the motor decay on its own | ||
481 | |||
482 | private void MoveLinear(float pTimestep, OdeScene _pParentScene) | ||
483 | { | ||
484 | Vector3 acceleration = new Vector3(0f, 0f, 0f); | ||
485 | |||
486 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
487 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
488 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
489 | d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame | ||
490 | Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z); | ||
491 | acceleration = vel_now - m_wLinObjectVel; | ||
492 | m_lLinObjectVel = vel_now * irotq; | ||
493 | |||
494 | if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate | ||
495 | { | ||
496 | if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f) | ||
497 | { | ||
498 | float decayfactor = m_linearMotorDecayTimescale/pTimestep; | ||
499 | Vector3 decayAmount = (m_lLinMotorDVel/decayfactor); | ||
500 | m_lLinMotorDVel -= decayAmount; | ||
501 | } | ||
502 | else | ||
503 | { | ||
504 | float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale))); | ||
505 | Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep; | ||
506 | m_lLinMotorDVel -= decel; | ||
507 | } | ||
508 | if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
509 | { | ||
510 | m_lLinMotorDVel = Vector3.Zero; | ||
511 | } | ||
512 | else | ||
513 | { | ||
514 | if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X; | ||
515 | if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y; | ||
516 | if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z; | ||
517 | } | ||
518 | } | ||
519 | |||
520 | if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
521 | { | ||
522 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
523 | if (m_linearMotorTimescale < 300.0f) | ||
524 | { | ||
525 | Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel; | ||
526 | float linfactor = m_linearMotorTimescale/pTimestep; | ||
527 | Vector3 attackAmount = (attack_error/linfactor) * 1.3f; | ||
528 | m_lLinObjectVel += attackAmount; | ||
529 | } | ||
530 | if (m_linearFrictionTimescale.X < 300.0f) | ||
531 | { | ||
532 | float fricfactor = m_linearFrictionTimescale.X / pTimestep; | ||
533 | float fricX = m_lLinObjectVel.X / fricfactor; | ||
534 | m_lLinObjectVel.X -= fricX; | ||
535 | } | ||
536 | if (m_linearFrictionTimescale.Y < 300.0f) | ||
537 | { | ||
538 | float fricfactor = m_linearFrictionTimescale.Y / pTimestep; | ||
539 | float fricY = m_lLinObjectVel.Y / fricfactor; | ||
540 | m_lLinObjectVel.Y -= fricY; | ||
541 | } | ||
542 | if (m_linearFrictionTimescale.Z < 300.0f) | ||
543 | { | ||
544 | float fricfactor = m_linearFrictionTimescale.Z / pTimestep; | ||
545 | float fricZ = m_lLinObjectVel.Z / fricfactor; | ||
546 | m_lLinObjectVel.Z -= fricZ; | ||
547 | } | ||
548 | } | ||
549 | m_wLinObjectVel = m_lLinObjectVel * rotq; | ||
550 | // Add Gravity and Buoyancy | ||
551 | Vector3 grav = Vector3.Zero; | ||
552 | if(m_VehicleBuoyancy < 1.0f) | ||
553 | { | ||
554 | // There is some gravity, make a gravity force vector | ||
555 | // that is applied after object velocity. | ||
556 | d.Mass objMass; | ||
557 | d.BodyGetMass(Body, out objMass); | ||
558 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | ||
559 | grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force | ||
560 | } // else its 1.0, no gravity. | ||
561 | |||
562 | // Check if hovering | ||
563 | if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) | ||
564 | { | ||
565 | // We should hover, get the target height | ||
566 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
567 | if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) | ||
568 | { | ||
569 | m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; | ||
570 | } | ||
571 | else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) | ||
572 | { | ||
573 | m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; | ||
574 | } | ||
575 | else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) | ||
576 | { | ||
577 | m_VhoverTargetHeight = m_VhoverHeight; | ||
578 | } | ||
579 | |||
580 | if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) | ||
581 | { | ||
582 | // If body is aready heigher, use its height as target height | ||
583 | if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; | ||
584 | } | ||
585 | |||
586 | // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped | ||
587 | // m_VhoverTimescale = 0f; // time to acheive height | ||
588 | // pTimestep is time since last frame,in secs | ||
589 | float herr0 = pos.Z - m_VhoverTargetHeight; | ||
590 | // Replace Vertical speed with correction figure if significant | ||
591 | if(Math.Abs(herr0) > 0.01f ) | ||
592 | { | ||
593 | d.Mass objMass; | ||
594 | d.BodyGetMass(Body, out objMass); | ||
595 | m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale); | ||
596 | //KF: m_VhoverEfficiency is not yet implemented | ||
597 | } | ||
598 | else | ||
599 | { | ||
600 | m_wLinObjectVel.Z = 0f; | ||
601 | } | ||
602 | } | ||
603 | else | ||
604 | { // not hovering, Gravity rules | ||
605 | m_wLinObjectVel.Z = vel_now.Z; | ||
606 | //if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z); | ||
607 | } | ||
608 | // Apply velocity | ||
609 | d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z); | ||
610 | // apply gravity force | ||
611 | d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); | ||
612 | //if(frcount == 0) Console.WriteLine("Grav {0}", grav); | ||
613 | } // end MoveLinear() | ||
614 | |||
615 | private void MoveAngular(float pTimestep) | ||
616 | { | ||
617 | /* | ||
618 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
619 | private int m_angularMotorApply = 0; // application frame counter | ||
620 | private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down) | ||
621 | private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate | ||
622 | private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate | ||
623 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate | ||
624 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
625 | */ | ||
626 | //if(frcount == 0) Console.WriteLine("MoveAngular "); | ||
627 | |||
628 | // Get what the body is doing, this includes 'external' influences | ||
629 | d.Vector3 angularVelocity = d.BodyGetAngularVel(Body); | ||
630 | // Vector3 angularVelocity = Vector3.Zero; | ||
631 | |||
632 | if (m_angularMotorApply > 0) | ||
633 | { | ||
634 | // ramp up to new value | ||
635 | // current velocity += error / ( time to get there / step interval ) | ||
636 | // requested speed - last motor speed | ||
637 | m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); | ||
638 | m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); | ||
639 | m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); | ||
640 | |||
641 | m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected | ||
642 | // velocity may still be acheived. | ||
643 | } | ||
644 | else | ||
645 | { | ||
646 | // no motor recently applied, keep the body velocity | ||
647 | /* m_angularMotorVelocity.X = angularVelocity.X; | ||
648 | m_angularMotorVelocity.Y = angularVelocity.Y; | ||
649 | m_angularMotorVelocity.Z = angularVelocity.Z; */ | ||
650 | |||
651 | // and decay the velocity | ||
652 | m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); | ||
653 | } // end motor section | ||
654 | |||
655 | |||
656 | // Vertical attractor section | ||
657 | Vector3 vertattr = Vector3.Zero; | ||
658 | |||
659 | if(m_verticalAttractionTimescale < 300) | ||
660 | { | ||
661 | float VAservo = 0.0167f / (m_verticalAttractionTimescale * pTimestep); | ||
662 | // get present body rotation | ||
663 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
664 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); | ||
665 | // make a vector pointing up | ||
666 | Vector3 verterr = Vector3.Zero; | ||
667 | verterr.Z = 1.0f; | ||
668 | // rotate it to Body Angle | ||
669 | verterr = verterr * rotq; | ||
670 | // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. | ||
671 | // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go | ||
672 | // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. | ||
673 | if (verterr.Z < 0.0f) | ||
674 | { | ||
675 | verterr.X = 2.0f - verterr.X; | ||
676 | verterr.Y = 2.0f - verterr.Y; | ||
677 | } | ||
678 | // Error is 0 (no error) to +/- 2 (max error) | ||
679 | // scale it by VAservo | ||
680 | verterr = verterr * VAservo; | ||
681 | //if(frcount == 0) Console.WriteLine("VAerr=" + verterr); | ||
682 | |||
683 | // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so | ||
684 | // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. | ||
685 | vertattr.X = verterr.Y; | ||
686 | vertattr.Y = - verterr.X; | ||
687 | vertattr.Z = 0f; | ||
688 | |||
689 | // scaling appears better usingsquare-law | ||
690 | float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); | ||
691 | vertattr.X += bounce * angularVelocity.X; | ||
692 | vertattr.Y += bounce * angularVelocity.Y; | ||
693 | |||
694 | } // else vertical attractor is off | ||
695 | |||
696 | // m_lastVertAttractor = vertattr; | ||
697 | |||
698 | // Bank section tba | ||
699 | // Deflection section tba | ||
700 | |||
701 | // Sum velocities | ||
702 | m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // tba: + bank + deflection | ||
703 | |||
704 | if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) | ||
705 | { | ||
706 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
707 | } | ||
708 | else | ||
709 | { | ||
710 | m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. | ||
711 | } | ||
712 | |||
713 | // apply friction | ||
714 | Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep); | ||
715 | m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; | ||
716 | |||
717 | // Apply to the body | ||
718 | d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); | ||
719 | |||
720 | } //end MoveAngular | ||
721 | } | ||
722 | } | ||