diff options
Diffstat (limited to '')
-rw-r--r-- | OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs | 31 | ||||
-rw-r--r-- | OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs | 97 |
2 files changed, 92 insertions, 36 deletions
diff --git a/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs b/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs index 443e7a5..d6316b2 100644 --- a/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs +++ b/OpenSim/Region/ScriptEngine/Shared/Api/Implementation/LSL_Api.cs | |||
@@ -468,26 +468,21 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api | |||
468 | 468 | ||
469 | //Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke | 469 | //Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke |
470 | 470 | ||
471 | // Old implementation of llRot2Euler. Normalization not required as Atan2 function will | 471 | // Using algorithm based off http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf |
472 | // only return values >= -PI (-180 degrees) and <= PI (180 degrees). | 472 | // to avoid issues with singularity and rounding with Y rotation of +/- PI/2 |
473 | |||
474 | public LSL_Vector llRot2Euler(LSL_Rotation r) | 473 | public LSL_Vector llRot2Euler(LSL_Rotation r) |
475 | { | 474 | { |
476 | m_host.AddScriptLPS(1); | 475 | LSL_Vector v = new LSL_Vector(0.0, 0.0, 1.0) * r; // Z axis unit vector unaffected by Z rotation component of r. |
477 | //This implementation is from http://lslwiki.net/lslwiki/wakka.php?wakka=LibraryRotationFunctions. ckrinke | 476 | double m = LSL_Vector.Mag(v); // Just in case v isn't normalized, need magnitude for Asin() operation later. |
478 | LSL_Rotation t = new LSL_Rotation(r.x * r.x, r.y * r.y, r.z * r.z, r.s * r.s); | 477 | if (m == 0.0) return new LSL_Vector(); |
479 | double m = (t.x + t.y + t.z + t.s); | 478 | double x = Math.Atan2(-v.y, v.z); |
480 | if (m == 0) return new LSL_Vector(); | 479 | double sin = v.x / m; |
481 | double n = 2 * (r.y * r.s + r.x * r.z); | 480 | if (sin < -0.999999 || sin > 0.999999) x = 0.0; // Force X rotation to 0 at the singularities. |
482 | double p = m * m - n * n; | 481 | double y = Math.Asin(sin); |
483 | if (p > 0) | 482 | // Rotate X axis unit vector by r and unwind the X and Y rotations leaving only the Z rotation |
484 | return new LSL_Vector(Math.Atan2(2.0 * (r.x * r.s - r.y * r.z), (-t.x - t.y + t.z + t.s)), | 483 | v = new LSL_Vector(1.0, 0.0, 0.0) * ((r * new LSL_Rotation(Math.Sin(-x / 2.0), 0.0, 0.0, Math.Cos(-x / 2.0))) * new LSL_Rotation(0.0, Math.Sin(-y / 2.0), 0.0, Math.Cos(-y / 2.0))); |
485 | Math.Atan2(n, Math.Sqrt(p)), | 484 | double z = Math.Atan2(v.y, v.x); |
486 | Math.Atan2(2.0 * (r.z * r.s - r.x * r.y), (t.x - t.y - t.z + t.s))); | 485 | return new LSL_Vector(x, y, z); |
487 | else if (n > 0) | ||
488 | return new LSL_Vector(0.0, Math.PI * 0.5, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z)); | ||
489 | else | ||
490 | return new LSL_Vector(0.0, -Math.PI * 0.5, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z)); | ||
491 | } | 486 | } |
492 | 487 | ||
493 | /* From wiki: | 488 | /* From wiki: |
diff --git a/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs b/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs index 0cbad41..7594691 100644 --- a/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs +++ b/OpenSim/Region/ScriptEngine/Shared/Tests/LSL_ApiTest.cs | |||
@@ -142,30 +142,91 @@ namespace OpenSim.Region.ScriptEngine.Shared.Tests | |||
142 | public void TestllRot2Euler() | 142 | public void TestllRot2Euler() |
143 | { | 143 | { |
144 | // 180, 90 and zero degree rotations. | 144 | // 180, 90 and zero degree rotations. |
145 | CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f), new LSL_Types.Vector3(Math.PI, 0.0f, 0.0f)); | 145 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f)); |
146 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 1.0f, 0.0f, 0.0f), new LSL_Types.Vector3(Math.PI, 0.0f, Math.PI)); | 146 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, 0.707107f)); |
147 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f), new LSL_Types.Vector3(0.0f, 0.0f, Math.PI)); | 147 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f)); |
148 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f), new LSL_Types.Vector3(0.0f, 0.0f, 0.0f)); | 148 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, -0.707107f)); |
149 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f), new LSL_Types.Vector3(0, -Math.PI / 2.0f, Math.PI / 2.0f)); | 149 | CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, 0.707107f)); |
150 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.0f, -0.707107f), new LSL_Types.Vector3(Math.PI / 2.0f, 0.0f, 0.0f)); | 150 | CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, 0.5f, 0.5f)); |
151 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.707107f, 0.0f)); | ||
152 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, -0.5f)); | ||
153 | CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f)); | ||
154 | CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, -0.707107f, 0.0f, 0.0f)); | ||
155 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -1.0f, 0.0f, 0.0f)); | ||
156 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, -0.707107f, 0.0f, 0.0f)); | ||
157 | CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, -0.707107f)); | ||
158 | CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, -0.5f, -0.5f)); | ||
159 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, -0.707107f, 0.0f)); | ||
160 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, 0.5f)); | ||
161 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, 0.707107f)); | ||
162 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f)); | ||
163 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.707107f, 0.0f)); | ||
164 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, 0.5f, -0.5f)); | ||
165 | CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, -0.707107f)); | ||
166 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, -0.5f)); | ||
167 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, -0.707107f, 0.0f)); | ||
168 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, -0.5f, 0.5f)); | ||
169 | |||
151 | // A couple of messy rotations. | 170 | // A couple of messy rotations. |
152 | CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f), new LSL_Types.Vector3(0.037818f, 0.166447f, -0.095595f)); | 171 | CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f)); |
153 | CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f), new LSL_Types.Vector3(-1.954769f, -0.174533f, 1.151917f)); | 172 | CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f)); |
173 | |||
174 | // Some deliberately malicious rotations (intended on provoking singularity errors) | ||
175 | // The "f" suffexes are deliberately omitted. | ||
176 | CheckllRot2Euler(new LSL_Types.Quaternion(0.50001f, 0.50001f, 0.50001f, 0.50001f)); | ||
177 | // More malice. The "f" suffixes are deliberately omitted. | ||
178 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.701055, 0.092296, 0.701055, -0.092296)); | ||
179 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683010, 0.183005, 0.683010)); | ||
180 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.430460, -0.560982, 0.430460, 0.560982)); | ||
181 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.701066, 0.092301, -0.701066, 0.092301)); | ||
182 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, -0.683010, 0.183013, 0.683010)); | ||
183 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683014, -0.183005, -0.683014)); | ||
184 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.353556, 0.612375, 0.353556, -0.612375)); | ||
185 | CheckllRot2Euler(new LSL_Types.Quaternion(0.353554, -0.612385, -0.353554, 0.612385)); | ||
186 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.560989, 0.430450, 0.560989, -0.430450)); | ||
187 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, 0.683009, -0.183013, 0.683009)); | ||
188 | CheckllRot2Euler(new LSL_Types.Quaternion(0.430457, -0.560985, -0.430457, 0.560985)); | ||
189 | CheckllRot2Euler(new LSL_Types.Quaternion(0.353552, 0.612360, -0.353552, -0.612360)); | ||
190 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500003, 0.499991, -0.500003)); | ||
191 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.353555, -0.612385, -0.353555, -0.612385)); | ||
192 | CheckllRot2Euler(new LSL_Types.Quaternion(0.701066, -0.092301, -0.701066, 0.092301)); | ||
193 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500007, 0.499991, -0.500007)); | ||
194 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.683002, 0.183016, -0.683002, 0.183016)); | ||
195 | CheckllRot2Euler(new LSL_Types.Quaternion(0.430458, 0.560982, 0.430458, 0.560982)); | ||
196 | CheckllRot2Euler(new LSL_Types.Quaternion(0.499991, -0.500003, -0.499991, 0.500003)); | ||
197 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.183009, 0.683011, -0.183009, 0.683011)); | ||
198 | CheckllRot2Euler(new LSL_Types.Quaternion(0.560975, -0.430457, 0.560975, -0.430457)); | ||
199 | CheckllRot2Euler(new LSL_Types.Quaternion(0.701055, 0.092300, 0.701055, 0.092300)); | ||
200 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.560990, 0.430459, -0.560990, 0.430459)); | ||
201 | CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059)); | ||
154 | } | 202 | } |
155 | 203 | ||
156 | private void CheckllRot2Euler(LSL_Types.Quaternion rot, LSL_Types.Vector3 eulerCheck) | 204 | // Testing Rot2Euler this way instead of comparing against expected angles because |
205 | // 1. There are several ways to get to the original Quaternion. For example a rotation | ||
206 | // of PI and -PI will give the same result. But PI and -PI aren't equal. | ||
207 | // 2. This method checks to see if the calculated angles from a quaternion can be used | ||
208 | // to create a new quaternion to produce the same rotation. | ||
209 | // However, can't compare the newly calculated quaternion against the original because | ||
210 | // once again, there are multiple quaternions that give the same result. For instance | ||
211 | // <X, Y, Z, S> == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed | ||
212 | // and will still result in the same rotation if the values for X, Y, Z are also changed | ||
213 | // to compensate. | ||
214 | // However, if two quaternions represent the same rotation, then multiplying the first | ||
215 | // quaternion by the conjugate of the second, will give a third quaternion representing | ||
216 | // a zero rotation. This can be tested for by looking at the X, Y, Z values which should | ||
217 | // be zero. | ||
218 | private void CheckllRot2Euler(LSL_Types.Quaternion rot) | ||
157 | { | 219 | { |
158 | // Call LSL function to convert quaternion rotaion to euler radians. | 220 | // Call LSL function to convert quaternion rotaion to euler radians. |
159 | LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot); | 221 | LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot); |
160 | // Check upper and lower bounds of x, y and z. | 222 | // Now use the euler radians to recalculate a new quaternion rotation |
161 | // This type of check is performed as opposed to comparing for equal numbers, in order to allow slight | 223 | LSL_Types.Quaternion newRot = m_lslApi.llEuler2Rot(eulerCalc); |
162 | // differences in accuracy. | 224 | // Multiple original quaternion by conjugate of quaternion calculated with angles. |
163 | Assert.Greater(eulerCalc.x, eulerCheck.x - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler X lower bounds check fail"); | 225 | LSL_Types.Quaternion check = rot * new LSL_Types.Quaternion(-newRot.x, -newRot.y, -newRot.z, newRot.s); |
164 | Assert.Less(eulerCalc.x, eulerCheck.x + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler X upper bounds check fail"); | 226 | |
165 | Assert.Greater(eulerCalc.y, eulerCheck.y - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Y lower bounds check fail"); | 227 | Assert.AreEqual(0.0, check.x, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler X bounds check fail"); |
166 | Assert.Less(eulerCalc.y, eulerCheck.y + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Y upper bounds check fail"); | 228 | Assert.AreEqual(0.0, check.y, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Y bounds check fail"); |
167 | Assert.Greater(eulerCalc.z, eulerCheck.z - ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Z lower bounds check fail"); | 229 | Assert.AreEqual(0.0, check.z, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Z bounds check fail"); |
168 | Assert.Less(eulerCalc.z, eulerCheck.z + ANGLE_ACCURACY_IN_RADIANS, "TestllRot2Euler Z upper bounds check fail"); | ||
169 | } | 230 | } |
170 | 231 | ||
171 | [Test] | 232 | [Test] |