aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs
diff options
context:
space:
mode:
authoropensim2009-09-30 18:51:02 +0200
committeropensim2009-09-30 18:51:02 +0200
commit827b0fb1993c6f9b1289931a1ac38ff2b810952c (patch)
tree3c5e7b7fe5b21fdf159d64f1264a9d41ceac7b69 /OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs
parentFinish the (untested) authentication connector (diff)
downloadopensim-SC_OLD-827b0fb1993c6f9b1289931a1ac38ff2b810952c.zip
opensim-SC_OLD-827b0fb1993c6f9b1289931a1ac38ff2b810952c.tar.gz
opensim-SC_OLD-827b0fb1993c6f9b1289931a1ac38ff2b810952c.tar.bz2
opensim-SC_OLD-827b0fb1993c6f9b1289931a1ac38ff2b810952c.tar.xz
Commit initial version of KittoFlora's vehicle changes
Diffstat (limited to 'OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs')
-rw-r--r--OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs658
1 files changed, 658 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs
new file mode 100644
index 0000000..467eba0
--- /dev/null
+++ b/OpenSim/Region/Physics/OdePlugin/ODEDynamics.cs
@@ -0,0 +1,658 @@
1/*
2 * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
3 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
4 * ODEPrim.cs contains methods dealing with Prim editing, Prim
5 * characteristics and Kinetic motion.
6 * ODEDynamics.cs contains methods dealing with Prim Physical motion
7 * (dynamics) and the associated settings. Old Linear and angular
8 * motors for dynamic motion have been replace with MoveLinear()
9 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
10 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
11 * switch between 'VEHICLE' parameter use and general dynamics
12 * settings use.
13 *
14 * Copyright (c) Contributors, http://opensimulator.org/
15 * See CONTRIBUTORS.TXT for a full list of copyright holders.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
19 * * Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * * Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * * Neither the name of the OpenSimulator Project nor the
25 * names of its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
29 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
30 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
31 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
33 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40using System;
41using System.Collections.Generic;
42using System.Reflection;
43using System.Runtime.InteropServices;
44using log4net;
45using OpenMetaverse;
46using Ode.NET;
47using OpenSim.Framework;
48using OpenSim.Region.Physics.Manager;
49
50namespace OpenSim.Region.Physics.OdePlugin
51{
52 public class ODEDynamics
53 {
54 public Vehicle Type
55 {
56 get { return m_type; }
57 }
58
59 public IntPtr Body
60 {
61 get { return m_body; }
62 }
63
64 private int frcount = 0; // Used to limit dynamics debug output to
65 // every 100th frame
66
67 // private OdeScene m_parentScene = null;
68 private IntPtr m_body = IntPtr.Zero;
69 private IntPtr m_jointGroup = IntPtr.Zero;
70 private IntPtr m_aMotor = IntPtr.Zero;
71
72
73 // Vehicle properties
74 private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
75 // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
76 private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
77 // HOVER_TERRAIN_ONLY
78 // HOVER_GLOBAL_HEIGHT
79 // NO_DEFLECTION_UP
80 // HOVER_WATER_ONLY
81 // HOVER_UP_ONLY
82 // LIMIT_MOTOR_UP
83 // LIMIT_ROLL_ONLY
84
85 // Linear properties
86 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
87 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
88 private Vector3 m_dir = Vector3.Zero; // velocity applied to body
89 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
90 private float m_linearMotorDecayTimescale = 0;
91 private float m_linearMotorTimescale = 0;
92 private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
93 // private bool m_LinearMotorSetLastFrame = false;
94 // private Vector3 m_linearMotorOffset = Vector3.Zero;
95
96 //Angular properties
97 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
98 private int m_angularMotorApply = 0; // application frame counter
99 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
100 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
101 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
102 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
103 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
104 // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
105
106 //Deflection properties
107 // private float m_angularDeflectionEfficiency = 0;
108 // private float m_angularDeflectionTimescale = 0;
109 // private float m_linearDeflectionEfficiency = 0;
110 // private float m_linearDeflectionTimescale = 0;
111
112 //Banking properties
113 // private float m_bankingEfficiency = 0;
114 // private float m_bankingMix = 0;
115 // private float m_bankingTimescale = 0;
116
117 //Hover and Buoyancy properties
118 private float m_VhoverHeight = 0f;
119 private float m_VhoverEfficiency = 0f;
120 private float m_VhoverTimescale = 0f;
121 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
122 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
123 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
124 // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
125 // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
126
127 //Attractor properties
128 private float m_verticalAttractionEfficiency = 1.0f; // damped
129 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
130
131
132
133
134
135 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
136 {
137 switch (pParam)
138 {
139 case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
140 if (pValue < 0.01f) pValue = 0.01f;
141 // m_angularDeflectionEfficiency = pValue;
142 break;
143 case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
144 if (pValue < 0.01f) pValue = 0.01f;
145 // m_angularDeflectionTimescale = pValue;
146 break;
147 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
148 if (pValue < 0.01f) pValue = 0.01f;
149 m_angularMotorDecayTimescale = pValue;
150 break;
151 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
152 if (pValue < 0.01f) pValue = 0.01f;
153 m_angularMotorTimescale = pValue;
154 break;
155 case Vehicle.BANKING_EFFICIENCY:
156 if (pValue < 0.01f) pValue = 0.01f;
157 // m_bankingEfficiency = pValue;
158 break;
159 case Vehicle.BANKING_MIX:
160 if (pValue < 0.01f) pValue = 0.01f;
161 // m_bankingMix = pValue;
162 break;
163 case Vehicle.BANKING_TIMESCALE:
164 if (pValue < 0.01f) pValue = 0.01f;
165 // m_bankingTimescale = pValue;
166 break;
167 case Vehicle.BUOYANCY:
168 if (pValue < -1f) pValue = -1f;
169 if (pValue > 1f) pValue = 1f;
170 m_VehicleBuoyancy = pValue;
171 break;
172 case Vehicle.HOVER_EFFICIENCY:
173 if (pValue < 0f) pValue = 0f;
174 if (pValue > 1f) pValue = 1f;
175 m_VhoverEfficiency = pValue;
176 break;
177 case Vehicle.HOVER_HEIGHT:
178 m_VhoverHeight = pValue;
179 break;
180 case Vehicle.HOVER_TIMESCALE:
181 if (pValue < 0.01f) pValue = 0.01f;
182 m_VhoverTimescale = pValue;
183 break;
184 case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
185 if (pValue < 0.01f) pValue = 0.01f;
186 // m_linearDeflectionEfficiency = pValue;
187 break;
188 case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
189 if (pValue < 0.01f) pValue = 0.01f;
190 // m_linearDeflectionTimescale = pValue;
191 break;
192 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
193 if (pValue < 0.01f) pValue = 0.01f;
194 m_linearMotorDecayTimescale = pValue;
195 break;
196 case Vehicle.LINEAR_MOTOR_TIMESCALE:
197 if (pValue < 0.01f) pValue = 0.01f;
198 m_linearMotorTimescale = pValue;
199 break;
200 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
201 if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
202 if (pValue > 1.0f) pValue = 1.0f;
203 m_verticalAttractionEfficiency = pValue;
204 break;
205 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
206 if (pValue < 0.01f) pValue = 0.01f;
207 m_verticalAttractionTimescale = pValue;
208 break;
209
210 // These are vector properties but the engine lets you use a single float value to
211 // set all of the components to the same value
212 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
213 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
214 break;
215 case Vehicle.ANGULAR_MOTOR_DIRECTION:
216 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
217 m_angularMotorApply = 10;
218 break;
219 case Vehicle.LINEAR_FRICTION_TIMESCALE:
220 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
221 break;
222 case Vehicle.LINEAR_MOTOR_DIRECTION:
223 m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
224 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
225 break;
226 case Vehicle.LINEAR_MOTOR_OFFSET:
227 // m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
228 break;
229
230 }
231
232 }//end ProcessFloatVehicleParam
233
234 internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
235 {
236 switch (pParam)
237 {
238 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
239 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
240 break;
241 case Vehicle.ANGULAR_MOTOR_DIRECTION:
242 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
243 // Limit requested angular speed to 2 rps= 4 pi rads/sec
244 if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
245 if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
246 if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
247 if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
248 if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
249 if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
250 m_angularMotorApply = 10;
251 break;
252 case Vehicle.LINEAR_FRICTION_TIMESCALE:
253 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
254 break;
255 case Vehicle.LINEAR_MOTOR_DIRECTION:
256 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
257 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
258 break;
259 case Vehicle.LINEAR_MOTOR_OFFSET:
260 // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
261 break;
262 }
263
264 }//end ProcessVectorVehicleParam
265
266 internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
267 {
268 switch (pParam)
269 {
270 case Vehicle.REFERENCE_FRAME:
271 // m_referenceFrame = pValue;
272 break;
273 }
274
275 }//end ProcessRotationVehicleParam
276
277 internal void ProcessTypeChange(Vehicle pType)
278 {
279 // Set Defaults For Type
280 m_type = pType;
281 switch (pType)
282 {
283 case Vehicle.TYPE_SLED:
284 m_linearFrictionTimescale = new Vector3(30, 1, 1000);
285 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
286 m_linearMotorDirection = Vector3.Zero;
287 m_linearMotorTimescale = 1000;
288 m_linearMotorDecayTimescale = 120;
289 m_angularMotorDirection = Vector3.Zero;
290 m_angularMotorTimescale = 1000;
291 m_angularMotorDecayTimescale = 120;
292 m_VhoverHeight = 0;
293 m_VhoverEfficiency = 1;
294 m_VhoverTimescale = 10;
295 m_VehicleBuoyancy = 0;
296 // m_linearDeflectionEfficiency = 1;
297 // m_linearDeflectionTimescale = 1;
298 // m_angularDeflectionEfficiency = 1;
299 // m_angularDeflectionTimescale = 1000;
300 // m_bankingEfficiency = 0;
301 // m_bankingMix = 1;
302 // m_bankingTimescale = 10;
303 // m_referenceFrame = Quaternion.Identity;
304 m_flags &=
305 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
306 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
307 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
308 break;
309 case Vehicle.TYPE_CAR:
310 m_linearFrictionTimescale = new Vector3(100, 2, 1000);
311 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
312 m_linearMotorDirection = Vector3.Zero;
313 m_linearMotorTimescale = 1;
314 m_linearMotorDecayTimescale = 60;
315 m_angularMotorDirection = Vector3.Zero;
316 m_angularMotorTimescale = 1;
317 m_angularMotorDecayTimescale = 0.8f;
318 m_VhoverHeight = 0;
319 m_VhoverEfficiency = 0;
320 m_VhoverTimescale = 1000;
321 m_VehicleBuoyancy = 0;
322 // // m_linearDeflectionEfficiency = 1;
323 // // m_linearDeflectionTimescale = 2;
324 // // m_angularDeflectionEfficiency = 0;
325 // m_angularDeflectionTimescale = 10;
326 m_verticalAttractionEfficiency = 1f;
327 m_verticalAttractionTimescale = 10f;
328 // m_bankingEfficiency = -0.2f;
329 // m_bankingMix = 1;
330 // m_bankingTimescale = 1;
331 // m_referenceFrame = Quaternion.Identity;
332 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
333 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
334 VehicleFlag.LIMIT_MOTOR_UP);
335 break;
336 case Vehicle.TYPE_BOAT:
337 m_linearFrictionTimescale = new Vector3(10, 3, 2);
338 m_angularFrictionTimescale = new Vector3(10,10,10);
339 m_linearMotorDirection = Vector3.Zero;
340 m_linearMotorTimescale = 5;
341 m_linearMotorDecayTimescale = 60;
342 m_angularMotorDirection = Vector3.Zero;
343 m_angularMotorTimescale = 4;
344 m_angularMotorDecayTimescale = 4;
345 m_VhoverHeight = 0;
346 m_VhoverEfficiency = 0.5f;
347 m_VhoverTimescale = 2;
348 m_VehicleBuoyancy = 1;
349 // m_linearDeflectionEfficiency = 0.5f;
350 // m_linearDeflectionTimescale = 3;
351 // m_angularDeflectionEfficiency = 0.5f;
352 // m_angularDeflectionTimescale = 5;
353 m_verticalAttractionEfficiency = 0.5f;
354 m_verticalAttractionTimescale = 5f;
355 // m_bankingEfficiency = -0.3f;
356 // m_bankingMix = 0.8f;
357 // m_bankingTimescale = 1;
358 // m_referenceFrame = Quaternion.Identity;
359 m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
360 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
361 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
362 VehicleFlag.LIMIT_MOTOR_UP);
363 break;
364 case Vehicle.TYPE_AIRPLANE:
365 m_linearFrictionTimescale = new Vector3(200, 10, 5);
366 m_angularFrictionTimescale = new Vector3(20, 20, 20);
367 m_linearMotorDirection = Vector3.Zero;
368 m_linearMotorTimescale = 2;
369 m_linearMotorDecayTimescale = 60;
370 m_angularMotorDirection = Vector3.Zero;
371 m_angularMotorTimescale = 4;
372 m_angularMotorDecayTimescale = 4;
373 m_VhoverHeight = 0;
374 m_VhoverEfficiency = 0.5f;
375 m_VhoverTimescale = 1000;
376 m_VehicleBuoyancy = 0;
377 // m_linearDeflectionEfficiency = 0.5f;
378 // m_linearDeflectionTimescale = 3;
379 // m_angularDeflectionEfficiency = 1;
380 // m_angularDeflectionTimescale = 2;
381 m_verticalAttractionEfficiency = 0.9f;
382 m_verticalAttractionTimescale = 2f;
383 // m_bankingEfficiency = 1;
384 // m_bankingMix = 0.7f;
385 // m_bankingTimescale = 2;
386 // m_referenceFrame = Quaternion.Identity;
387 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
388 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
389 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
390 break;
391 case Vehicle.TYPE_BALLOON:
392 m_linearFrictionTimescale = new Vector3(5, 5, 5);
393 m_angularFrictionTimescale = new Vector3(10, 10, 10);
394 m_linearMotorDirection = Vector3.Zero;
395 m_linearMotorTimescale = 5;
396 m_linearMotorDecayTimescale = 60;
397 m_angularMotorDirection = Vector3.Zero;
398 m_angularMotorTimescale = 6;
399 m_angularMotorDecayTimescale = 10;
400 m_VhoverHeight = 5;
401 m_VhoverEfficiency = 0.8f;
402 m_VhoverTimescale = 10;
403 m_VehicleBuoyancy = 1;
404 // m_linearDeflectionEfficiency = 0;
405 // m_linearDeflectionTimescale = 5;
406 // m_angularDeflectionEfficiency = 0;
407 // m_angularDeflectionTimescale = 5;
408 m_verticalAttractionEfficiency = 1f;
409 m_verticalAttractionTimescale = 100f;
410 // m_bankingEfficiency = 0;
411 // m_bankingMix = 0.7f;
412 // m_bankingTimescale = 5;
413 // m_referenceFrame = Quaternion.Identity;
414 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
415 VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
416 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
417 break;
418
419 }
420 }//end SetDefaultsForType
421
422 internal void Enable(IntPtr pBody, OdeScene pParentScene)
423 {
424 if (m_type == Vehicle.TYPE_NONE)
425 return;
426
427 m_body = pBody;
428 }
429
430 internal void Step(float pTimestep, OdeScene pParentScene)
431 {
432 if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
433 return;
434 frcount++; // used to limit debug comment output
435 if (frcount > 100)
436 frcount = 0;
437
438 MoveLinear(pTimestep, pParentScene);
439 MoveAngular(pTimestep);
440 }// end Step
441
442 private void MoveLinear(float pTimestep, OdeScene _pParentScene)
443 {
444 if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
445 {
446 if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
447
448 // add drive to body
449 Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
450 m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
451
452 // This will work temporarily, but we really need to compare speed on an axis
453 // KF: Limit body velocity to applied velocity?
454 if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
455 m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
456 if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
457 m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
458 if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
459 m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
460
461 // decay applied velocity
462 Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
463 //Console.WriteLine("decay: " + decayfraction);
464 m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
465 //Console.WriteLine("actual: " + m_linearMotorDirection);
466 }
467 else
468 { // requested is not significant
469 // if what remains of applied is small, zero it.
470 if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
471 m_lastLinearVelocityVector = Vector3.Zero;
472 }
473
474
475 // convert requested object velocity to world-referenced vector
476 m_dir = m_lastLinearVelocityVector;
477 d.Quaternion rot = d.BodyGetQuaternion(Body);
478 Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
479 m_dir *= rotq; // apply obj rotation to velocity vector
480
481 // add Gravity andBuoyancy
482 // KF: So far I have found no good method to combine a script-requested
483 // .Z velocity and gravity. Therefore only 0g will used script-requested
484 // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
485 Vector3 grav = Vector3.Zero;
486 if(m_VehicleBuoyancy < 1.0f)
487 {
488 // There is some gravity, make a gravity force vector
489 // that is applied after object velocity.
490 d.Mass objMass;
491 d.BodyGetMass(Body, out objMass);
492 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
493 grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
494 // Preserve the current Z velocity
495 d.Vector3 vel_now = d.BodyGetLinearVel(Body);
496 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
497 } // else its 1.0, no gravity.
498
499 // Check if hovering
500 if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
501 {
502 // We should hover, get the target height
503 d.Vector3 pos = d.BodyGetPosition(Body);
504 if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
505 {
506 m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
507 }
508 else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
509 {
510 m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
511 }
512 else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
513 {
514 m_VhoverTargetHeight = m_VhoverHeight;
515 }
516
517 if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
518 {
519 // If body is aready heigher, use its height as target height
520 if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
521 }
522
523// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
524// m_VhoverTimescale = 0f; // time to acheive height
525// pTimestep is time since last frame,in secs
526 float herr0 = pos.Z - m_VhoverTargetHeight;
527 // Replace Vertical speed with correction figure if significant
528 if(Math.Abs(herr0) > 0.01f )
529 {
530 d.Mass objMass;
531 d.BodyGetMass(Body, out objMass);
532 m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
533 //KF: m_VhoverEfficiency is not yet implemented
534 }
535 else
536 {
537 m_dir.Z = 0f;
538 }
539 }
540
541 // Apply velocity
542 d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
543 // apply gravity force
544 d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
545
546
547 // apply friction
548 Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
549 m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
550 } // end MoveLinear()
551
552 private void MoveAngular(float pTimestep)
553 {
554 /*
555 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
556 private int m_angularMotorApply = 0; // application frame counter
557 private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down)
558 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
559 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
560 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
561 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
562 */
563
564 // Get what the body is doing, this includes 'external' influences
565 d.Vector3 angularVelocity = d.BodyGetAngularVel(Body);
566 // Vector3 angularVelocity = Vector3.Zero;
567
568 if (m_angularMotorApply > 0)
569 {
570 // ramp up to new value
571 // current velocity += error / ( time to get there / step interval )
572 // requested speed - last motor speed
573 m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
574 m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
575 m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
576
577 m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected
578 // velocity may still be acheived.
579 }
580 else
581 {
582 // no motor recently applied, keep the body velocity
583 /* m_angularMotorVelocity.X = angularVelocity.X;
584 m_angularMotorVelocity.Y = angularVelocity.Y;
585 m_angularMotorVelocity.Z = angularVelocity.Z; */
586
587 // and decay the velocity
588 m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
589 } // end motor section
590
591
592 // Vertical attractor section
593 Vector3 vertattr = Vector3.Zero;
594
595 if(m_verticalAttractionTimescale < 300)
596 {
597 float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep);
598 // get present body rotation
599 d.Quaternion rot = d.BodyGetQuaternion(Body);
600 Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
601 // make a vector pointing up
602 Vector3 verterr = Vector3.Zero;
603 verterr.Z = 1.0f;
604 // rotate it to Body Angle
605 verterr = verterr * rotq;
606 // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
607 // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
608 // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
609 if (verterr.Z < 0.0f)
610 {
611 verterr.X = 2.0f - verterr.X;
612 verterr.Y = 2.0f - verterr.Y;
613 }
614 // Error is 0 (no error) to +/- 2 (max error)
615 // scale it by VAservo
616 verterr = verterr * VAservo;
617//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);
618
619 // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
620 // Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
621 vertattr.X = verterr.Y;
622 vertattr.Y = - verterr.X;
623 vertattr.Z = 0f;
624
625 // scaling appears better usingsquare-law
626 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
627 vertattr.X += bounce * angularVelocity.X;
628 vertattr.Y += bounce * angularVelocity.Y;
629
630 } // else vertical attractor is off
631
632 // m_lastVertAttractor = vertattr;
633
634 // Bank section tba
635 // Deflection section tba
636
637 // Sum velocities
638 m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection
639
640 if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
641 {
642 if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
643 }
644 else
645 {
646 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
647 }
648
649 // apply friction
650 Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
651 m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
652
653 // Apply to the body
654 d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
655
656 } //end MoveAngular
657 }
658}