diff options
author | Kitto Flora | 2010-03-11 19:12:38 -0500 |
---|---|---|
committer | Kitto Flora | 2010-03-11 19:12:38 -0500 |
commit | f6f6ef1532517972b973d8a500818dcd50873352 (patch) | |
tree | 3e610efdacb64a63b61d325ee93b9f33ca187ed4 /OpenSim/Region/Physics/ChOdePlugin | |
parent | Fix Physics angular reference frame. (diff) | |
download | opensim-SC_OLD-f6f6ef1532517972b973d8a500818dcd50873352.zip opensim-SC_OLD-f6f6ef1532517972b973d8a500818dcd50873352.tar.gz opensim-SC_OLD-f6f6ef1532517972b973d8a500818dcd50873352.tar.bz2 opensim-SC_OLD-f6f6ef1532517972b973d8a500818dcd50873352.tar.xz |
Dynamics Integration Part 1
Diffstat (limited to 'OpenSim/Region/Physics/ChOdePlugin')
-rw-r--r-- | OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs | 817 | ||||
-rw-r--r-- | OpenSim/Region/Physics/ChOdePlugin/ODEPrim.cs | 2572 |
2 files changed, 1634 insertions, 1755 deletions
diff --git a/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs deleted file mode 100644 index b3b09e6..0000000 --- a/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs +++ /dev/null | |||
@@ -1,817 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (c) Contributors, http://opensimulator.org/ | ||
3 | * See CONTRIBUTORS.TXT for a full list of copyright holders. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are met: | ||
7 | * * Redistributions of source code must retain the above copyright | ||
8 | * notice, this list of conditions and the following disclaimer. | ||
9 | * * Redistributions in binary form must reproduce the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer in the | ||
11 | * documentation and/or other materials provided with the distribution. | ||
12 | * * Neither the name of the OpenSimulator Project nor the | ||
13 | * names of its contributors may be used to endorse or promote products | ||
14 | * derived from this software without specific prior written permission. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY | ||
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
19 | * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY | ||
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | ||
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | * | ||
27 | * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
28 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
29 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
30 | * characteristics and Kinetic motion. | ||
31 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
32 | * (dynamics) and the associated settings. Old Linear and angular | ||
33 | * motors for dynamic motion have been replace with MoveLinear() | ||
34 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
35 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
36 | * switch between 'VEHICLE' parameter use and general dynamics | ||
37 | * settings use. | ||
38 | * | ||
39 | */ | ||
40 | |||
41 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
42 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
43 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
44 | * characteristics and Kinetic motion. | ||
45 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
46 | * (dynamics) and the associated settings. Old Linear and angular | ||
47 | * motors for dynamic motion have been replace with MoveLinear() | ||
48 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
49 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
50 | * switch between 'VEHICLE' parameter use and general dynamics | ||
51 | * settings use. | ||
52 | */ | ||
53 | |||
54 | using System; | ||
55 | using System.Collections.Generic; | ||
56 | using System.Reflection; | ||
57 | using System.Runtime.InteropServices; | ||
58 | using log4net; | ||
59 | using OpenMetaverse; | ||
60 | using Ode.NET; | ||
61 | using OpenSim.Framework; | ||
62 | using OpenSim.Region.Physics.Manager; | ||
63 | |||
64 | namespace OpenSim.Region.Physics.OdePlugin | ||
65 | { | ||
66 | public class ODEDynamics | ||
67 | { | ||
68 | public Vehicle Type | ||
69 | { | ||
70 | get { return m_type; } | ||
71 | } | ||
72 | |||
73 | public IntPtr Body | ||
74 | { | ||
75 | get { return m_body; } | ||
76 | } | ||
77 | |||
78 | private int frcount = 0; // Used to limit dynamics debug output to | ||
79 | // every 100th frame | ||
80 | |||
81 | // private OdeScene m_parentScene = null; | ||
82 | private IntPtr m_body = IntPtr.Zero; | ||
83 | // private IntPtr m_jointGroup = IntPtr.Zero; | ||
84 | // private IntPtr m_aMotor = IntPtr.Zero; | ||
85 | |||
86 | // Vehicle properties | ||
87 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
88 | // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
89 | private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: | ||
90 | // HOVER_TERRAIN_ONLY | ||
91 | // HOVER_GLOBAL_HEIGHT | ||
92 | // NO_DEFLECTION_UP | ||
93 | // HOVER_WATER_ONLY | ||
94 | // HOVER_UP_ONLY | ||
95 | // LIMIT_MOTOR_UP | ||
96 | // LIMIT_ROLL_ONLY | ||
97 | |||
98 | // Linear properties | ||
99 | private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity | ||
100 | //requested by LSL | ||
101 | private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL | ||
102 | private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL | ||
103 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL | ||
104 | |||
105 | private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor | ||
106 | private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity | ||
107 | private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity | ||
108 | |||
109 | //Angular properties | ||
110 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
111 | |||
112 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
113 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
114 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
115 | |||
116 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
117 | // private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity | ||
118 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
119 | |||
120 | private Vector3 m_angularLock = Vector3.One; | ||
121 | |||
122 | //Deflection properties | ||
123 | // private float m_angularDeflectionEfficiency = 0; | ||
124 | // private float m_angularDeflectionTimescale = 0; | ||
125 | // private float m_linearDeflectionEfficiency = 0; | ||
126 | // private float m_linearDeflectionTimescale = 0; | ||
127 | |||
128 | //Banking properties | ||
129 | // private float m_bankingEfficiency = 0; | ||
130 | // private float m_bankingMix = 0; | ||
131 | // private float m_bankingTimescale = 0; | ||
132 | |||
133 | //Hover and Buoyancy properties | ||
134 | private float m_VhoverHeight = 0f; | ||
135 | // private float m_VhoverEfficiency = 0f; | ||
136 | private float m_VhoverTimescale = 0f; | ||
137 | private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height | ||
138 | private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle. | ||
139 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
140 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
141 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
142 | |||
143 | //Attractor properties | ||
144 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
145 | private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. | ||
146 | |||
147 | |||
148 | |||
149 | |||
150 | |||
151 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
152 | { | ||
153 | switch (pParam) | ||
154 | { | ||
155 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
156 | if (pValue < 0.01f) pValue = 0.01f; | ||
157 | // m_angularDeflectionEfficiency = pValue; | ||
158 | break; | ||
159 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
160 | if (pValue < 0.01f) pValue = 0.01f; | ||
161 | // m_angularDeflectionTimescale = pValue; | ||
162 | break; | ||
163 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
164 | if (pValue < 0.01f) pValue = 0.01f; | ||
165 | m_angularMotorDecayTimescale = pValue; | ||
166 | break; | ||
167 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
168 | if (pValue < 0.01f) pValue = 0.01f; | ||
169 | m_angularMotorTimescale = pValue; | ||
170 | break; | ||
171 | case Vehicle.BANKING_EFFICIENCY: | ||
172 | if (pValue < 0.01f) pValue = 0.01f; | ||
173 | // m_bankingEfficiency = pValue; | ||
174 | break; | ||
175 | case Vehicle.BANKING_MIX: | ||
176 | if (pValue < 0.01f) pValue = 0.01f; | ||
177 | // m_bankingMix = pValue; | ||
178 | break; | ||
179 | case Vehicle.BANKING_TIMESCALE: | ||
180 | if (pValue < 0.01f) pValue = 0.01f; | ||
181 | // m_bankingTimescale = pValue; | ||
182 | break; | ||
183 | case Vehicle.BUOYANCY: | ||
184 | if (pValue < -1f) pValue = -1f; | ||
185 | if (pValue > 1f) pValue = 1f; | ||
186 | m_VehicleBuoyancy = pValue; | ||
187 | break; | ||
188 | // case Vehicle.HOVER_EFFICIENCY: | ||
189 | // if (pValue < 0f) pValue = 0f; | ||
190 | // if (pValue > 1f) pValue = 1f; | ||
191 | // m_VhoverEfficiency = pValue; | ||
192 | // break; | ||
193 | case Vehicle.HOVER_HEIGHT: | ||
194 | m_VhoverHeight = pValue; | ||
195 | break; | ||
196 | case Vehicle.HOVER_TIMESCALE: | ||
197 | if (pValue < 0.01f) pValue = 0.01f; | ||
198 | m_VhoverTimescale = pValue; | ||
199 | break; | ||
200 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
201 | if (pValue < 0.01f) pValue = 0.01f; | ||
202 | // m_linearDeflectionEfficiency = pValue; | ||
203 | break; | ||
204 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
205 | if (pValue < 0.01f) pValue = 0.01f; | ||
206 | // m_linearDeflectionTimescale = pValue; | ||
207 | break; | ||
208 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
209 | if (pValue < 0.01f) pValue = 0.01f; | ||
210 | m_linearMotorDecayTimescale = pValue; | ||
211 | break; | ||
212 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
213 | if (pValue < 0.01f) pValue = 0.01f; | ||
214 | m_linearMotorTimescale = pValue; | ||
215 | break; | ||
216 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
217 | if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable | ||
218 | if (pValue > 1.0f) pValue = 1.0f; | ||
219 | m_verticalAttractionEfficiency = pValue; | ||
220 | break; | ||
221 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
222 | if (pValue < 0.01f) pValue = 0.01f; | ||
223 | m_verticalAttractionTimescale = pValue; | ||
224 | break; | ||
225 | |||
226 | // These are vector properties but the engine lets you use a single float value to | ||
227 | // set all of the components to the same value | ||
228 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
229 | if (pValue > 30f) pValue = 30f; | ||
230 | if (pValue < 0.1f) pValue = 0.1f; | ||
231 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
232 | break; | ||
233 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
234 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
235 | UpdateAngDecay(); | ||
236 | break; | ||
237 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
238 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
239 | break; | ||
240 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
241 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
242 | UpdateLinDecay(); | ||
243 | break; | ||
244 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
245 | // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
246 | break; | ||
247 | |||
248 | } | ||
249 | |||
250 | }//end ProcessFloatVehicleParam | ||
251 | |||
252 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
253 | { | ||
254 | switch (pParam) | ||
255 | { | ||
256 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
257 | if (pValue.X > 30f) pValue.X = 30f; | ||
258 | if (pValue.X < 0.1f) pValue.X = 0.1f; | ||
259 | if (pValue.Y > 30f) pValue.Y = 30f; | ||
260 | if (pValue.Y < 0.1f) pValue.Y = 0.1f; | ||
261 | if (pValue.Z > 30f) pValue.Z = 30f; | ||
262 | if (pValue.Z < 0.1f) pValue.Z = 0.1f; | ||
263 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
264 | break; | ||
265 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
266 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
267 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
268 | if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; | ||
269 | if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; | ||
270 | if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; | ||
271 | if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; | ||
272 | if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; | ||
273 | if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; | ||
274 | UpdateAngDecay(); | ||
275 | break; | ||
276 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
277 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
278 | break; | ||
279 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
280 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting | ||
281 | UpdateLinDecay(); | ||
282 | break; | ||
283 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
284 | // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
285 | break; | ||
286 | } | ||
287 | |||
288 | }//end ProcessVectorVehicleParam | ||
289 | |||
290 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
291 | { | ||
292 | switch (pParam) | ||
293 | { | ||
294 | case Vehicle.REFERENCE_FRAME: | ||
295 | // m_referenceFrame = pValue; | ||
296 | break; | ||
297 | } | ||
298 | |||
299 | }//end ProcessRotationVehicleParam | ||
300 | |||
301 | internal void SetAngularLock(Vector3 pValue) | ||
302 | { | ||
303 | m_angularLock = pValue; | ||
304 | } | ||
305 | |||
306 | internal void ProcessFlagsVehicleSet(int flags) | ||
307 | { | ||
308 | m_flags |= (VehicleFlag)flags; | ||
309 | } | ||
310 | |||
311 | internal void ProcessFlagsVehicleRemove(int flags) | ||
312 | { | ||
313 | m_flags &= ~((VehicleFlag)flags); | ||
314 | } | ||
315 | |||
316 | internal void ProcessTypeChange(Vehicle pType) | ||
317 | { | ||
318 | // Set Defaults For Type | ||
319 | m_type = pType; | ||
320 | switch (pType) | ||
321 | { | ||
322 | case Vehicle.TYPE_SLED: | ||
323 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
324 | m_angularFrictionTimescale = new Vector3(30, 30, 30); | ||
325 | // m_lLinMotorVel = Vector3.Zero; | ||
326 | m_linearMotorTimescale = 1000; | ||
327 | m_linearMotorDecayTimescale = 120; | ||
328 | m_angularMotorDirection = Vector3.Zero; | ||
329 | m_angularMotorDVel = Vector3.Zero; | ||
330 | m_angularMotorTimescale = 1000; | ||
331 | m_angularMotorDecayTimescale = 120; | ||
332 | m_VhoverHeight = 0; | ||
333 | // m_VhoverEfficiency = 1; | ||
334 | m_VhoverTimescale = 10; | ||
335 | m_VehicleBuoyancy = 0; | ||
336 | // m_linearDeflectionEfficiency = 1; | ||
337 | // m_linearDeflectionTimescale = 1; | ||
338 | // m_angularDeflectionEfficiency = 1; | ||
339 | // m_angularDeflectionTimescale = 1000; | ||
340 | // m_bankingEfficiency = 0; | ||
341 | // m_bankingMix = 1; | ||
342 | // m_bankingTimescale = 10; | ||
343 | // m_referenceFrame = Quaternion.Identity; | ||
344 | m_flags &= | ||
345 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
346 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
347 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
348 | break; | ||
349 | case Vehicle.TYPE_CAR: | ||
350 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
351 | m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30. | ||
352 | // m_lLinMotorVel = Vector3.Zero; | ||
353 | m_linearMotorTimescale = 1; | ||
354 | m_linearMotorDecayTimescale = 60; | ||
355 | m_angularMotorDirection = Vector3.Zero; | ||
356 | m_angularMotorDVel = Vector3.Zero; | ||
357 | m_angularMotorTimescale = 1; | ||
358 | m_angularMotorDecayTimescale = 0.8f; | ||
359 | m_VhoverHeight = 0; | ||
360 | // m_VhoverEfficiency = 0; | ||
361 | m_VhoverTimescale = 1000; | ||
362 | m_VehicleBuoyancy = 0; | ||
363 | // // m_linearDeflectionEfficiency = 1; | ||
364 | // // m_linearDeflectionTimescale = 2; | ||
365 | // // m_angularDeflectionEfficiency = 0; | ||
366 | // m_angularDeflectionTimescale = 10; | ||
367 | m_verticalAttractionEfficiency = 1f; | ||
368 | m_verticalAttractionTimescale = 10f; | ||
369 | // m_bankingEfficiency = -0.2f; | ||
370 | // m_bankingMix = 1; | ||
371 | // m_bankingTimescale = 1; | ||
372 | // m_referenceFrame = Quaternion.Identity; | ||
373 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
374 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | | ||
375 | VehicleFlag.LIMIT_MOTOR_UP); | ||
376 | break; | ||
377 | case Vehicle.TYPE_BOAT: | ||
378 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
379 | m_angularFrictionTimescale = new Vector3(10,10,10); | ||
380 | // m_lLinMotorVel = Vector3.Zero; | ||
381 | m_linearMotorTimescale = 5; | ||
382 | m_linearMotorDecayTimescale = 60; | ||
383 | m_angularMotorDirection = Vector3.Zero; | ||
384 | m_angularMotorDVel = Vector3.Zero; | ||
385 | m_angularMotorTimescale = 4; | ||
386 | m_angularMotorDecayTimescale = 4; | ||
387 | m_VhoverHeight = 0; | ||
388 | // m_VhoverEfficiency = 0.5f; | ||
389 | m_VhoverTimescale = 2; | ||
390 | m_VehicleBuoyancy = 1; | ||
391 | // m_linearDeflectionEfficiency = 0.5f; | ||
392 | // m_linearDeflectionTimescale = 3; | ||
393 | // m_angularDeflectionEfficiency = 0.5f; | ||
394 | // m_angularDeflectionTimescale = 5; | ||
395 | m_verticalAttractionEfficiency = 0.5f; | ||
396 | m_verticalAttractionTimescale = 5f; | ||
397 | // m_bankingEfficiency = -0.3f; | ||
398 | // m_bankingMix = 0.8f; | ||
399 | // m_bankingTimescale = 1; | ||
400 | // m_referenceFrame = Quaternion.Identity; | ||
401 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | | ||
402 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
403 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | | ||
404 | VehicleFlag.LIMIT_MOTOR_UP); | ||
405 | break; | ||
406 | case Vehicle.TYPE_AIRPLANE: | ||
407 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
408 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
409 | // m_lLinMotorVel = Vector3.Zero; | ||
410 | m_linearMotorTimescale = 2; | ||
411 | m_linearMotorDecayTimescale = 60; | ||
412 | m_angularMotorDirection = Vector3.Zero; | ||
413 | m_angularMotorDVel = Vector3.Zero; | ||
414 | m_angularMotorTimescale = 4; | ||
415 | m_angularMotorDecayTimescale = 4; | ||
416 | m_VhoverHeight = 0; | ||
417 | // m_VhoverEfficiency = 0.5f; | ||
418 | m_VhoverTimescale = 1000; | ||
419 | m_VehicleBuoyancy = 0; | ||
420 | // m_linearDeflectionEfficiency = 0.5f; | ||
421 | // m_linearDeflectionTimescale = 3; | ||
422 | // m_angularDeflectionEfficiency = 1; | ||
423 | // m_angularDeflectionTimescale = 2; | ||
424 | m_verticalAttractionEfficiency = 0.9f; | ||
425 | m_verticalAttractionTimescale = 2f; | ||
426 | // m_bankingEfficiency = 1; | ||
427 | // m_bankingMix = 0.7f; | ||
428 | // m_bankingTimescale = 2; | ||
429 | // m_referenceFrame = Quaternion.Identity; | ||
430 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
431 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
432 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
433 | break; | ||
434 | case Vehicle.TYPE_BALLOON: | ||
435 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
436 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
437 | m_linearMotorTimescale = 5; | ||
438 | m_linearMotorDecayTimescale = 60; | ||
439 | m_angularMotorDirection = Vector3.Zero; | ||
440 | m_angularMotorDVel = Vector3.Zero; | ||
441 | m_angularMotorTimescale = 6; | ||
442 | m_angularMotorDecayTimescale = 10; | ||
443 | m_VhoverHeight = 5; | ||
444 | // m_VhoverEfficiency = 0.8f; | ||
445 | m_VhoverTimescale = 10; | ||
446 | m_VehicleBuoyancy = 1; | ||
447 | // m_linearDeflectionEfficiency = 0; | ||
448 | // m_linearDeflectionTimescale = 5; | ||
449 | // m_angularDeflectionEfficiency = 0; | ||
450 | // m_angularDeflectionTimescale = 5; | ||
451 | m_verticalAttractionEfficiency = 1f; | ||
452 | m_verticalAttractionTimescale = 100f; | ||
453 | // m_bankingEfficiency = 0; | ||
454 | // m_bankingMix = 0.7f; | ||
455 | // m_bankingTimescale = 5; | ||
456 | // m_referenceFrame = Quaternion.Identity; | ||
457 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
458 | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
459 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
460 | break; | ||
461 | |||
462 | } | ||
463 | }//end SetDefaultsForType | ||
464 | |||
465 | internal void Enable(IntPtr pBody, OdeScene pParentScene) | ||
466 | { | ||
467 | if (m_type == Vehicle.TYPE_NONE) | ||
468 | return; | ||
469 | |||
470 | m_body = pBody; | ||
471 | } | ||
472 | |||
473 | internal void Step(float pTimestep, OdeScene pParentScene) | ||
474 | { | ||
475 | if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE) | ||
476 | return; | ||
477 | frcount++; // used to limit debug comment output | ||
478 | if (frcount > 24) | ||
479 | frcount = 0; | ||
480 | |||
481 | MoveLinear(pTimestep, pParentScene); | ||
482 | MoveAngular(pTimestep); | ||
483 | }// end Step | ||
484 | |||
485 | internal void Halt() | ||
486 | { // Kill all motions, when non-physical | ||
487 | m_linearMotorDirection = Vector3.Zero; | ||
488 | m_lLinMotorDVel = Vector3.Zero; | ||
489 | m_lLinObjectVel = Vector3.Zero; | ||
490 | m_wLinObjectVel = Vector3.Zero; | ||
491 | m_angularMotorDirection = Vector3.Zero; | ||
492 | m_lastAngularVelocity = Vector3.Zero; | ||
493 | m_angularMotorDVel = Vector3.Zero; | ||
494 | } | ||
495 | |||
496 | private void UpdateLinDecay() | ||
497 | { | ||
498 | if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X; | ||
499 | if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y; | ||
500 | if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z; | ||
501 | } // else let the motor decay on its own | ||
502 | |||
503 | private void MoveLinear(float pTimestep, OdeScene _pParentScene) | ||
504 | { | ||
505 | Vector3 acceleration = new Vector3(0f, 0f, 0f); | ||
506 | |||
507 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
508 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
509 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
510 | d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame | ||
511 | Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z); | ||
512 | acceleration = vel_now - m_wLinObjectVel; | ||
513 | m_lLinObjectVel = vel_now * irotq; | ||
514 | |||
515 | if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate | ||
516 | { | ||
517 | if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f) | ||
518 | { | ||
519 | float decayfactor = m_linearMotorDecayTimescale/pTimestep; | ||
520 | Vector3 decayAmount = (m_lLinMotorDVel/decayfactor); | ||
521 | m_lLinMotorDVel -= decayAmount; | ||
522 | } | ||
523 | else | ||
524 | { | ||
525 | float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale))); | ||
526 | Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep; | ||
527 | m_lLinMotorDVel -= decel; | ||
528 | } | ||
529 | if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
530 | { | ||
531 | m_lLinMotorDVel = Vector3.Zero; | ||
532 | } | ||
533 | else | ||
534 | { | ||
535 | if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X; | ||
536 | if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y; | ||
537 | if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z; | ||
538 | } | ||
539 | } | ||
540 | |||
541 | if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
542 | { | ||
543 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
544 | if (m_linearMotorTimescale < 300.0f) | ||
545 | { | ||
546 | Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel; | ||
547 | float linfactor = m_linearMotorTimescale/pTimestep; | ||
548 | Vector3 attackAmount = (attack_error/linfactor) * 1.3f; | ||
549 | m_lLinObjectVel += attackAmount; | ||
550 | } | ||
551 | if (m_linearFrictionTimescale.X < 300.0f) | ||
552 | { | ||
553 | float fricfactor = m_linearFrictionTimescale.X / pTimestep; | ||
554 | float fricX = m_lLinObjectVel.X / fricfactor; | ||
555 | m_lLinObjectVel.X -= fricX; | ||
556 | } | ||
557 | if (m_linearFrictionTimescale.Y < 300.0f) | ||
558 | { | ||
559 | float fricfactor = m_linearFrictionTimescale.Y / pTimestep; | ||
560 | float fricY = m_lLinObjectVel.Y / fricfactor; | ||
561 | m_lLinObjectVel.Y -= fricY; | ||
562 | } | ||
563 | if (m_linearFrictionTimescale.Z < 300.0f) | ||
564 | { | ||
565 | float fricfactor = m_linearFrictionTimescale.Z / pTimestep; | ||
566 | //if(frcount == 0) Console.WriteLine("Zfric={0}", fricfactor); | ||
567 | float fricZ = m_lLinObjectVel.Z / fricfactor; | ||
568 | m_lLinObjectVel.Z -= fricZ; | ||
569 | } | ||
570 | } | ||
571 | m_wLinObjectVel = m_lLinObjectVel * rotq; | ||
572 | // Add Gravity and Buoyancy | ||
573 | Vector3 grav = Vector3.Zero; | ||
574 | if(m_VehicleBuoyancy < 1.0f) | ||
575 | { | ||
576 | // There is some gravity, make a gravity force vector | ||
577 | // that is applied after object velocity. | ||
578 | d.Mass objMass; | ||
579 | d.BodyGetMass(Body, out objMass); | ||
580 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | ||
581 | grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force | ||
582 | } // else its 1.0, no gravity. | ||
583 | |||
584 | // Check if hovering | ||
585 | if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) | ||
586 | { | ||
587 | // We should hover, get the target height | ||
588 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
589 | if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) | ||
590 | { | ||
591 | m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; | ||
592 | } | ||
593 | else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) | ||
594 | { | ||
595 | m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; | ||
596 | } | ||
597 | else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) | ||
598 | { | ||
599 | m_VhoverTargetHeight = m_VhoverHeight; | ||
600 | } | ||
601 | |||
602 | if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) | ||
603 | { | ||
604 | // If body is aready heigher, use its height as target height | ||
605 | if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; | ||
606 | } | ||
607 | |||
608 | // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped | ||
609 | // m_VhoverTimescale = 0f; // time to acheive height | ||
610 | // pTimestep is time since last frame,in secs | ||
611 | float herr0 = pos.Z - m_VhoverTargetHeight; | ||
612 | // Replace Vertical speed with correction figure if significant | ||
613 | if(Math.Abs(herr0) > 0.01f ) | ||
614 | { | ||
615 | d.Mass objMass; | ||
616 | d.BodyGetMass(Body, out objMass); | ||
617 | m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale); | ||
618 | //KF: m_VhoverEfficiency is not yet implemented | ||
619 | } | ||
620 | else | ||
621 | { | ||
622 | m_wLinObjectVel.Z = 0f; | ||
623 | } | ||
624 | } | ||
625 | else | ||
626 | { // not hovering, Gravity rules | ||
627 | m_wLinObjectVel.Z = vel_now.Z; | ||
628 | //if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z); | ||
629 | } | ||
630 | // Apply velocity | ||
631 | d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z); | ||
632 | // apply gravity force | ||
633 | d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); | ||
634 | //if(frcount == 0) Console.WriteLine("Grav {0}", grav); | ||
635 | } // end MoveLinear() | ||
636 | |||
637 | private void UpdateAngDecay() | ||
638 | { | ||
639 | if (Math.Abs(m_angularMotorDirection.X) > Math.Abs(m_angularMotorDVel.X)) m_angularMotorDVel.X = m_angularMotorDirection.X; | ||
640 | if (Math.Abs(m_angularMotorDirection.Y) > Math.Abs(m_angularMotorDVel.Y)) m_angularMotorDVel.Y = m_angularMotorDirection.Y; | ||
641 | if (Math.Abs(m_angularMotorDirection.Z) > Math.Abs(m_angularMotorDVel.Z)) m_angularMotorDVel.Z = m_angularMotorDirection.Z; | ||
642 | } // else let the motor decay on its own | ||
643 | |||
644 | private void MoveAngular(float pTimestep) | ||
645 | { | ||
646 | /* | ||
647 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
648 | |||
649 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
650 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
651 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
652 | |||
653 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
654 | private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body | ||
655 | */ | ||
656 | //if(frcount == 0) Console.WriteLine("MoveAngular "); | ||
657 | |||
658 | // Get what the body is doing, this includes 'external' influences | ||
659 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
660 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
661 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
662 | d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body); | ||
663 | Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z); | ||
664 | angObjectVel = angObjectVel * irotq; // ============ Converts to LOCAL rotation | ||
665 | |||
666 | //if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel); | ||
667 | // Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel; | ||
668 | // Vector3 initavel = angObjectVel; | ||
669 | // Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack. | ||
670 | float atk_decayfactor = 23.0f / (m_angularMotorTimescale * pTimestep); | ||
671 | m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor; | ||
672 | // Decay Angular Motor 2. | ||
673 | if (m_angularMotorDecayTimescale < 300.0f) | ||
674 | { | ||
675 | //#### | ||
676 | if ( Vector3.Mag(m_angularMotorDVel) < 1.0f) | ||
677 | { | ||
678 | float decayfactor = (m_angularMotorDecayTimescale)/pTimestep; | ||
679 | Vector3 decayAmount = (m_angularMotorDVel/decayfactor); | ||
680 | m_angularMotorDVel -= decayAmount; | ||
681 | } | ||
682 | else | ||
683 | { | ||
684 | Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * pTimestep / m_angularMotorDecayTimescale; | ||
685 | m_angularMotorDVel -= decel; | ||
686 | } | ||
687 | |||
688 | if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
689 | { | ||
690 | m_angularMotorDVel = Vector3.Zero; | ||
691 | } | ||
692 | else | ||
693 | { | ||
694 | if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X; | ||
695 | if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y; | ||
696 | if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z; | ||
697 | } | ||
698 | } // end decay angular motor | ||
699 | //if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
700 | |||
701 | //if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel); | ||
702 | // Vertical attractor section | ||
703 | Vector3 vertattr = Vector3.Zero; | ||
704 | |||
705 | if(m_verticalAttractionTimescale < 300) | ||
706 | { | ||
707 | float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep); | ||
708 | // get present body rotation | ||
709 | // d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
710 | // Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); | ||
711 | // make a vector pointing up | ||
712 | Vector3 verterr = Vector3.Zero; | ||
713 | verterr.Z = 1.0f; | ||
714 | // rotate it to Body Angle | ||
715 | verterr = verterr * rotq; | ||
716 | // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. | ||
717 | // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go | ||
718 | // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. | ||
719 | |||
720 | if (verterr.Z < 0.0f) | ||
721 | { // Deflection from vertical exceeds 90-degrees. This method will ensure stable return to | ||
722 | // vertical, BUT for some reason a z-rotation is imparted to the object. TBI. | ||
723 | //Console.WriteLine("InvertFlip"); | ||
724 | verterr.X = 2.0f - verterr.X; | ||
725 | verterr.Y = 2.0f - verterr.Y; | ||
726 | } | ||
727 | verterr *= 0.5f; | ||
728 | // verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt) | ||
729 | |||
730 | if ((!angObjectVel.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f)) | ||
731 | { | ||
732 | //if(frcount == 0) | ||
733 | // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so | ||
734 | // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. | ||
735 | vertattr.X = verterr.Y; | ||
736 | vertattr.Y = - verterr.X; | ||
737 | vertattr.Z = 0f; | ||
738 | //if(frcount == 0) Console.WriteLine("VAerr=" + verterr); | ||
739 | |||
740 | // scaling appears better usingsquare-law | ||
741 | float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency; | ||
742 | float bounce = 1.0f - damped; | ||
743 | // 0 = crit damp, 1 = bouncy | ||
744 | float oavz = angObjectVel.Z; // retain z velocity | ||
745 | angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce; // The time-scaled correction, which sums, therefore is bouncy | ||
746 | angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped); // damped, good @ < 90. | ||
747 | angObjectVel.Z = oavz; | ||
748 | //if(frcount == 0) Console.WriteLine("VA+"); | ||
749 | //Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel); | ||
750 | } | ||
751 | else | ||
752 | { | ||
753 | // else error is very small | ||
754 | angObjectVel.X = 0f; | ||
755 | angObjectVel.Y = 0f; | ||
756 | //if(frcount == 0) Console.WriteLine("VA0"); | ||
757 | } | ||
758 | } // else vertical attractor is off | ||
759 | //if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel); | ||
760 | |||
761 | if ( (! m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
762 | { // if motor or object have motion | ||
763 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
764 | |||
765 | if (m_angularMotorTimescale < 300.0f) | ||
766 | { | ||
767 | Vector3 attack_error = m_angularMotorDVel - angObjectVel; | ||
768 | float angfactor = m_angularMotorTimescale/pTimestep; | ||
769 | Vector3 attackAmount = (attack_error/angfactor); | ||
770 | angObjectVel += attackAmount; | ||
771 | //if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount); | ||
772 | //if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel); | ||
773 | } | ||
774 | |||
775 | angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / pTimestep); | ||
776 | angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / pTimestep); | ||
777 | angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / pTimestep); | ||
778 | } // else no signif. motion | ||
779 | |||
780 | //if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
781 | // Bank section tba | ||
782 | // Deflection section tba | ||
783 | //if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel); | ||
784 | |||
785 | m_lastAngularVelocity = angObjectVel; | ||
786 | /* | ||
787 | if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.0001f)) | ||
788 | { | ||
789 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
790 | } | ||
791 | else | ||
792 | { | ||
793 | m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. | ||
794 | } | ||
795 | */ | ||
796 | //if(frcount == 0) Console.WriteLine("angularLock {0}", m_angularLock); | ||
797 | |||
798 | if (!m_angularLock.ApproxEquals(Vector3.One, 0.003f)) | ||
799 | { | ||
800 | if (m_angularLock.X == 0) | ||
801 | m_lastAngularVelocity.X = 0f; | ||
802 | if (m_angularLock.Y == 0) | ||
803 | m_lastAngularVelocity.Y = 0f; | ||
804 | if (m_angularLock.Z == 0) | ||
805 | m_lastAngularVelocity.Z = 0f; | ||
806 | } | ||
807 | // Apply to the body | ||
808 | // Vector3 aInc = m_lastAngularVelocity - initavel; | ||
809 | //if(frcount == 0) Console.WriteLine("Inc {0}", aInc); | ||
810 | m_lastAngularVelocity = m_lastAngularVelocity * rotq; // ================ Converts to WORLD rotation | ||
811 | |||
812 | d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); | ||
813 | //if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity); | ||
814 | |||
815 | } //end MoveAngular | ||
816 | } | ||
817 | } | ||
diff --git a/OpenSim/Region/Physics/ChOdePlugin/ODEPrim.cs b/OpenSim/Region/Physics/ChOdePlugin/ODEPrim.cs index fb6cb55..5d24388 100644 --- a/OpenSim/Region/Physics/ChOdePlugin/ODEPrim.cs +++ b/OpenSim/Region/Physics/ChOdePlugin/ODEPrim.cs | |||
@@ -22,32 +22,10 @@ | |||
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
23 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 23 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | * | 24 | * |
25 | * Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces | 25 | * Revised March 5th 2010 by Kitto Flora. ODEDynamics.cs |
26 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | 26 | * rolled into ODEPrim.cs |
27 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
28 | * characteristics and Kinetic motion. | ||
29 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
30 | * (dynamics) and the associated settings. Old Linear and angular | ||
31 | * motors for dynamic motion have been replace with MoveLinear() | ||
32 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
33 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
34 | * switch between 'VEHICLE' parameter use and general dynamics | ||
35 | * settings use. | ||
36 | */ | 27 | */ |
37 | 28 | ||
38 | /* | ||
39 | * Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
40 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
41 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
42 | * characteristics and Kinetic motion. | ||
43 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
44 | * (dynamics) and the associated settings. Old Linear and angular | ||
45 | * motors for dynamic motion have been replace with MoveLinear() | ||
46 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
47 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
48 | * switch between 'VEHICLE' parameter use and general dynamics | ||
49 | * settings use. | ||
50 | */ | ||
51 | using System; | 29 | using System; |
52 | using System.Collections.Generic; | 30 | using System.Collections.Generic; |
53 | using System.Reflection; | 31 | using System.Reflection; |
@@ -59,6 +37,7 @@ using Ode.NET; | |||
59 | using OpenSim.Framework; | 37 | using OpenSim.Framework; |
60 | using OpenSim.Region.Physics.Manager; | 38 | using OpenSim.Region.Physics.Manager; |
61 | 39 | ||
40 | |||
62 | namespace OpenSim.Region.Physics.OdePlugin | 41 | namespace OpenSim.Region.Physics.OdePlugin |
63 | { | 42 | { |
64 | /// <summary> | 43 | /// <summary> |
@@ -102,8 +81,8 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
102 | private float m_APIDDamping = 0.5f; | 81 | private float m_APIDDamping = 0.5f; |
103 | private bool m_useAPID = false; | 82 | private bool m_useAPID = false; |
104 | 83 | ||
105 | // KF: These next 7 params apply to llSetHoverHeight(float height, integer water, float tau), | 84 | // These next 7 params apply to llSetHoverHeight(float height, integer water, float tau), |
106 | // and are for non-VEHICLES only. | 85 | // do not confuse with VEHICLE HOVER |
107 | 86 | ||
108 | private float m_PIDHoverHeight; | 87 | private float m_PIDHoverHeight; |
109 | private float m_PIDHoverTau; | 88 | private float m_PIDHoverTau; |
@@ -112,7 +91,7 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
112 | private float m_targetHoverHeight; | 91 | private float m_targetHoverHeight; |
113 | private float m_groundHeight; | 92 | private float m_groundHeight; |
114 | private float m_waterHeight; | 93 | private float m_waterHeight; |
115 | private float m_buoyancy; //KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle. | 94 | private float m_buoyancy; //m_buoyancy set by llSetBuoyancy() |
116 | 95 | ||
117 | // private float m_tensor = 5f; | 96 | // private float m_tensor = 5f; |
118 | private int body_autodisable_frames = 20; | 97 | private int body_autodisable_frames = 20; |
@@ -183,7 +162,7 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
183 | public bool outofBounds; | 162 | public bool outofBounds; |
184 | private float m_density = 10.000006836f; // Aluminum g/cm3; | 163 | private float m_density = 10.000006836f; // Aluminum g/cm3; |
185 | 164 | ||
186 | public bool _zeroFlag; | 165 | public bool _zeroFlag; // if body has been stopped |
187 | private bool m_lastUpdateSent; | 166 | private bool m_lastUpdateSent; |
188 | 167 | ||
189 | public IntPtr Body = IntPtr.Zero; | 168 | public IntPtr Body = IntPtr.Zero; |
@@ -198,18 +177,81 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
198 | 177 | ||
199 | public volatile bool childPrim; | 178 | public volatile bool childPrim; |
200 | 179 | ||
201 | private ODEDynamics m_vehicle; | ||
202 | |||
203 | internal int m_material = (int)Material.Wood; | 180 | internal int m_material = (int)Material.Wood; |
204 | 181 | ||
205 | private int frcount = 0; // Used to limit dynamics debug output to | 182 | private int frcount = 0; // Used to limit dynamics debug output to |
206 | 183 | ||
184 | private IntPtr m_body = IntPtr.Zero; | ||
185 | |||
186 | // Vehicle properties ============================================================================================ | ||
187 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
188 | // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
189 | private VehicleFlag m_flags = (VehicleFlag) 0; // Bit settings: | ||
190 | // HOVER_TERRAIN_ONLY | ||
191 | // HOVER_GLOBAL_HEIGHT | ||
192 | // NO_DEFLECTION_UP | ||
193 | // HOVER_WATER_ONLY | ||
194 | // HOVER_UP_ONLY | ||
195 | // LIMIT_MOTOR_UP | ||
196 | // LIMIT_ROLL_ONLY | ||
197 | |||
198 | // Linear properties | ||
199 | private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity | ||
200 | //requested by LSL | ||
201 | private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL | ||
202 | private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL | ||
203 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL | ||
204 | |||
205 | private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor | ||
206 | private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity | ||
207 | private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity | ||
208 | |||
209 | //Angular properties | ||
210 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
211 | |||
212 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
213 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
214 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
215 | |||
216 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
217 | // private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity | ||
218 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
219 | |||
220 | private Vector3 m_angularLock = Vector3.One; | ||
221 | |||
222 | //Deflection properties | ||
223 | // private float m_angularDeflectionEfficiency = 0; | ||
224 | // private float m_angularDeflectionTimescale = 0; | ||
225 | // private float m_linearDeflectionEfficiency = 0; | ||
226 | // private float m_linearDeflectionTimescale = 0; | ||
227 | |||
228 | //Banking properties | ||
229 | // private float m_bankingEfficiency = 0; | ||
230 | // private float m_bankingMix = 0; | ||
231 | // private float m_bankingTimescale = 0; | ||
232 | |||
233 | //Hover and Buoyancy properties | ||
234 | private float m_VhoverHeight = 0f; | ||
235 | // private float m_VhoverEfficiency = 0f; | ||
236 | private float m_VhoverTimescale = 0f; | ||
237 | private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height | ||
238 | private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle. | ||
239 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
240 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
241 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
242 | |||
243 | //Attractor properties | ||
244 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
245 | private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. | ||
246 | |||
247 | |||
248 | |||
249 | |||
250 | |||
207 | 251 | ||
208 | public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size, | 252 | public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size, |
209 | Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode) | 253 | Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode) |
210 | { | 254 | { |
211 | m_vehicle = new ODEDynamics(); | ||
212 | //gc = GCHandle.Alloc(prim_geom, GCHandleType.Pinned); | ||
213 | ode = dode; | 255 | ode = dode; |
214 | if (!pos.IsFinite()) | 256 | if (!pos.IsFinite()) |
215 | { | 257 | { |
@@ -302,7 +344,7 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
302 | { | 344 | { |
303 | set { | 345 | set { |
304 | 346 | ||
305 | 347 | Console.WriteLine("Sel {0} {1} {2}", m_primName, value, m_isphysical); | |
306 | // This only makes the object not collidable if the object | 348 | // This only makes the object not collidable if the object |
307 | // is physical or the object is modified somehow *IN THE FUTURE* | 349 | // is physical or the object is modified somehow *IN THE FUTURE* |
308 | // without this, if an avatar selects prim, they can walk right | 350 | // without this, if an avatar selects prim, they can walk right |
@@ -322,6 +364,416 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
322 | } | 364 | } |
323 | } | 365 | } |
324 | 366 | ||
367 | public override bool IsPhysical | ||
368 | { | ||
369 | get { return m_isphysical; } | ||
370 | set | ||
371 | { | ||
372 | m_isphysical = value; | ||
373 | if (!m_isphysical) | ||
374 | { // Zero the remembered last velocity | ||
375 | m_lastVelocity = Vector3.Zero; | ||
376 | if (m_type != Vehicle.TYPE_NONE) Halt(); | ||
377 | } | ||
378 | } | ||
379 | } | ||
380 | |||
381 | public void setPrimForRemoval() | ||
382 | { | ||
383 | m_taintremove = true; | ||
384 | } | ||
385 | |||
386 | public override bool Flying | ||
387 | { | ||
388 | // no flying prims for you | ||
389 | get { return false; } | ||
390 | set { } | ||
391 | } | ||
392 | |||
393 | public override bool IsColliding | ||
394 | { | ||
395 | get { return iscolliding; } | ||
396 | set { iscolliding = value; } | ||
397 | } | ||
398 | |||
399 | public override bool CollidingGround | ||
400 | { | ||
401 | get { return false; } | ||
402 | set { return; } | ||
403 | } | ||
404 | |||
405 | public override bool CollidingObj | ||
406 | { | ||
407 | get { return false; } | ||
408 | set { return; } | ||
409 | } | ||
410 | |||
411 | public override bool ThrottleUpdates | ||
412 | { | ||
413 | get { return m_throttleUpdates; } | ||
414 | set { m_throttleUpdates = value; } | ||
415 | } | ||
416 | |||
417 | public override bool Stopped | ||
418 | { | ||
419 | get { return _zeroFlag; } | ||
420 | } | ||
421 | |||
422 | public override Vector3 Position | ||
423 | { | ||
424 | get { return _position; } | ||
425 | |||
426 | set { _position = value; | ||
427 | //m_log.Info("[PHYSICS]: " + _position.ToString()); | ||
428 | } | ||
429 | } | ||
430 | |||
431 | public override Vector3 Size | ||
432 | { | ||
433 | get { return _size; } | ||
434 | set | ||
435 | { | ||
436 | if (value.IsFinite()) | ||
437 | { | ||
438 | _size = value; | ||
439 | } | ||
440 | else | ||
441 | { | ||
442 | m_log.Warn("[PHYSICS]: Got NaN Size on object"); | ||
443 | } | ||
444 | } | ||
445 | } | ||
446 | |||
447 | public override float Mass | ||
448 | { | ||
449 | get { return CalculateMass(); } | ||
450 | } | ||
451 | |||
452 | public override Vector3 Force | ||
453 | { | ||
454 | //get { return Vector3.Zero; } | ||
455 | get { return m_force; } | ||
456 | set | ||
457 | { | ||
458 | if (value.IsFinite()) | ||
459 | { | ||
460 | m_force = value; | ||
461 | } | ||
462 | else | ||
463 | { | ||
464 | m_log.Warn("[PHYSICS]: NaN in Force Applied to an Object"); | ||
465 | } | ||
466 | } | ||
467 | } | ||
468 | |||
469 | public override int VehicleType | ||
470 | { | ||
471 | get { return (int)m_type; } | ||
472 | set { ProcessTypeChange((Vehicle)value); } | ||
473 | } | ||
474 | |||
475 | public override void VehicleFloatParam(int param, float value) | ||
476 | { | ||
477 | ProcessFloatVehicleParam((Vehicle) param, value); | ||
478 | } | ||
479 | |||
480 | public override void VehicleVectorParam(int param, Vector3 value) | ||
481 | { | ||
482 | ProcessVectorVehicleParam((Vehicle) param, value); | ||
483 | } | ||
484 | |||
485 | public override void VehicleRotationParam(int param, Quaternion rotation) | ||
486 | { | ||
487 | ProcessRotationVehicleParam((Vehicle) param, rotation); | ||
488 | } | ||
489 | |||
490 | public override void VehicleFlagsSet(int flags) | ||
491 | { | ||
492 | ProcessFlagsVehicleSet(flags); | ||
493 | } | ||
494 | |||
495 | public override void VehicleFlagsRemove(int flags) | ||
496 | { | ||
497 | ProcessFlagsVehicleRemove(flags); | ||
498 | } | ||
499 | |||
500 | public override void SetVolumeDetect(int param) | ||
501 | { | ||
502 | lock (_parent_scene.OdeLock) | ||
503 | { | ||
504 | m_isVolumeDetect = (param!=0); | ||
505 | } | ||
506 | } | ||
507 | |||
508 | public override Vector3 CenterOfMass | ||
509 | { | ||
510 | get { return Vector3.Zero; } | ||
511 | } | ||
512 | |||
513 | public override Vector3 GeometricCenter | ||
514 | { | ||
515 | get { return Vector3.Zero; } | ||
516 | } | ||
517 | |||
518 | public override PrimitiveBaseShape Shape | ||
519 | { | ||
520 | set | ||
521 | { | ||
522 | _pbs = value; | ||
523 | m_taintshape = true; | ||
524 | } | ||
525 | } | ||
526 | |||
527 | public override Vector3 Velocity | ||
528 | { | ||
529 | get | ||
530 | { | ||
531 | // Averate previous velocity with the new one so | ||
532 | // client object interpolation works a 'little' better | ||
533 | if (_zeroFlag) | ||
534 | return Vector3.Zero; | ||
535 | |||
536 | Vector3 returnVelocity = Vector3.Zero; | ||
537 | returnVelocity.X = (m_lastVelocity.X + _velocity.X)/2; | ||
538 | returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y)/2; | ||
539 | returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z)/2; | ||
540 | return returnVelocity; | ||
541 | } | ||
542 | set | ||
543 | { | ||
544 | if (value.IsFinite()) | ||
545 | { | ||
546 | _velocity = value; | ||
547 | |||
548 | m_taintVelocity = value; | ||
549 | _parent_scene.AddPhysicsActorTaint(this); | ||
550 | } | ||
551 | else | ||
552 | { | ||
553 | m_log.Warn("[PHYSICS]: Got NaN Velocity in Object"); | ||
554 | } | ||
555 | |||
556 | } | ||
557 | } | ||
558 | |||
559 | public override Vector3 Torque | ||
560 | { | ||
561 | get | ||
562 | { | ||
563 | if (!m_isphysical || Body == IntPtr.Zero) | ||
564 | return Vector3.Zero; | ||
565 | |||
566 | return _torque; | ||
567 | } | ||
568 | |||
569 | set | ||
570 | { | ||
571 | if (value.IsFinite()) | ||
572 | { | ||
573 | m_taintTorque = value; | ||
574 | _parent_scene.AddPhysicsActorTaint(this); | ||
575 | } | ||
576 | else | ||
577 | { | ||
578 | m_log.Warn("[PHYSICS]: Got NaN Torque in Object"); | ||
579 | } | ||
580 | } | ||
581 | } | ||
582 | |||
583 | public override float CollisionScore | ||
584 | { | ||
585 | get { return m_collisionscore; } | ||
586 | set { m_collisionscore = value; } | ||
587 | } | ||
588 | |||
589 | public override bool Kinematic | ||
590 | { | ||
591 | get { return false; } | ||
592 | set { } | ||
593 | } | ||
594 | |||
595 | public override Quaternion Orientation | ||
596 | { | ||
597 | get { return _orientation; } | ||
598 | set | ||
599 | { | ||
600 | if (QuaternionIsFinite(value)) | ||
601 | { | ||
602 | _orientation = value; | ||
603 | } | ||
604 | else | ||
605 | m_log.Warn("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object"); | ||
606 | |||
607 | } | ||
608 | } | ||
609 | |||
610 | |||
611 | public override bool FloatOnWater | ||
612 | { | ||
613 | set { | ||
614 | m_taintCollidesWater = value; | ||
615 | _parent_scene.AddPhysicsActorTaint(this); | ||
616 | } | ||
617 | } | ||
618 | |||
619 | public override void SetMomentum(Vector3 momentum) | ||
620 | { | ||
621 | } | ||
622 | |||
623 | public override Vector3 PIDTarget | ||
624 | { | ||
625 | set | ||
626 | { | ||
627 | if (value.IsFinite()) | ||
628 | { | ||
629 | m_PIDTarget = value; | ||
630 | } | ||
631 | else | ||
632 | m_log.Warn("[PHYSICS]: Got NaN PIDTarget from Scene on Object"); | ||
633 | } | ||
634 | } | ||
635 | public override bool PIDActive { set { m_usePID = value; } } | ||
636 | public override float PIDTau { set { m_PIDTau = value; } } | ||
637 | |||
638 | // For RotLookAt | ||
639 | public override Quaternion APIDTarget { set { m_APIDTarget = value; } } | ||
640 | public override bool APIDActive { set { m_useAPID = value; } } | ||
641 | public override float APIDStrength { set { m_APIDStrength = value; } } | ||
642 | public override float APIDDamping { set { m_APIDDamping = value; } } | ||
643 | |||
644 | public override float PIDHoverHeight { set { m_PIDHoverHeight = value; ; } } | ||
645 | public override bool PIDHoverActive { set { m_useHoverPID = value; } } | ||
646 | public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } } | ||
647 | public override float PIDHoverTau { set { m_PIDHoverTau = value; } } | ||
648 | |||
649 | internal static bool QuaternionIsFinite(Quaternion q) | ||
650 | { | ||
651 | if (Single.IsNaN(q.X) || Single.IsInfinity(q.X)) | ||
652 | return false; | ||
653 | if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y)) | ||
654 | return false; | ||
655 | if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z)) | ||
656 | return false; | ||
657 | if (Single.IsNaN(q.W) || Single.IsInfinity(q.W)) | ||
658 | return false; | ||
659 | return true; | ||
660 | } | ||
661 | |||
662 | public override Vector3 Acceleration | ||
663 | { | ||
664 | get { return _acceleration; } | ||
665 | } | ||
666 | |||
667 | |||
668 | public void SetAcceleration(Vector3 accel) // No one calls this, and it would not do anything. | ||
669 | { | ||
670 | _acceleration = accel; | ||
671 | } | ||
672 | |||
673 | public override void AddForce(Vector3 force, bool pushforce) | ||
674 | { | ||
675 | if (force.IsFinite()) | ||
676 | { | ||
677 | lock (m_forcelist) | ||
678 | m_forcelist.Add(force); | ||
679 | |||
680 | m_taintforce = true; | ||
681 | } | ||
682 | else | ||
683 | { | ||
684 | m_log.Warn("[PHYSICS]: Got Invalid linear force vector from Scene in Object"); | ||
685 | } | ||
686 | //m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString()); | ||
687 | } | ||
688 | |||
689 | public override void AddAngularForce(Vector3 force, bool pushforce) | ||
690 | { | ||
691 | if (force.IsFinite()) | ||
692 | { | ||
693 | m_angularforcelist.Add(force); | ||
694 | m_taintaddangularforce = true; | ||
695 | } | ||
696 | else | ||
697 | { | ||
698 | m_log.Warn("[PHYSICS]: Got Invalid Angular force vector from Scene in Object"); | ||
699 | } | ||
700 | } | ||
701 | |||
702 | public override Vector3 RotationalVelocity | ||
703 | { | ||
704 | get | ||
705 | { | ||
706 | /* Vector3 pv = Vector3.Zero; | ||
707 | if (_zeroFlag) | ||
708 | return pv; | ||
709 | m_lastUpdateSent = false; | ||
710 | |||
711 | if (m_rotationalVelocity.ApproxEquals(pv, 0.2f)) | ||
712 | return pv; | ||
713 | */ | ||
714 | return m_rotationalVelocity; | ||
715 | } | ||
716 | set | ||
717 | { | ||
718 | if (value.IsFinite()) | ||
719 | { | ||
720 | m_rotationalVelocity = value; | ||
721 | } | ||
722 | else | ||
723 | { | ||
724 | m_log.Warn("[PHYSICS]: Got NaN RotationalVelocity in Object"); | ||
725 | } | ||
726 | } | ||
727 | } | ||
728 | |||
729 | public override void CrossingFailure() | ||
730 | { | ||
731 | m_crossingfailures++; | ||
732 | if (m_crossingfailures > _parent_scene.geomCrossingFailuresBeforeOutofbounds) | ||
733 | { | ||
734 | base.RaiseOutOfBounds(_position); | ||
735 | return; | ||
736 | } | ||
737 | else if (m_crossingfailures == _parent_scene.geomCrossingFailuresBeforeOutofbounds) | ||
738 | { | ||
739 | m_log.Warn("[PHYSICS]: Too many crossing failures for: " + m_primName); | ||
740 | } | ||
741 | } | ||
742 | |||
743 | public override float Buoyancy | ||
744 | { | ||
745 | get { return m_buoyancy; } | ||
746 | set { m_buoyancy = value; } | ||
747 | } | ||
748 | |||
749 | public override void link(PhysicsActor obj) | ||
750 | { | ||
751 | m_taintparent = obj; | ||
752 | } | ||
753 | |||
754 | public override void delink() | ||
755 | { | ||
756 | m_taintparent = null; | ||
757 | } | ||
758 | |||
759 | public override void LockAngularMotion(Vector3 axis) | ||
760 | { | ||
761 | // reverse the zero/non zero values for ODE. | ||
762 | if (axis.IsFinite()) | ||
763 | { | ||
764 | axis.X = (axis.X > 0) ? 1f : 0f; | ||
765 | axis.Y = (axis.Y > 0) ? 1f : 0f; | ||
766 | axis.Z = (axis.Z > 0) ? 1f : 0f; | ||
767 | m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z); | ||
768 | m_taintAngularLock = axis; | ||
769 | } | ||
770 | else | ||
771 | { | ||
772 | m_log.Warn("[PHYSICS]: Got NaN locking axis from Scene on Object"); | ||
773 | } | ||
774 | } | ||
775 | |||
776 | |||
325 | public void SetGeom(IntPtr geom) | 777 | public void SetGeom(IntPtr geom) |
326 | { | 778 | { |
327 | prev_geom = prim_geom; | 779 | prev_geom = prim_geom; |
@@ -345,8 +797,6 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
345 | //m_log.Warn("Setting Geom to: " + prim_geom); | 797 | //m_log.Warn("Setting Geom to: " + prim_geom); |
346 | } | 798 | } |
347 | 799 | ||
348 | |||
349 | |||
350 | public void enableBodySoft() | 800 | public void enableBodySoft() |
351 | { | 801 | { |
352 | if (!childPrim) | 802 | if (!childPrim) |
@@ -354,8 +804,8 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
354 | if (m_isphysical && Body != IntPtr.Zero) | 804 | if (m_isphysical && Body != IntPtr.Zero) |
355 | { | 805 | { |
356 | d.BodyEnable(Body); | 806 | d.BodyEnable(Body); |
357 | if (m_vehicle.Type != Vehicle.TYPE_NONE) | 807 | if (m_type != Vehicle.TYPE_NONE) |
358 | m_vehicle.Enable(Body, _parent_scene); | 808 | Enable(Body, _parent_scene); |
359 | } | 809 | } |
360 | 810 | ||
361 | m_disabled = false; | 811 | m_disabled = false; |
@@ -406,14 +856,9 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
406 | m_collisionscore = 0; | 856 | m_collisionscore = 0; |
407 | m_disabled = false; | 857 | m_disabled = false; |
408 | 858 | ||
409 | // The body doesn't already have a finite rotation mode set here | 859 | if (m_type != Vehicle.TYPE_NONE) |
410 | /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0.0f)) && _parent == null) | ||
411 | { | ||
412 | createAMotor(m_angularlock); | ||
413 | } */ | ||
414 | if (m_vehicle.Type != Vehicle.TYPE_NONE) | ||
415 | { | 860 | { |
416 | m_vehicle.Enable(Body, _parent_scene); | 861 | Enable(Body, _parent_scene); |
417 | } | 862 | } |
418 | 863 | ||
419 | _parent_scene.addActivePrim(this); | 864 | _parent_scene.addActivePrim(this); |
@@ -894,9 +1339,8 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
894 | // } | 1339 | // } |
895 | } | 1340 | } |
896 | 1341 | ||
897 | public void ProcessTaints(float timestep) | 1342 | public void ProcessTaints(float timestep) //============================================================================= |
898 | { | 1343 | { |
899 | //Console.WriteLine("ProcessTaints for " + m_primName ); | ||
900 | if (m_taintadd) | 1344 | if (m_taintadd) |
901 | { | 1345 | { |
902 | changeadd(timestep); | 1346 | changeadd(timestep); |
@@ -985,30 +1429,6 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
985 | { | 1429 | { |
986 | //Console.WriteLine("Alock changed to {0}", m_taintAngularLock); | 1430 | //Console.WriteLine("Alock changed to {0}", m_taintAngularLock); |
987 | m_angularlock = m_taintAngularLock; | 1431 | m_angularlock = m_taintAngularLock; |
988 | m_vehicle.SetAngularLock(m_angularlock); | ||
989 | |||
990 | |||
991 | /* | ||
992 | if (!m_taintAngularLock.ApproxEquals(Vector3.One, 0f)) | ||
993 | { | ||
994 | //d.BodySetFiniteRotationMode(Body, 0); | ||
995 | //d.BodySetFiniteRotationAxis(Body,m_taintAngularLock.X,m_taintAngularLock.Y,m_taintAngularLock.Z); | ||
996 | createAMotor(m_taintAngularLock); | ||
997 | } | ||
998 | else | ||
999 | { | ||
1000 | if (Amotor != IntPtr.Zero) | ||
1001 | { | ||
1002 | d.JointDestroy(Amotor); | ||
1003 | Amotor = IntPtr.Zero; | ||
1004 | } | ||
1005 | } | ||
1006 | } | ||
1007 | } | ||
1008 | // Store this for later in case we get turned into a separate body | ||
1009 | m_angularlock = m_taintAngularLock; | ||
1010 | m_vehicle.SetAngularLock(m_angularlock); | ||
1011 | } */ | ||
1012 | } | 1432 | } |
1013 | } | 1433 | } |
1014 | 1434 | ||
@@ -1151,11 +1571,6 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1151 | prm.m_collisionscore = 0; | 1571 | prm.m_collisionscore = 0; |
1152 | prm.m_disabled = false; | 1572 | prm.m_disabled = false; |
1153 | 1573 | ||
1154 | // The body doesn't already have a finite rotation mode set here | ||
1155 | /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null) | ||
1156 | { | ||
1157 | prm.createAMotor(m_angularlock); | ||
1158 | } */ | ||
1159 | prm.Body = Body; | 1574 | prm.Body = Body; |
1160 | _parent_scene.addActivePrim(prm); | 1575 | _parent_scene.addActivePrim(prm); |
1161 | } | 1576 | } |
@@ -1194,13 +1609,8 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1194 | m_collisionscore = 0; | 1609 | m_collisionscore = 0; |
1195 | m_disabled = false; | 1610 | m_disabled = false; |
1196 | 1611 | ||
1197 | // The body doesn't already have a finite rotation mode set here | ||
1198 | /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null) | ||
1199 | { | ||
1200 | createAMotor(m_angularlock); | ||
1201 | } */ | ||
1202 | d.BodySetPosition(Body, Position.X, Position.Y, Position.Z); | 1612 | d.BodySetPosition(Body, Position.X, Position.Y, Position.Z); |
1203 | if (m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Enable(Body, _parent_scene); | 1613 | if (m_type != Vehicle.TYPE_NONE) Enable(Body, _parent_scene); |
1204 | _parent_scene.addActivePrim(this); | 1614 | _parent_scene.addActivePrim(this); |
1205 | } | 1615 | } |
1206 | } | 1616 | } |
@@ -1267,17 +1677,12 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1267 | //Console.WriteLine("childrenPrim.Remove " + odePrim); | 1677 | //Console.WriteLine("childrenPrim.Remove " + odePrim); |
1268 | childrenPrim.Remove(odePrim); | 1678 | childrenPrim.Remove(odePrim); |
1269 | } | 1679 | } |
1270 | |||
1271 | |||
1272 | |||
1273 | 1680 | ||
1274 | if (Body != IntPtr.Zero) | 1681 | if (Body != IntPtr.Zero) |
1275 | { | 1682 | { |
1276 | _parent_scene.remActivePrim(this); | 1683 | _parent_scene.remActivePrim(this); |
1277 | } | 1684 | } |
1278 | 1685 | ||
1279 | |||
1280 | |||
1281 | lock (childrenPrim) | 1686 | lock (childrenPrim) |
1282 | { | 1687 | { |
1283 | foreach (OdePrim prm in childrenPrim) | 1688 | foreach (OdePrim prm in childrenPrim) |
@@ -1286,8 +1691,6 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1286 | ParentPrim(prm); | 1691 | ParentPrim(prm); |
1287 | } | 1692 | } |
1288 | } | 1693 | } |
1289 | |||
1290 | |||
1291 | } | 1694 | } |
1292 | 1695 | ||
1293 | private void changeSelectedStatus(float timestep) | 1696 | private void changeSelectedStatus(float timestep) |
@@ -1515,17 +1918,22 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1515 | 1918 | ||
1516 | public void changemove(float timestep) | 1919 | public void changemove(float timestep) |
1517 | { | 1920 | { |
1921 | //Console.WriteLine("changemove for {0}", m_primName ); | ||
1922 | |||
1518 | if (m_isphysical) | 1923 | if (m_isphysical) |
1519 | { | 1924 | { |
1520 | 1925 | //Console.WriteLine("phys {0} {1} {2}", m_disabled, m_taintremove, childPrim); | |
1521 | if (!m_disabled && !m_taintremove && !childPrim) | 1926 | // if (!m_disabled && !m_taintremove && !childPrim) After one edit m_disabled is sometimes set, disabling further edits! |
1927 | if (!m_taintremove && !childPrim) | ||
1522 | { | 1928 | { |
1929 | //Console.WriteLine("physOK"); | ||
1523 | if (Body == IntPtr.Zero) | 1930 | if (Body == IntPtr.Zero) |
1524 | enableBody(); | 1931 | enableBody(); |
1525 | //Prim auto disable after 20 frames, | 1932 | //Prim auto disable after 20 frames, |
1526 | //if you move it, re-enable the prim manually. | 1933 | //if you move it, re-enable the prim manually. |
1527 | if (_parent != null) | 1934 | if (_parent != null) |
1528 | { | 1935 | { |
1936 | //Console.WriteLine("physChild"); | ||
1529 | if (m_linkJoint != IntPtr.Zero) | 1937 | if (m_linkJoint != IntPtr.Zero) |
1530 | { | 1938 | { |
1531 | d.JointDestroy(m_linkJoint); | 1939 | d.JointDestroy(m_linkJoint); |
@@ -1534,6 +1942,7 @@ namespace OpenSim.Region.Physics.OdePlugin | |||
1534 | } | 1942 | } |
1535 | if (Body != IntPtr.Zero) | 1943 | if (Body != IntPtr.Zero) |
1536 | { | 1944 | { |
1945 | //Console.WriteLine("physNotIPZ"); | ||
1537 | d.BodySetPosition(Body, _position.X, _position.Y, _position.Z); | 1946 | d.BodySetPosition(Body, _position.X, _position.Y, _position.Z); |
1538 | 1947 | ||
1539 | if (_parent != null) | 1948 | if (_parent != null) |
@@ -1549,9 +1958,9 @@ Console.WriteLine(" JointCreateFixed"); | |||
1549 | } | 1958 | } |
1550 | } | 1959 | } |
1551 | d.BodyEnable(Body); | 1960 | d.BodyEnable(Body); |
1552 | if (m_vehicle.Type != Vehicle.TYPE_NONE) | 1961 | if (m_type != Vehicle.TYPE_NONE) |
1553 | { | 1962 | { |
1554 | m_vehicle.Enable(Body, _parent_scene); | 1963 | Enable(Body, _parent_scene); |
1555 | } | 1964 | } |
1556 | } | 1965 | } |
1557 | else | 1966 | else |
@@ -1566,6 +1975,7 @@ Console.WriteLine(" JointCreateFixed"); | |||
1566 | } | 1975 | } |
1567 | else | 1976 | else |
1568 | { | 1977 | { |
1978 | //Console.WriteLine("NONphys"); | ||
1569 | // string primScenAvatarIn = _parent_scene.whichspaceamIin(_position); | 1979 | // string primScenAvatarIn = _parent_scene.whichspaceamIin(_position); |
1570 | // int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position); | 1980 | // int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position); |
1571 | _parent_scene.waitForSpaceUnlock(m_targetSpace); | 1981 | _parent_scene.waitForSpaceUnlock(m_targetSpace); |
@@ -1589,308 +1999,6 @@ Console.WriteLine(" JointCreateFixed"); | |||
1589 | m_taintposition = _position; | 1999 | m_taintposition = _position; |
1590 | } | 2000 | } |
1591 | 2001 | ||
1592 | public void Move(float timestep) | ||
1593 | { | ||
1594 | float fx = 0; | ||
1595 | float fy = 0; | ||
1596 | float fz = 0; | ||
1597 | |||
1598 | frcount++; // used to limit debug comment output | ||
1599 | if (frcount > 100) | ||
1600 | frcount = 0; | ||
1601 | |||
1602 | if (IsPhysical && (Body != IntPtr.Zero) && !m_isSelected && !childPrim) // KF: Only move root prims. | ||
1603 | { | ||
1604 | //if(frcount == 0) Console.WriteLine("Move " + m_primName + " VTyp " + m_vehicle.Type + | ||
1605 | // " usePID=" + m_usePID + " seHover=" + m_useHoverPID + " useAPID=" + m_useAPID); | ||
1606 | if (m_vehicle.Type != Vehicle.TYPE_NONE) | ||
1607 | { | ||
1608 | // 'VEHICLES' are dealt with in ODEDynamics.cs | ||
1609 | m_vehicle.Step(timestep, _parent_scene); | ||
1610 | } | ||
1611 | else | ||
1612 | { | ||
1613 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); // KF add 161009 | ||
1614 | // NON-'VEHICLES' are dealt with here | ||
1615 | // m_angularlock = <1,1,1> means no lock. a 0 on axis means locked. | ||
1616 | |||
1617 | // NB this may be wrong - may lock global axis! Should be LOCAL axis! | ||
1618 | if (d.BodyIsEnabled(Body) && !m_angularlock.ApproxEquals(Vector3.One, 0.003f)) | ||
1619 | { | ||
1620 | d.Vector3 avel2 = d.BodyGetAngularVel(Body); | ||
1621 | if (m_angularlock.X == 0) | ||
1622 | avel2.X = 0; | ||
1623 | if (m_angularlock.Y == 0) | ||
1624 | avel2.Y = 0; | ||
1625 | if (m_angularlock.Z == 0) | ||
1626 | avel2.Z = 0; | ||
1627 | d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z); | ||
1628 | } | ||
1629 | //float PID_P = 900.0f; | ||
1630 | |||
1631 | float m_mass = CalculateMass(); | ||
1632 | |||
1633 | // fz = 0f; | ||
1634 | //m_log.Info(m_collisionFlags.ToString()); | ||
1635 | |||
1636 | |||
1637 | //KF: m_buoyancy is set by llSetBuoyancy() and is for non-vehicle. | ||
1638 | // m_buoyancy: (unlimited value) <0=Falls fast; 0=1g; 1=0g; >1 = floats up | ||
1639 | // NB Prims in ODE are no subject to global gravity | ||
1640 | fz = _parent_scene.gravityz * (1.0f - m_buoyancy) * m_mass; // force = acceleration * mass | ||
1641 | |||
1642 | if (m_usePID) | ||
1643 | { | ||
1644 | //if(frcount == 0) Console.WriteLine("PID " + m_primName); | ||
1645 | // KF - this is for object MoveToTarget. | ||
1646 | |||
1647 | //if (!d.BodyIsEnabled(Body)) | ||
1648 | //d.BodySetForce(Body, 0f, 0f, 0f); | ||
1649 | |||
1650 | // no lock; for now it's only called from within Simulate() | ||
1651 | |||
1652 | // If the PID Controller isn't active then we set our force | ||
1653 | // calculating base velocity to the current position | ||
1654 | |||
1655 | if ((m_PIDTau < 1) && (m_PIDTau != 0)) | ||
1656 | { | ||
1657 | //PID_G = PID_G / m_PIDTau; | ||
1658 | m_PIDTau = 1; | ||
1659 | } | ||
1660 | |||
1661 | if ((PID_G - m_PIDTau) <= 0) | ||
1662 | { | ||
1663 | PID_G = m_PIDTau + 1; | ||
1664 | } | ||
1665 | //PidStatus = true; | ||
1666 | |||
1667 | // PhysicsVector vec = new PhysicsVector(); | ||
1668 | d.Vector3 vel = d.BodyGetLinearVel(Body); | ||
1669 | |||
1670 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
1671 | _target_velocity = | ||
1672 | new Vector3( | ||
1673 | (m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep), | ||
1674 | (m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep), | ||
1675 | (m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep) | ||
1676 | ); | ||
1677 | |||
1678 | // if velocity is zero, use position control; otherwise, velocity control | ||
1679 | |||
1680 | if (_target_velocity.ApproxEquals(Vector3.Zero,0.1f)) | ||
1681 | { | ||
1682 | // keep track of where we stopped. No more slippin' & slidin' | ||
1683 | |||
1684 | // We only want to deactivate the PID Controller if we think we want to have our surrogate | ||
1685 | // react to the physics scene by moving it's position. | ||
1686 | // Avatar to Avatar collisions | ||
1687 | // Prim to avatar collisions | ||
1688 | |||
1689 | //fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2); | ||
1690 | //fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2); | ||
1691 | //fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P; | ||
1692 | d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z); | ||
1693 | d.BodySetLinearVel(Body, 0, 0, 0); | ||
1694 | d.BodyAddForce(Body, 0, 0, fz); | ||
1695 | return; | ||
1696 | } | ||
1697 | else | ||
1698 | { | ||
1699 | _zeroFlag = false; | ||
1700 | |||
1701 | // We're flying and colliding with something | ||
1702 | fx = ((_target_velocity.X) - vel.X) * (PID_D); | ||
1703 | fy = ((_target_velocity.Y) - vel.Y) * (PID_D); | ||
1704 | |||
1705 | // vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P; | ||
1706 | |||
1707 | fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass); | ||
1708 | } | ||
1709 | } // end if (m_usePID) | ||
1710 | |||
1711 | // Hover PID Controller needs to be mutually exlusive to MoveTo PID controller | ||
1712 | if (m_useHoverPID && !m_usePID) | ||
1713 | { | ||
1714 | //Console.WriteLine("Hover " + m_primName); | ||
1715 | |||
1716 | // If we're using the PID controller, then we have no gravity | ||
1717 | fz = (-1 * _parent_scene.gravityz) * m_mass; | ||
1718 | |||
1719 | // no lock; for now it's only called from within Simulate() | ||
1720 | |||
1721 | // If the PID Controller isn't active then we set our force | ||
1722 | // calculating base velocity to the current position | ||
1723 | |||
1724 | if ((m_PIDTau < 1)) | ||
1725 | { | ||
1726 | PID_G = PID_G / m_PIDTau; | ||
1727 | } | ||
1728 | |||
1729 | if ((PID_G - m_PIDTau) <= 0) | ||
1730 | { | ||
1731 | PID_G = m_PIDTau + 1; | ||
1732 | } | ||
1733 | |||
1734 | |||
1735 | // Where are we, and where are we headed? | ||
1736 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
1737 | d.Vector3 vel = d.BodyGetLinearVel(Body); | ||
1738 | |||
1739 | |||
1740 | // Non-Vehicles have a limited set of Hover options. | ||
1741 | // determine what our target height really is based on HoverType | ||
1742 | switch (m_PIDHoverType) | ||
1743 | { | ||
1744 | case PIDHoverType.Ground: | ||
1745 | m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
1746 | m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight; | ||
1747 | break; | ||
1748 | case PIDHoverType.GroundAndWater: | ||
1749 | m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
1750 | m_waterHeight = _parent_scene.GetWaterLevel(); | ||
1751 | if (m_groundHeight > m_waterHeight) | ||
1752 | { | ||
1753 | m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight; | ||
1754 | } | ||
1755 | else | ||
1756 | { | ||
1757 | m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight; | ||
1758 | } | ||
1759 | break; | ||
1760 | |||
1761 | } // end switch (m_PIDHoverType) | ||
1762 | |||
1763 | |||
1764 | _target_velocity = | ||
1765 | new Vector3(0.0f, 0.0f, | ||
1766 | (m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep) | ||
1767 | ); | ||
1768 | |||
1769 | // if velocity is zero, use position control; otherwise, velocity control | ||
1770 | |||
1771 | if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f)) | ||
1772 | { | ||
1773 | // keep track of where we stopped. No more slippin' & slidin' | ||
1774 | |||
1775 | // We only want to deactivate the PID Controller if we think we want to have our surrogate | ||
1776 | // react to the physics scene by moving it's position. | ||
1777 | // Avatar to Avatar collisions | ||
1778 | // Prim to avatar collisions | ||
1779 | |||
1780 | d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight); | ||
1781 | d.BodySetLinearVel(Body, vel.X, vel.Y, 0); | ||
1782 | d.BodyAddForce(Body, 0, 0, fz); | ||
1783 | //KF this prevents furthur motions return; | ||
1784 | } | ||
1785 | else | ||
1786 | { | ||
1787 | _zeroFlag = false; | ||
1788 | |||
1789 | // We're flying and colliding with something | ||
1790 | fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass); | ||
1791 | } | ||
1792 | } // end m_useHoverPID && !m_usePID | ||
1793 | |||
1794 | if (m_useAPID) | ||
1795 | { | ||
1796 | // RotLookAt, apparently overrides all other rotation sources. Inputs: | ||
1797 | // Quaternion m_APIDTarget | ||
1798 | // float m_APIDStrength // From SL experiments, this is the time to get there | ||
1799 | // float m_APIDDamping // From SL experiments, this is damping, 1.0 = damped, 0.1 = wobbly | ||
1800 | // Also in SL the mass of the object has no effect on time to get there. | ||
1801 | // Factors: | ||
1802 | //if(frcount == 0) Console.WriteLine("APID "); | ||
1803 | // get present body rotation | ||
1804 | float limit = 1.0f; | ||
1805 | float scaler = 50f; // adjusts damping time | ||
1806 | float RLAservo = 0f; | ||
1807 | |||
1808 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
1809 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); | ||
1810 | Quaternion rot_diff = Quaternion.Inverse(rotq) * m_APIDTarget; | ||
1811 | float diff_angle; | ||
1812 | Vector3 diff_axis; | ||
1813 | rot_diff.GetAxisAngle(out diff_axis, out diff_angle); | ||
1814 | diff_axis.Normalize(); | ||
1815 | if(diff_angle > 0.01f) // diff_angle is always +ve | ||
1816 | { | ||
1817 | // PhysicsVector rotforce = new PhysicsVector(diff_axis.X, diff_axis.Y, diff_axis.Z); | ||
1818 | Vector3 rotforce = new Vector3(diff_axis.X, diff_axis.Y, diff_axis.Z); | ||
1819 | rotforce = rotforce * rotq; | ||
1820 | if(diff_angle > limit) diff_angle = limit; // cap the rotate rate | ||
1821 | // RLAservo = timestep / m_APIDStrength * m_mass * scaler; | ||
1822 | // rotforce = rotforce * RLAservo * diff_angle ; | ||
1823 | // d.BodyAddRelTorque(Body, rotforce.X, rotforce.Y, rotforce.Z); | ||
1824 | RLAservo = timestep / m_APIDStrength * scaler; | ||
1825 | rotforce = rotforce * RLAservo * diff_angle ; | ||
1826 | |||
1827 | if (m_angularlock.X == 0) | ||
1828 | rotforce.X = 0; | ||
1829 | if (m_angularlock.Y == 0) | ||
1830 | rotforce.Y = 0; | ||
1831 | if (m_angularlock.Z == 0) | ||
1832 | rotforce.Z = 0; | ||
1833 | |||
1834 | |||
1835 | |||
1836 | |||
1837 | d.BodySetAngularVel (Body, rotforce.X, rotforce.Y, rotforce.Z); | ||
1838 | //Console.WriteLine("axis= " + diff_axis + " angle= " + diff_angle + "servo= " + RLAservo); | ||
1839 | } | ||
1840 | //if(frcount == 0) Console.WriteLine("mass= " + m_mass + " servo= " + RLAservo + " angle= " + diff_angle); | ||
1841 | } // end m_useAPID | ||
1842 | |||
1843 | fx *= m_mass; | ||
1844 | fy *= m_mass; | ||
1845 | //fz *= m_mass; | ||
1846 | |||
1847 | fx += m_force.X; | ||
1848 | fy += m_force.Y; | ||
1849 | fz += m_force.Z; | ||
1850 | |||
1851 | //m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString()); | ||
1852 | if (fx != 0 || fy != 0 || fz != 0) | ||
1853 | { | ||
1854 | //m_taintdisable = true; | ||
1855 | //base.RaiseOutOfBounds(Position); | ||
1856 | //d.BodySetLinearVel(Body, fx, fy, 0f); | ||
1857 | if (!d.BodyIsEnabled(Body)) | ||
1858 | { | ||
1859 | // A physical body at rest on a surface will auto-disable after a while, | ||
1860 | // this appears to re-enable it incase the surface it is upon vanishes, | ||
1861 | // and the body should fall again. | ||
1862 | d.BodySetLinearVel(Body, 0f, 0f, 0f); | ||
1863 | d.BodySetForce(Body, 0, 0, 0); | ||
1864 | enableBodySoft(); | ||
1865 | } | ||
1866 | |||
1867 | // 35x10 = 350n times the mass per second applied maximum. | ||
1868 | float nmax = 35f * m_mass; | ||
1869 | float nmin = -35f * m_mass; | ||
1870 | |||
1871 | |||
1872 | if (fx > nmax) | ||
1873 | fx = nmax; | ||
1874 | if (fx < nmin) | ||
1875 | fx = nmin; | ||
1876 | if (fy > nmax) | ||
1877 | fy = nmax; | ||
1878 | if (fy < nmin) | ||
1879 | fy = nmin; | ||
1880 | d.BodyAddForce(Body, fx, fy, fz); | ||
1881 | //Console.WriteLine("AddForce " + fx + "," + fy + "," + fz); | ||
1882 | } | ||
1883 | } | ||
1884 | } | ||
1885 | else | ||
1886 | { // is not physical, or is not a body or is selected | ||
1887 | // _zeroPosition = d.BodyGetPosition(Body); | ||
1888 | return; | ||
1889 | //Console.WriteLine("Nothing " + m_primName); | ||
1890 | |||
1891 | } | ||
1892 | } | ||
1893 | |||
1894 | 2002 | ||
1895 | 2003 | ||
1896 | public void rotate(float timestep) | 2004 | public void rotate(float timestep) |
@@ -1904,11 +2012,6 @@ Console.WriteLine(" JointCreateFixed"); | |||
1904 | { | 2012 | { |
1905 | // KF: If this is a root prim do BodySet | 2013 | // KF: If this is a root prim do BodySet |
1906 | d.BodySetQuaternion(Body, ref myrot); | 2014 | d.BodySetQuaternion(Body, ref myrot); |
1907 | /* ### if (m_isphysical) | ||
1908 | { | ||
1909 | if (!m_angularlock.ApproxEquals(Vector3.One, 0f)) | ||
1910 | createAMotor(m_angularlock); | ||
1911 | } */ | ||
1912 | } | 2015 | } |
1913 | else | 2016 | else |
1914 | { | 2017 | { |
@@ -2319,385 +2422,9 @@ Console.WriteLine(" JointCreateFixed"); | |||
2319 | m_taintVelocity = Vector3.Zero; | 2422 | m_taintVelocity = Vector3.Zero; |
2320 | } | 2423 | } |
2321 | 2424 | ||
2322 | public override bool IsPhysical | ||
2323 | { | ||
2324 | get { return m_isphysical; } | ||
2325 | set | ||
2326 | { | ||
2327 | m_isphysical = value; | ||
2328 | if (!m_isphysical) | ||
2329 | { // Zero the remembered last velocity | ||
2330 | m_lastVelocity = Vector3.Zero; | ||
2331 | if (m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Halt(); | ||
2332 | } | ||
2333 | } | ||
2334 | } | ||
2335 | |||
2336 | public void setPrimForRemoval() | ||
2337 | { | ||
2338 | m_taintremove = true; | ||
2339 | } | ||
2340 | |||
2341 | public override bool Flying | ||
2342 | { | ||
2343 | // no flying prims for you | ||
2344 | get { return false; } | ||
2345 | set { } | ||
2346 | } | ||
2347 | |||
2348 | public override bool IsColliding | ||
2349 | { | ||
2350 | get { return iscolliding; } | ||
2351 | set { iscolliding = value; } | ||
2352 | } | ||
2353 | |||
2354 | public override bool CollidingGround | ||
2355 | { | ||
2356 | get { return false; } | ||
2357 | set { return; } | ||
2358 | } | ||
2359 | |||
2360 | public override bool CollidingObj | ||
2361 | { | ||
2362 | get { return false; } | ||
2363 | set { return; } | ||
2364 | } | ||
2365 | |||
2366 | public override bool ThrottleUpdates | ||
2367 | { | ||
2368 | get { return m_throttleUpdates; } | ||
2369 | set { m_throttleUpdates = value; } | ||
2370 | } | ||
2371 | |||
2372 | public override bool Stopped | ||
2373 | { | ||
2374 | get { return _zeroFlag; } | ||
2375 | } | ||
2376 | |||
2377 | public override Vector3 Position | ||
2378 | { | ||
2379 | get { return _position; } | ||
2380 | |||
2381 | set { _position = value; | ||
2382 | //m_log.Info("[PHYSICS]: " + _position.ToString()); | ||
2383 | } | ||
2384 | } | ||
2385 | |||
2386 | public override Vector3 Size | ||
2387 | { | ||
2388 | get { return _size; } | ||
2389 | set | ||
2390 | { | ||
2391 | if (value.IsFinite()) | ||
2392 | { | ||
2393 | _size = value; | ||
2394 | } | ||
2395 | else | ||
2396 | { | ||
2397 | m_log.Warn("[PHYSICS]: Got NaN Size on object"); | ||
2398 | } | ||
2399 | } | ||
2400 | } | ||
2401 | |||
2402 | public override float Mass | ||
2403 | { | ||
2404 | get { return CalculateMass(); } | ||
2405 | } | ||
2406 | |||
2407 | public override Vector3 Force | ||
2408 | { | ||
2409 | //get { return Vector3.Zero; } | ||
2410 | get { return m_force; } | ||
2411 | set | ||
2412 | { | ||
2413 | if (value.IsFinite()) | ||
2414 | { | ||
2415 | m_force = value; | ||
2416 | } | ||
2417 | else | ||
2418 | { | ||
2419 | m_log.Warn("[PHYSICS]: NaN in Force Applied to an Object"); | ||
2420 | } | ||
2421 | } | ||
2422 | } | ||
2423 | |||
2424 | public override int VehicleType | ||
2425 | { | ||
2426 | get { return (int)m_vehicle.Type; } | ||
2427 | set { m_vehicle.ProcessTypeChange((Vehicle)value); } | ||
2428 | } | ||
2429 | |||
2430 | public override void VehicleFloatParam(int param, float value) | ||
2431 | { | ||
2432 | m_vehicle.ProcessFloatVehicleParam((Vehicle) param, value); | ||
2433 | } | ||
2434 | |||
2435 | public override void VehicleVectorParam(int param, Vector3 value) | ||
2436 | { | ||
2437 | m_vehicle.ProcessVectorVehicleParam((Vehicle) param, value); | ||
2438 | } | ||
2439 | |||
2440 | public override void VehicleRotationParam(int param, Quaternion rotation) | ||
2441 | { | ||
2442 | m_vehicle.ProcessRotationVehicleParam((Vehicle) param, rotation); | ||
2443 | } | ||
2444 | |||
2445 | public override void VehicleFlagsSet(int flags) | ||
2446 | { | ||
2447 | m_vehicle.ProcessFlagsVehicleSet(flags); | ||
2448 | } | ||
2449 | |||
2450 | public override void VehicleFlagsRemove(int flags) | ||
2451 | { | ||
2452 | m_vehicle.ProcessFlagsVehicleRemove(flags); | ||
2453 | } | ||
2454 | |||
2455 | public override void SetVolumeDetect(int param) | ||
2456 | { | ||
2457 | lock (_parent_scene.OdeLock) | ||
2458 | { | ||
2459 | m_isVolumeDetect = (param!=0); | ||
2460 | } | ||
2461 | } | ||
2462 | |||
2463 | public override Vector3 CenterOfMass | ||
2464 | { | ||
2465 | get { return Vector3.Zero; } | ||
2466 | } | ||
2467 | |||
2468 | public override Vector3 GeometricCenter | ||
2469 | { | ||
2470 | get { return Vector3.Zero; } | ||
2471 | } | ||
2472 | |||
2473 | public override PrimitiveBaseShape Shape | ||
2474 | { | ||
2475 | set | ||
2476 | { | ||
2477 | _pbs = value; | ||
2478 | m_taintshape = true; | ||
2479 | } | ||
2480 | } | ||
2481 | |||
2482 | public override Vector3 Velocity | ||
2483 | { | ||
2484 | get | ||
2485 | { | ||
2486 | // Averate previous velocity with the new one so | ||
2487 | // client object interpolation works a 'little' better | ||
2488 | if (_zeroFlag) | ||
2489 | return Vector3.Zero; | ||
2490 | |||
2491 | Vector3 returnVelocity = Vector3.Zero; | ||
2492 | returnVelocity.X = (m_lastVelocity.X + _velocity.X)/2; | ||
2493 | returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y)/2; | ||
2494 | returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z)/2; | ||
2495 | return returnVelocity; | ||
2496 | } | ||
2497 | set | ||
2498 | { | ||
2499 | if (value.IsFinite()) | ||
2500 | { | ||
2501 | _velocity = value; | ||
2502 | |||
2503 | m_taintVelocity = value; | ||
2504 | _parent_scene.AddPhysicsActorTaint(this); | ||
2505 | } | ||
2506 | else | ||
2507 | { | ||
2508 | m_log.Warn("[PHYSICS]: Got NaN Velocity in Object"); | ||
2509 | } | ||
2510 | |||
2511 | } | ||
2512 | } | ||
2513 | |||
2514 | public override Vector3 Torque | ||
2515 | { | ||
2516 | get | ||
2517 | { | ||
2518 | if (!m_isphysical || Body == IntPtr.Zero) | ||
2519 | return Vector3.Zero; | ||
2520 | |||
2521 | return _torque; | ||
2522 | } | ||
2523 | |||
2524 | set | ||
2525 | { | ||
2526 | if (value.IsFinite()) | ||
2527 | { | ||
2528 | m_taintTorque = value; | ||
2529 | _parent_scene.AddPhysicsActorTaint(this); | ||
2530 | } | ||
2531 | else | ||
2532 | { | ||
2533 | m_log.Warn("[PHYSICS]: Got NaN Torque in Object"); | ||
2534 | } | ||
2535 | } | ||
2536 | } | ||
2537 | /* | ||
2538 | public Vector3 AngularLock | ||
2539 | { | ||
2540 | get { return m_angularlock; } | ||
2541 | set { } | ||
2542 | } | ||
2543 | |||
2544 | */ | ||
2545 | public override float CollisionScore | ||
2546 | { | ||
2547 | get { return m_collisionscore; } | ||
2548 | set { m_collisionscore = value; } | ||
2549 | } | ||
2550 | |||
2551 | public override bool Kinematic | ||
2552 | { | ||
2553 | get { return false; } | ||
2554 | set { } | ||
2555 | } | ||
2556 | |||
2557 | public override Quaternion Orientation | ||
2558 | { | ||
2559 | get { return _orientation; } | ||
2560 | set | ||
2561 | { | ||
2562 | if (QuaternionIsFinite(value)) | ||
2563 | { | ||
2564 | _orientation = value; | ||
2565 | } | ||
2566 | else | ||
2567 | m_log.Warn("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object"); | ||
2568 | |||
2569 | } | ||
2570 | } | ||
2571 | |||
2572 | internal static bool QuaternionIsFinite(Quaternion q) | ||
2573 | { | ||
2574 | if (Single.IsNaN(q.X) || Single.IsInfinity(q.X)) | ||
2575 | return false; | ||
2576 | if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y)) | ||
2577 | return false; | ||
2578 | if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z)) | ||
2579 | return false; | ||
2580 | if (Single.IsNaN(q.W) || Single.IsInfinity(q.W)) | ||
2581 | return false; | ||
2582 | return true; | ||
2583 | } | ||
2584 | |||
2585 | public override Vector3 Acceleration | ||
2586 | { | ||
2587 | get { return _acceleration; } | ||
2588 | } | ||
2589 | |||
2590 | |||
2591 | public void SetAcceleration(Vector3 accel) | ||
2592 | { | ||
2593 | _acceleration = accel; | ||
2594 | } | ||
2595 | |||
2596 | public override void AddForce(Vector3 force, bool pushforce) | ||
2597 | { | ||
2598 | if (force.IsFinite()) | ||
2599 | { | ||
2600 | lock (m_forcelist) | ||
2601 | m_forcelist.Add(force); | ||
2602 | |||
2603 | m_taintforce = true; | ||
2604 | } | ||
2605 | else | ||
2606 | { | ||
2607 | m_log.Warn("[PHYSICS]: Got Invalid linear force vector from Scene in Object"); | ||
2608 | } | ||
2609 | //m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString()); | ||
2610 | } | ||
2611 | |||
2612 | public override void AddAngularForce(Vector3 force, bool pushforce) | ||
2613 | { | ||
2614 | if (force.IsFinite()) | ||
2615 | { | ||
2616 | m_angularforcelist.Add(force); | ||
2617 | m_taintaddangularforce = true; | ||
2618 | } | ||
2619 | else | ||
2620 | { | ||
2621 | m_log.Warn("[PHYSICS]: Got Invalid Angular force vector from Scene in Object"); | ||
2622 | } | ||
2623 | } | ||
2624 | |||
2625 | public override Vector3 RotationalVelocity | ||
2626 | { | ||
2627 | get | ||
2628 | { | ||
2629 | /* Vector3 pv = Vector3.Zero; | ||
2630 | if (_zeroFlag) | ||
2631 | return pv; | ||
2632 | m_lastUpdateSent = false; | ||
2633 | |||
2634 | if (m_rotationalVelocity.ApproxEquals(pv, 0.2f)) | ||
2635 | return pv; | ||
2636 | */ | ||
2637 | return m_rotationalVelocity; | ||
2638 | } | ||
2639 | set | ||
2640 | { | ||
2641 | if (value.IsFinite()) | ||
2642 | { | ||
2643 | m_rotationalVelocity = value; | ||
2644 | } | ||
2645 | else | ||
2646 | { | ||
2647 | m_log.Warn("[PHYSICS]: Got NaN RotationalVelocity in Object"); | ||
2648 | } | ||
2649 | } | ||
2650 | } | ||
2651 | |||
2652 | public override void CrossingFailure() | ||
2653 | { | ||
2654 | m_crossingfailures++; | ||
2655 | if (m_crossingfailures > _parent_scene.geomCrossingFailuresBeforeOutofbounds) | ||
2656 | { | ||
2657 | base.RaiseOutOfBounds(_position); | ||
2658 | return; | ||
2659 | } | ||
2660 | else if (m_crossingfailures == _parent_scene.geomCrossingFailuresBeforeOutofbounds) | ||
2661 | { | ||
2662 | m_log.Warn("[PHYSICS]: Too many crossing failures for: " + m_primName); | ||
2663 | } | ||
2664 | } | ||
2665 | |||
2666 | public override float Buoyancy | ||
2667 | { | ||
2668 | get { return m_buoyancy; } | ||
2669 | set { m_buoyancy = value; } | ||
2670 | } | ||
2671 | |||
2672 | public override void link(PhysicsActor obj) | ||
2673 | { | ||
2674 | m_taintparent = obj; | ||
2675 | } | ||
2676 | |||
2677 | public override void delink() | ||
2678 | { | ||
2679 | m_taintparent = null; | ||
2680 | } | ||
2681 | |||
2682 | public override void LockAngularMotion(Vector3 axis) | ||
2683 | { | ||
2684 | // reverse the zero/non zero values for ODE. | ||
2685 | if (axis.IsFinite()) | ||
2686 | { | ||
2687 | axis.X = (axis.X > 0) ? 1f : 0f; | ||
2688 | axis.Y = (axis.Y > 0) ? 1f : 0f; | ||
2689 | axis.Z = (axis.Z > 0) ? 1f : 0f; | ||
2690 | m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z); | ||
2691 | m_taintAngularLock = axis; | ||
2692 | } | ||
2693 | else | ||
2694 | { | ||
2695 | m_log.Warn("[PHYSICS]: Got NaN locking axis from Scene on Object"); | ||
2696 | } | ||
2697 | } | ||
2698 | |||
2699 | public void UpdatePositionAndVelocity() | 2425 | public void UpdatePositionAndVelocity() |
2700 | { | 2426 | { |
2427 | return; // moved to the MOVE() method | ||
2701 | // no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit! | 2428 | // no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit! |
2702 | if (_parent == null) | 2429 | if (_parent == null) |
2703 | { | 2430 | { |
@@ -2909,167 +2636,6 @@ Console.WriteLine(" JointCreateFixed"); | |||
2909 | } | 2636 | } |
2910 | } | 2637 | } |
2911 | 2638 | ||
2912 | public override bool FloatOnWater | ||
2913 | { | ||
2914 | set { | ||
2915 | m_taintCollidesWater = value; | ||
2916 | _parent_scene.AddPhysicsActorTaint(this); | ||
2917 | } | ||
2918 | } | ||
2919 | |||
2920 | public override void SetMomentum(Vector3 momentum) | ||
2921 | { | ||
2922 | } | ||
2923 | |||
2924 | public override Vector3 PIDTarget | ||
2925 | { | ||
2926 | set | ||
2927 | { | ||
2928 | if (value.IsFinite()) | ||
2929 | { | ||
2930 | m_PIDTarget = value; | ||
2931 | } | ||
2932 | else | ||
2933 | m_log.Warn("[PHYSICS]: Got NaN PIDTarget from Scene on Object"); | ||
2934 | } | ||
2935 | } | ||
2936 | public override bool PIDActive { set { m_usePID = value; } } | ||
2937 | public override float PIDTau { set { m_PIDTau = value; } } | ||
2938 | |||
2939 | // For RotLookAt | ||
2940 | public override Quaternion APIDTarget { set { m_APIDTarget = value; } } | ||
2941 | public override bool APIDActive { set { m_useAPID = value; } } | ||
2942 | public override float APIDStrength { set { m_APIDStrength = value; } } | ||
2943 | public override float APIDDamping { set { m_APIDDamping = value; } } | ||
2944 | |||
2945 | public override float PIDHoverHeight { set { m_PIDHoverHeight = value; ; } } | ||
2946 | public override bool PIDHoverActive { set { m_useHoverPID = value; } } | ||
2947 | public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } } | ||
2948 | public override float PIDHoverTau { set { m_PIDHoverTau = value; } } | ||
2949 | |||
2950 | private void createAMotor(Vector3 axis) // ##* | ||
2951 | { | ||
2952 | Console.WriteLine(" createAMotor called! ----------------------------"); | ||
2953 | if (Body == IntPtr.Zero) | ||
2954 | return; | ||
2955 | |||
2956 | if (Amotor != IntPtr.Zero) | ||
2957 | { | ||
2958 | d.JointDestroy(Amotor); | ||
2959 | Amotor = IntPtr.Zero; | ||
2960 | } | ||
2961 | |||
2962 | float axisnum = 3; | ||
2963 | |||
2964 | axisnum = (axisnum - (axis.X + axis.Y + axis.Z)); | ||
2965 | |||
2966 | // PhysicsVector totalSize = new PhysicsVector(_size.X, _size.Y, _size.Z); | ||
2967 | |||
2968 | |||
2969 | // Inverse Inertia Matrix, set the X, Y, and/r Z inertia to 0 then invert it again. | ||
2970 | d.Mass objMass; | ||
2971 | d.MassSetZero(out objMass); | ||
2972 | DMassCopy(ref pMass, ref objMass); | ||
2973 | |||
2974 | //m_log.DebugFormat("1-{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, ", objMass.I.M00, objMass.I.M01, objMass.I.M02, objMass.I.M10, objMass.I.M11, objMass.I.M12, objMass.I.M20, objMass.I.M21, objMass.I.M22); | ||
2975 | |||
2976 | Matrix4 dMassMat = FromDMass(objMass); | ||
2977 | |||
2978 | Matrix4 mathmat = Inverse(dMassMat); | ||
2979 | |||
2980 | /* | ||
2981 | //m_log.DebugFormat("2-{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, ", mathmat[0, 0], mathmat[0, 1], mathmat[0, 2], mathmat[1, 0], mathmat[1, 1], mathmat[1, 2], mathmat[2, 0], mathmat[2, 1], mathmat[2, 2]); | ||
2982 | |||
2983 | mathmat = Inverse(mathmat); | ||
2984 | |||
2985 | |||
2986 | objMass = FromMatrix4(mathmat, ref objMass); | ||
2987 | //m_log.DebugFormat("3-{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, ", objMass.I.M00, objMass.I.M01, objMass.I.M02, objMass.I.M10, objMass.I.M11, objMass.I.M12, objMass.I.M20, objMass.I.M21, objMass.I.M22); | ||
2988 | |||
2989 | mathmat = Inverse(mathmat); | ||
2990 | */ | ||
2991 | if (axis.X == 0) | ||
2992 | { | ||
2993 | mathmat.M33 = 50.0000001f; | ||
2994 | //objMass.I.M22 = 0; | ||
2995 | } | ||
2996 | if (axis.Y == 0) | ||
2997 | { | ||
2998 | mathmat.M22 = 50.0000001f; | ||
2999 | //objMass.I.M11 = 0; | ||
3000 | } | ||
3001 | if (axis.Z == 0) | ||
3002 | { | ||
3003 | mathmat.M11 = 50.0000001f; | ||
3004 | //objMass.I.M00 = 0; | ||
3005 | } | ||
3006 | |||
3007 | |||
3008 | |||
3009 | mathmat = Inverse(mathmat); | ||
3010 | objMass = FromMatrix4(mathmat, ref objMass); | ||
3011 | //m_log.DebugFormat("4-{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, ", objMass.I.M00, objMass.I.M01, objMass.I.M02, objMass.I.M10, objMass.I.M11, objMass.I.M12, objMass.I.M20, objMass.I.M21, objMass.I.M22); | ||
3012 | |||
3013 | //return; | ||
3014 | if (d.MassCheck(ref objMass)) | ||
3015 | { | ||
3016 | d.BodySetMass(Body, ref objMass); | ||
3017 | } | ||
3018 | else | ||
3019 | { | ||
3020 | //m_log.Debug("[PHYSICS]: Mass invalid, ignoring"); | ||
3021 | } | ||
3022 | |||
3023 | if (axisnum <= 0) | ||
3024 | return; | ||
3025 | // int dAMotorEuler = 1; | ||
3026 | |||
3027 | Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero); | ||
3028 | d.JointAttach(Amotor, Body, IntPtr.Zero); | ||
3029 | d.JointSetAMotorMode(Amotor, 0); | ||
3030 | |||
3031 | d.JointSetAMotorNumAxes(Amotor,(int)axisnum); | ||
3032 | int i = 0; | ||
3033 | |||
3034 | if (axis.X == 0) | ||
3035 | { | ||
3036 | d.JointSetAMotorAxis(Amotor, i, 0, 1, 0, 0); | ||
3037 | i++; | ||
3038 | } | ||
3039 | |||
3040 | if (axis.Y == 0) | ||
3041 | { | ||
3042 | d.JointSetAMotorAxis(Amotor, i, 0, 0, 1, 0); | ||
3043 | i++; | ||
3044 | } | ||
3045 | |||
3046 | if (axis.Z == 0) | ||
3047 | { | ||
3048 | d.JointSetAMotorAxis(Amotor, i, 0, 0, 0, 1); | ||
3049 | i++; | ||
3050 | } | ||
3051 | |||
3052 | for (int j = 0; j < (int)axisnum; j++) | ||
3053 | { | ||
3054 | //d.JointSetAMotorAngle(Amotor, j, 0); | ||
3055 | } | ||
3056 | |||
3057 | //d.JointSetAMotorAngle(Amotor, 1, 0); | ||
3058 | //d.JointSetAMotorAngle(Amotor, 2, 0); | ||
3059 | |||
3060 | // These lowstops and high stops are effectively (no wiggle room) | ||
3061 | d.JointSetAMotorParam(Amotor, (int)dParam.LowStop, -0f); | ||
3062 | d.JointSetAMotorParam(Amotor, (int)dParam.LoStop3, -0f); | ||
3063 | d.JointSetAMotorParam(Amotor, (int)dParam.LoStop2, -0f); | ||
3064 | d.JointSetAMotorParam(Amotor, (int)dParam.HiStop, 0f); | ||
3065 | d.JointSetAMotorParam(Amotor, (int)dParam.HiStop3, 0f); | ||
3066 | d.JointSetAMotorParam(Amotor, (int)dParam.HiStop2, 0f); | ||
3067 | //d.JointSetAMotorParam(Amotor, (int) dParam.Vel, 9000f); | ||
3068 | d.JointSetAMotorParam(Amotor, (int)dParam.FudgeFactor, 0f); | ||
3069 | d.JointSetAMotorParam(Amotor, (int)dParam.FMax, Mass * 50f);// | ||
3070 | |||
3071 | } | ||
3072 | |||
3073 | public Matrix4 FromDMass(d.Mass pMass) | 2639 | public Matrix4 FromDMass(d.Mass pMass) |
3074 | { | 2640 | { |
3075 | Matrix4 obj; | 2641 | Matrix4 obj; |
@@ -3318,5 +2884,1135 @@ Console.WriteLine(" createAMotor called! ----------------------------"); | |||
3318 | m_material = pMaterial; | 2884 | m_material = pMaterial; |
3319 | } | 2885 | } |
3320 | 2886 | ||
3321 | } | 2887 | |
2888 | |||
2889 | |||
2890 | |||
2891 | |||
2892 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
2893 | { | ||
2894 | switch (pParam) | ||
2895 | { | ||
2896 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
2897 | if (pValue < 0.01f) pValue = 0.01f; | ||
2898 | // m_angularDeflectionEfficiency = pValue; | ||
2899 | break; | ||
2900 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
2901 | if (pValue < 0.01f) pValue = 0.01f; | ||
2902 | // m_angularDeflectionTimescale = pValue; | ||
2903 | break; | ||
2904 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
2905 | if (pValue < 0.01f) pValue = 0.01f; | ||
2906 | m_angularMotorDecayTimescale = pValue; | ||
2907 | break; | ||
2908 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
2909 | if (pValue < 0.01f) pValue = 0.01f; | ||
2910 | m_angularMotorTimescale = pValue; | ||
2911 | break; | ||
2912 | case Vehicle.BANKING_EFFICIENCY: | ||
2913 | if (pValue < 0.01f) pValue = 0.01f; | ||
2914 | // m_bankingEfficiency = pValue; | ||
2915 | break; | ||
2916 | case Vehicle.BANKING_MIX: | ||
2917 | if (pValue < 0.01f) pValue = 0.01f; | ||
2918 | // m_bankingMix = pValue; | ||
2919 | break; | ||
2920 | case Vehicle.BANKING_TIMESCALE: | ||
2921 | if (pValue < 0.01f) pValue = 0.01f; | ||
2922 | // m_bankingTimescale = pValue; | ||
2923 | break; | ||
2924 | case Vehicle.BUOYANCY: | ||
2925 | if (pValue < -1f) pValue = -1f; | ||
2926 | if (pValue > 1f) pValue = 1f; | ||
2927 | m_VehicleBuoyancy = pValue; | ||
2928 | break; | ||
2929 | // case Vehicle.HOVER_EFFICIENCY: | ||
2930 | // if (pValue < 0f) pValue = 0f; | ||
2931 | // if (pValue > 1f) pValue = 1f; | ||
2932 | // m_VhoverEfficiency = pValue; | ||
2933 | // break; | ||
2934 | case Vehicle.HOVER_HEIGHT: | ||
2935 | m_VhoverHeight = pValue; | ||
2936 | break; | ||
2937 | case Vehicle.HOVER_TIMESCALE: | ||
2938 | if (pValue < 0.01f) pValue = 0.01f; | ||
2939 | m_VhoverTimescale = pValue; | ||
2940 | break; | ||
2941 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
2942 | if (pValue < 0.01f) pValue = 0.01f; | ||
2943 | // m_linearDeflectionEfficiency = pValue; | ||
2944 | break; | ||
2945 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
2946 | if (pValue < 0.01f) pValue = 0.01f; | ||
2947 | // m_linearDeflectionTimescale = pValue; | ||
2948 | break; | ||
2949 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
2950 | if (pValue < 0.01f) pValue = 0.01f; | ||
2951 | m_linearMotorDecayTimescale = pValue; | ||
2952 | break; | ||
2953 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
2954 | if (pValue < 0.01f) pValue = 0.01f; | ||
2955 | m_linearMotorTimescale = pValue; | ||
2956 | break; | ||
2957 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
2958 | if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable | ||
2959 | if (pValue > 1.0f) pValue = 1.0f; | ||
2960 | m_verticalAttractionEfficiency = pValue; | ||
2961 | break; | ||
2962 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
2963 | if (pValue < 0.01f) pValue = 0.01f; | ||
2964 | m_verticalAttractionTimescale = pValue; | ||
2965 | break; | ||
2966 | |||
2967 | // These are vector properties but the engine lets you use a single float value to | ||
2968 | // set all of the components to the same value | ||
2969 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
2970 | if (pValue > 30f) pValue = 30f; | ||
2971 | if (pValue < 0.1f) pValue = 0.1f; | ||
2972 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
2973 | break; | ||
2974 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
2975 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
2976 | UpdateAngDecay(); | ||
2977 | break; | ||
2978 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
2979 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
2980 | break; | ||
2981 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
2982 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
2983 | UpdateLinDecay(); | ||
2984 | break; | ||
2985 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
2986 | // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
2987 | break; | ||
2988 | |||
2989 | } | ||
2990 | |||
2991 | }//end ProcessFloatVehicleParam | ||
2992 | |||
2993 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
2994 | { | ||
2995 | switch (pParam) | ||
2996 | { | ||
2997 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
2998 | if (pValue.X > 30f) pValue.X = 30f; | ||
2999 | if (pValue.X < 0.1f) pValue.X = 0.1f; | ||
3000 | if (pValue.Y > 30f) pValue.Y = 30f; | ||
3001 | if (pValue.Y < 0.1f) pValue.Y = 0.1f; | ||
3002 | if (pValue.Z > 30f) pValue.Z = 30f; | ||
3003 | if (pValue.Z < 0.1f) pValue.Z = 0.1f; | ||
3004 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
3005 | break; | ||
3006 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
3007 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
3008 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
3009 | if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; | ||
3010 | if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; | ||
3011 | if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; | ||
3012 | if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; | ||
3013 | if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; | ||
3014 | if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; | ||
3015 | UpdateAngDecay(); | ||
3016 | break; | ||
3017 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
3018 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
3019 | break; | ||
3020 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
3021 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting | ||
3022 | UpdateLinDecay(); | ||
3023 | break; | ||
3024 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
3025 | // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
3026 | break; | ||
3027 | } | ||
3028 | |||
3029 | }//end ProcessVectorVehicleParam | ||
3030 | |||
3031 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
3032 | { | ||
3033 | switch (pParam) | ||
3034 | { | ||
3035 | case Vehicle.REFERENCE_FRAME: | ||
3036 | // m_referenceFrame = pValue; | ||
3037 | break; | ||
3038 | } | ||
3039 | |||
3040 | }//end ProcessRotationVehicleParam | ||
3041 | |||
3042 | internal void ProcessFlagsVehicleSet(int flags) | ||
3043 | { | ||
3044 | m_flags |= (VehicleFlag)flags; | ||
3045 | } | ||
3046 | |||
3047 | internal void ProcessFlagsVehicleRemove(int flags) | ||
3048 | { | ||
3049 | m_flags &= ~((VehicleFlag)flags); | ||
3050 | } | ||
3051 | |||
3052 | internal void ProcessTypeChange(Vehicle pType) | ||
3053 | { | ||
3054 | // Set Defaults For Type | ||
3055 | m_type = pType; | ||
3056 | switch (pType) | ||
3057 | { | ||
3058 | case Vehicle.TYPE_SLED: | ||
3059 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
3060 | m_angularFrictionTimescale = new Vector3(30, 30, 30); | ||
3061 | // m_lLinMotorVel = Vector3.Zero; | ||
3062 | m_linearMotorTimescale = 1000; | ||
3063 | m_linearMotorDecayTimescale = 120; | ||
3064 | m_angularMotorDirection = Vector3.Zero; | ||
3065 | m_angularMotorDVel = Vector3.Zero; | ||
3066 | m_angularMotorTimescale = 1000; | ||
3067 | m_angularMotorDecayTimescale = 120; | ||
3068 | m_VhoverHeight = 0; | ||
3069 | // m_VhoverEfficiency = 1; | ||
3070 | m_VhoverTimescale = 10; | ||
3071 | m_VehicleBuoyancy = 0; | ||
3072 | // m_linearDeflectionEfficiency = 1; | ||
3073 | // m_linearDeflectionTimescale = 1; | ||
3074 | // m_angularDeflectionEfficiency = 1; | ||
3075 | // m_angularDeflectionTimescale = 1000; | ||
3076 | // m_bankingEfficiency = 0; | ||
3077 | // m_bankingMix = 1; | ||
3078 | // m_bankingTimescale = 10; | ||
3079 | // m_referenceFrame = Quaternion.Identity; | ||
3080 | m_flags &= | ||
3081 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
3082 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
3083 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
3084 | break; | ||
3085 | case Vehicle.TYPE_CAR: | ||
3086 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
3087 | m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30. | ||
3088 | // m_lLinMotorVel = Vector3.Zero; | ||
3089 | m_linearMotorTimescale = 1; | ||
3090 | m_linearMotorDecayTimescale = 60; | ||
3091 | m_angularMotorDirection = Vector3.Zero; | ||
3092 | m_angularMotorDVel = Vector3.Zero; | ||
3093 | m_angularMotorTimescale = 1; | ||
3094 | m_angularMotorDecayTimescale = 0.8f; | ||
3095 | m_VhoverHeight = 0; | ||
3096 | // m_VhoverEfficiency = 0; | ||
3097 | m_VhoverTimescale = 1000; | ||
3098 | m_VehicleBuoyancy = 0; | ||
3099 | // // m_linearDeflectionEfficiency = 1; | ||
3100 | // // m_linearDeflectionTimescale = 2; | ||
3101 | // // m_angularDeflectionEfficiency = 0; | ||
3102 | // m_angularDeflectionTimescale = 10; | ||
3103 | m_verticalAttractionEfficiency = 1f; | ||
3104 | m_verticalAttractionTimescale = 10f; | ||
3105 | // m_bankingEfficiency = -0.2f; | ||
3106 | // m_bankingMix = 1; | ||
3107 | // m_bankingTimescale = 1; | ||
3108 | // m_referenceFrame = Quaternion.Identity; | ||
3109 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
3110 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | | ||
3111 | VehicleFlag.LIMIT_MOTOR_UP); | ||
3112 | break; | ||
3113 | case Vehicle.TYPE_BOAT: | ||
3114 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
3115 | m_angularFrictionTimescale = new Vector3(10,10,10); | ||
3116 | // m_lLinMotorVel = Vector3.Zero; | ||
3117 | m_linearMotorTimescale = 5; | ||
3118 | m_linearMotorDecayTimescale = 60; | ||
3119 | m_angularMotorDirection = Vector3.Zero; | ||
3120 | m_angularMotorDVel = Vector3.Zero; | ||
3121 | m_angularMotorTimescale = 4; | ||
3122 | m_angularMotorDecayTimescale = 4; | ||
3123 | m_VhoverHeight = 0; | ||
3124 | // m_VhoverEfficiency = 0.5f; | ||
3125 | m_VhoverTimescale = 2; | ||
3126 | m_VehicleBuoyancy = 1; | ||
3127 | // m_linearDeflectionEfficiency = 0.5f; | ||
3128 | // m_linearDeflectionTimescale = 3; | ||
3129 | // m_angularDeflectionEfficiency = 0.5f; | ||
3130 | // m_angularDeflectionTimescale = 5; | ||
3131 | m_verticalAttractionEfficiency = 0.5f; | ||
3132 | m_verticalAttractionTimescale = 5f; | ||
3133 | // m_bankingEfficiency = -0.3f; | ||
3134 | // m_bankingMix = 0.8f; | ||
3135 | // m_bankingTimescale = 1; | ||
3136 | // m_referenceFrame = Quaternion.Identity; | ||
3137 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | | ||
3138 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
3139 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | | ||
3140 | VehicleFlag.LIMIT_MOTOR_UP); | ||
3141 | break; | ||
3142 | case Vehicle.TYPE_AIRPLANE: | ||
3143 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
3144 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
3145 | // m_lLinMotorVel = Vector3.Zero; | ||
3146 | m_linearMotorTimescale = 2; | ||
3147 | m_linearMotorDecayTimescale = 60; | ||
3148 | m_angularMotorDirection = Vector3.Zero; | ||
3149 | m_angularMotorDVel = Vector3.Zero; | ||
3150 | m_angularMotorTimescale = 4; | ||
3151 | m_angularMotorDecayTimescale = 4; | ||
3152 | m_VhoverHeight = 0; | ||
3153 | // m_VhoverEfficiency = 0.5f; | ||
3154 | m_VhoverTimescale = 1000; | ||
3155 | m_VehicleBuoyancy = 0; | ||
3156 | // m_linearDeflectionEfficiency = 0.5f; | ||
3157 | // m_linearDeflectionTimescale = 3; | ||
3158 | // m_angularDeflectionEfficiency = 1; | ||
3159 | // m_angularDeflectionTimescale = 2; | ||
3160 | m_verticalAttractionEfficiency = 0.9f; | ||
3161 | m_verticalAttractionTimescale = 2f; | ||
3162 | // m_bankingEfficiency = 1; | ||
3163 | // m_bankingMix = 0.7f; | ||
3164 | // m_bankingTimescale = 2; | ||
3165 | // m_referenceFrame = Quaternion.Identity; | ||
3166 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
3167 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
3168 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
3169 | break; | ||
3170 | case Vehicle.TYPE_BALLOON: | ||
3171 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
3172 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
3173 | m_linearMotorTimescale = 5; | ||
3174 | m_linearMotorDecayTimescale = 60; | ||
3175 | m_angularMotorDirection = Vector3.Zero; | ||
3176 | m_angularMotorDVel = Vector3.Zero; | ||
3177 | m_angularMotorTimescale = 6; | ||
3178 | m_angularMotorDecayTimescale = 10; | ||
3179 | m_VhoverHeight = 5; | ||
3180 | // m_VhoverEfficiency = 0.8f; | ||
3181 | m_VhoverTimescale = 10; | ||
3182 | m_VehicleBuoyancy = 1; | ||
3183 | // m_linearDeflectionEfficiency = 0; | ||
3184 | // m_linearDeflectionTimescale = 5; | ||
3185 | // m_angularDeflectionEfficiency = 0; | ||
3186 | // m_angularDeflectionTimescale = 5; | ||
3187 | m_verticalAttractionEfficiency = 1f; | ||
3188 | m_verticalAttractionTimescale = 100f; | ||
3189 | // m_bankingEfficiency = 0; | ||
3190 | // m_bankingMix = 0.7f; | ||
3191 | // m_bankingTimescale = 5; | ||
3192 | // m_referenceFrame = Quaternion.Identity; | ||
3193 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
3194 | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
3195 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
3196 | break; | ||
3197 | |||
3198 | } | ||
3199 | }//end SetDefaultsForType | ||
3200 | |||
3201 | internal void Enable(IntPtr pBody, OdeScene pParentScene) | ||
3202 | { | ||
3203 | if (m_type == Vehicle.TYPE_NONE) | ||
3204 | return; | ||
3205 | |||
3206 | m_body = pBody; | ||
3207 | } | ||
3208 | |||
3209 | |||
3210 | internal void Halt() | ||
3211 | { // Kill all motions, when non-physical | ||
3212 | m_linearMotorDirection = Vector3.Zero; | ||
3213 | m_lLinMotorDVel = Vector3.Zero; | ||
3214 | m_lLinObjectVel = Vector3.Zero; | ||
3215 | m_wLinObjectVel = Vector3.Zero; | ||
3216 | m_angularMotorDirection = Vector3.Zero; | ||
3217 | m_lastAngularVelocity = Vector3.Zero; | ||
3218 | m_angularMotorDVel = Vector3.Zero; | ||
3219 | } | ||
3220 | |||
3221 | private void UpdateLinDecay() | ||
3222 | { | ||
3223 | if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X; | ||
3224 | if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y; | ||
3225 | if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z; | ||
3226 | } // else let the motor decay on its own | ||
3227 | |||
3228 | private void UpdateAngDecay() | ||
3229 | { | ||
3230 | if (Math.Abs(m_angularMotorDirection.X) > Math.Abs(m_angularMotorDVel.X)) m_angularMotorDVel.X = m_angularMotorDirection.X; | ||
3231 | if (Math.Abs(m_angularMotorDirection.Y) > Math.Abs(m_angularMotorDVel.Y)) m_angularMotorDVel.Y = m_angularMotorDirection.Y; | ||
3232 | if (Math.Abs(m_angularMotorDirection.Z) > Math.Abs(m_angularMotorDVel.Z)) m_angularMotorDVel.Z = m_angularMotorDirection.Z; | ||
3233 | } // else let the motor decay on its own | ||
3234 | |||
3235 | public void Move(float timestep) | ||
3236 | { | ||
3237 | float fx = 0; | ||
3238 | float fy = 0; | ||
3239 | float fz = 0; | ||
3240 | |||
3241 | frcount++; // used to limit debug comment output | ||
3242 | if (frcount > 100) | ||
3243 | frcount = 0; | ||
3244 | |||
3245 | if (IsPhysical && (Body != IntPtr.Zero) && !m_isSelected && !childPrim) // KF: Only move root prims. | ||
3246 | { | ||
3247 | |||
3248 | // Old public void UpdatePositionAndVelocity(), more accuratley calculated here | ||
3249 | // Vector3 pv = Vector3.Zero; // what was this for? | ||
3250 | bool lastZeroFlag = _zeroFlag; // was it stopped | ||
3251 | // if (Body != (IntPtr)0) // FIXME -> or if it is a joint | ||
3252 | // { | ||
3253 | d.Vector3 vec = d.BodyGetPosition(Body); | ||
3254 | d.Quaternion ori = d.BodyGetQuaternion(Body); | ||
3255 | d.Vector3 vel = d.BodyGetLinearVel(Body); | ||
3256 | d.Vector3 rotvel = d.BodyGetAngularVel(Body); | ||
3257 | d.Vector3 torque = d.BodyGetTorque(Body); | ||
3258 | _torque = new Vector3(torque.X, torque.Y, torque.Z); | ||
3259 | Vector3 l_position = Vector3.Zero; | ||
3260 | Quaternion l_orientation = Quaternion.Identity; | ||
3261 | |||
3262 | // kluge to keep things in bounds. ODE lets dead avatars drift away (they should be removed!) | ||
3263 | //if (vec.X < 0.0f) { vec.X = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } | ||
3264 | //if (vec.Y < 0.0f) { vec.Y = 0.0f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } | ||
3265 | //if (vec.X > 255.95f) { vec.X = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } | ||
3266 | //if (vec.Y > 255.95f) { vec.Y = 255.95f; if (Body != (IntPtr)0) d.BodySetAngularVel(Body, 0, 0, 0); } | ||
3267 | |||
3268 | m_lastposition = _position; | ||
3269 | m_lastorientation = _orientation; | ||
3270 | |||
3271 | l_position.X = vec.X; | ||
3272 | l_position.Y = vec.Y; | ||
3273 | l_position.Z = vec.Z; | ||
3274 | l_orientation.X = ori.X; | ||
3275 | l_orientation.Y = ori.Y; | ||
3276 | l_orientation.Z = ori.Z; | ||
3277 | l_orientation.W = ori.W; | ||
3278 | //Console.WriteLine("Move {0} at {1}", m_primName, l_position); | ||
3279 | |||
3280 | |||
3281 | if (l_position.X > ((int)_parent_scene.WorldExtents.X - 0.05f) || | ||
3282 | l_position.X < 0f || | ||
3283 | l_position.Y > ((int)_parent_scene.WorldExtents.Y - 0.05f) || | ||
3284 | l_position.Y < 0f) | ||
3285 | { | ||
3286 | //base.RaiseOutOfBounds(l_position); | ||
3287 | |||
3288 | if (m_crossingfailures < _parent_scene.geomCrossingFailuresBeforeOutofbounds) | ||
3289 | { | ||
3290 | _position = l_position; | ||
3291 | //_parent_scene.remActivePrim(this); | ||
3292 | if (_parent == null) | ||
3293 | base.RequestPhysicsterseUpdate(); | ||
3294 | return; | ||
3295 | } | ||
3296 | else | ||
3297 | { | ||
3298 | if (_parent == null) | ||
3299 | base.RaiseOutOfBounds(l_position); | ||
3300 | return; | ||
3301 | } | ||
3302 | } | ||
3303 | |||
3304 | if (l_position.Z < 0) | ||
3305 | { | ||
3306 | // This is so prim that get lost underground don't fall forever and suck up | ||
3307 | // | ||
3308 | // Sim resources and memory. | ||
3309 | // Disables the prim's movement physics.... | ||
3310 | // It's a hack and will generate a console message if it fails. | ||
3311 | |||
3312 | //IsPhysical = false; | ||
3313 | if (_parent == null) | ||
3314 | base.RaiseOutOfBounds(_position); | ||
3315 | |||
3316 | _acceleration.X = 0; | ||
3317 | _acceleration.Y = 0; | ||
3318 | _acceleration.Z = 0; | ||
3319 | |||
3320 | _velocity.X = 0; | ||
3321 | _velocity.Y = 0; | ||
3322 | _velocity.Z = 0; | ||
3323 | m_rotationalVelocity.X = 0; | ||
3324 | m_rotationalVelocity.Y = 0; | ||
3325 | m_rotationalVelocity.Z = 0; | ||
3326 | |||
3327 | if (_parent == null) | ||
3328 | base.RequestPhysicsterseUpdate(); | ||
3329 | |||
3330 | m_throttleUpdates = false; | ||
3331 | throttleCounter = 0; | ||
3332 | _zeroFlag = true; | ||
3333 | //outofBounds = true; | ||
3334 | } | ||
3335 | |||
3336 | //float Adiff = 1.0f - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)); | ||
3337 | //Console.WriteLine("Adiff " + m_primName + " = " + Adiff); | ||
3338 | if ((Math.Abs(m_lastposition.X - l_position.X) < 0.02) | ||
3339 | && (Math.Abs(m_lastposition.Y - l_position.Y) < 0.02) | ||
3340 | && (Math.Abs(m_lastposition.Z - l_position.Z) < 0.02) | ||
3341 | // && (1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)) < 0.01)) | ||
3342 | && (1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)) < 0.0001)) // KF 0.01 is far to large | ||
3343 | { | ||
3344 | _zeroFlag = true; | ||
3345 | //Console.WriteLine("ZFT 2"); | ||
3346 | m_throttleUpdates = false; | ||
3347 | } | ||
3348 | else | ||
3349 | { | ||
3350 | //m_log.Debug(Math.Abs(m_lastposition.X - l_position.X).ToString()); | ||
3351 | _zeroFlag = false; | ||
3352 | m_lastUpdateSent = false; | ||
3353 | //m_throttleUpdates = false; | ||
3354 | } | ||
3355 | |||
3356 | if (_zeroFlag) | ||
3357 | { // Its stopped | ||
3358 | _velocity.X = 0.0f; | ||
3359 | _velocity.Y = 0.0f; | ||
3360 | _velocity.Z = 0.0f; | ||
3361 | |||
3362 | _acceleration.X = 0; | ||
3363 | _acceleration.Y = 0; | ||
3364 | _acceleration.Z = 0; | ||
3365 | |||
3366 | //_orientation.w = 0f; | ||
3367 | //_orientation.X = 0f; | ||
3368 | //_orientation.Y = 0f; | ||
3369 | //_orientation.Z = 0f; | ||
3370 | m_rotationalVelocity.X = 0; | ||
3371 | m_rotationalVelocity.Y = 0; | ||
3372 | m_rotationalVelocity.Z = 0; | ||
3373 | if (!m_lastUpdateSent) | ||
3374 | { | ||
3375 | m_throttleUpdates = false; | ||
3376 | throttleCounter = 0; | ||
3377 | // m_rotationalVelocity = pv; What was this for? | ||
3378 | |||
3379 | if (_parent == null) | ||
3380 | { | ||
3381 | base.RequestPhysicsterseUpdate(); | ||
3382 | } | ||
3383 | |||
3384 | m_lastUpdateSent = true; | ||
3385 | } | ||
3386 | } | ||
3387 | else | ||
3388 | { // Its moving | ||
3389 | if (lastZeroFlag != _zeroFlag) | ||
3390 | { | ||
3391 | if (_parent == null) | ||
3392 | { | ||
3393 | base.RequestPhysicsterseUpdate(); | ||
3394 | } | ||
3395 | } | ||
3396 | |||
3397 | m_lastVelocity = _velocity; | ||
3398 | |||
3399 | _position = l_position; | ||
3400 | |||
3401 | _velocity.X = vel.X; | ||
3402 | _velocity.Y = vel.Y; | ||
3403 | _velocity.Z = vel.Z; | ||
3404 | // Why 2 calcs??? | ||
3405 | // _acceleration = ((_velocity - m_lastVelocity) / 0.1f); | ||
3406 | // _acceleration = new Vector3(_velocity.X - m_lastVelocity.X / 0.1f, | ||
3407 | // _velocity.Y - m_lastVelocity.Y / 0.1f, | ||
3408 | // _velocity.Z - m_lastVelocity.Z / 0.1f); | ||
3409 | |||
3410 | _acceleration = ((_velocity - m_lastVelocity) / timestep); | ||
3411 | |||
3412 | _orientation.X = ori.X; | ||
3413 | _orientation.Y = ori.Y; | ||
3414 | _orientation.Z = ori.Z; | ||
3415 | _orientation.W = ori.W; | ||
3416 | m_lastUpdateSent = false; | ||
3417 | if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate) | ||
3418 | { | ||
3419 | if (_parent == null) | ||
3420 | { | ||
3421 | base.RequestPhysicsterseUpdate(); | ||
3422 | } | ||
3423 | } | ||
3424 | else | ||
3425 | { | ||
3426 | throttleCounter++; | ||
3427 | } | ||
3428 | } | ||
3429 | m_lastposition = l_position; | ||
3430 | |||
3431 | /// End of old UpdatePositionAndVelocity insert | ||
3432 | |||
3433 | //if (!Acceleration.ApproxEquals(Vector3.Zero, 0.01f)) Console.WriteLine("Move " + m_primName + " Accel=" + Acceleration); | ||
3434 | //if(frcount == 0) Console.WriteLine("Move " + m_primName + " VTyp " + m_type + | ||
3435 | // " usePID=" + m_usePID + " seHover=" + m_useHoverPID + " useAPID=" + m_useAPID); | ||
3436 | if (m_type != Vehicle.TYPE_NONE) | ||
3437 | { | ||
3438 | // get body attitude | ||
3439 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
3440 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
3441 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
3442 | |||
3443 | // VEHICLE Linear Motion | ||
3444 | d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame | ||
3445 | Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z); | ||
3446 | m_lLinObjectVel = vel_now * irotq; | ||
3447 | |||
3448 | if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate | ||
3449 | { | ||
3450 | if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f) | ||
3451 | { | ||
3452 | float decayfactor = m_linearMotorDecayTimescale/timestep; | ||
3453 | Vector3 decayAmount = (m_lLinMotorDVel/decayfactor); | ||
3454 | m_lLinMotorDVel -= decayAmount; | ||
3455 | } | ||
3456 | else | ||
3457 | { | ||
3458 | float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale))); | ||
3459 | Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * timestep; | ||
3460 | m_lLinMotorDVel -= decel; | ||
3461 | } | ||
3462 | if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
3463 | { | ||
3464 | m_lLinMotorDVel = Vector3.Zero; | ||
3465 | } | ||
3466 | else | ||
3467 | { | ||
3468 | if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X; | ||
3469 | if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y; | ||
3470 | if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z; | ||
3471 | } | ||
3472 | } // end linear motor decay | ||
3473 | |||
3474 | if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
3475 | { | ||
3476 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
3477 | if (m_linearMotorTimescale < 300.0f) | ||
3478 | { | ||
3479 | Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel; | ||
3480 | float linfactor = m_linearMotorTimescale/timestep; | ||
3481 | Vector3 attackAmount = (attack_error/linfactor) * 1.3f; | ||
3482 | m_lLinObjectVel += attackAmount; | ||
3483 | } | ||
3484 | if (m_linearFrictionTimescale.X < 300.0f) | ||
3485 | { | ||
3486 | float fricfactor = m_linearFrictionTimescale.X / timestep; | ||
3487 | float fricX = m_lLinObjectVel.X / fricfactor; | ||
3488 | m_lLinObjectVel.X -= fricX; | ||
3489 | } | ||
3490 | if (m_linearFrictionTimescale.Y < 300.0f) | ||
3491 | { | ||
3492 | float fricfactor = m_linearFrictionTimescale.Y / timestep; | ||
3493 | float fricY = m_lLinObjectVel.Y / fricfactor; | ||
3494 | m_lLinObjectVel.Y -= fricY; | ||
3495 | } | ||
3496 | if (m_linearFrictionTimescale.Z < 300.0f) | ||
3497 | { | ||
3498 | float fricfactor = m_linearFrictionTimescale.Z / timestep; | ||
3499 | //if(frcount == 0) Console.WriteLine("Zfric={0}", fricfactor); | ||
3500 | float fricZ = m_lLinObjectVel.Z / fricfactor; | ||
3501 | m_lLinObjectVel.Z -= fricZ; | ||
3502 | } | ||
3503 | } | ||
3504 | m_wLinObjectVel = m_lLinObjectVel * rotq; | ||
3505 | |||
3506 | // Gravity and Buoyancy | ||
3507 | Vector3 grav = Vector3.Zero; | ||
3508 | if(m_VehicleBuoyancy < 1.0f) | ||
3509 | { | ||
3510 | // There is some gravity, make a gravity force vector | ||
3511 | // that is applied after object velocity. | ||
3512 | d.Mass objMass; | ||
3513 | d.BodyGetMass(Body, out objMass); | ||
3514 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | ||
3515 | grav.Z = _parent_scene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force | ||
3516 | } // else its 1.0, no gravity. | ||
3517 | |||
3518 | // Hovering | ||
3519 | if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) | ||
3520 | { | ||
3521 | // We should hover, get the target height | ||
3522 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
3523 | if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) | ||
3524 | { | ||
3525 | m_VhoverTargetHeight = _parent_scene.GetWaterLevel() + m_VhoverHeight; | ||
3526 | } | ||
3527 | else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) | ||
3528 | { | ||
3529 | m_VhoverTargetHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; | ||
3530 | } | ||
3531 | else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) | ||
3532 | { | ||
3533 | m_VhoverTargetHeight = m_VhoverHeight; | ||
3534 | } | ||
3535 | |||
3536 | if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) | ||
3537 | { | ||
3538 | // If body is aready heigher, use its height as target height | ||
3539 | if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; | ||
3540 | } | ||
3541 | |||
3542 | // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped | ||
3543 | // m_VhoverTimescale = 0f; // time to acheive height | ||
3544 | // timestep is time since last frame,in secs | ||
3545 | float herr0 = pos.Z - m_VhoverTargetHeight; | ||
3546 | // Replace Vertical speed with correction figure if significant | ||
3547 | if(Math.Abs(herr0) > 0.01f ) | ||
3548 | { | ||
3549 | //? d.Mass objMass; | ||
3550 | //? d.BodyGetMass(Body, out objMass); | ||
3551 | m_wLinObjectVel.Z = - ( (herr0 * timestep * 50.0f) / m_VhoverTimescale); | ||
3552 | //KF: m_VhoverEfficiency is not yet implemented | ||
3553 | } | ||
3554 | else | ||
3555 | { | ||
3556 | m_wLinObjectVel.Z = 0f; | ||
3557 | } | ||
3558 | } | ||
3559 | else | ||
3560 | { // not hovering, Gravity rules | ||
3561 | m_wLinObjectVel.Z = vel_now.Z; | ||
3562 | } | ||
3563 | |||
3564 | |||
3565 | // Vehicle Linear Motion done ======================================= | ||
3566 | // Apply velocity | ||
3567 | d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z); | ||
3568 | // apply gravity force | ||
3569 | d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); | ||
3570 | //if(frcount == 0) Console.WriteLine("Grav {0}", grav); | ||
3571 | // end MoveLinear() | ||
3572 | |||
3573 | |||
3574 | // MoveAngular | ||
3575 | /* | ||
3576 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
3577 | |||
3578 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
3579 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
3580 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
3581 | |||
3582 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
3583 | private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body | ||
3584 | */ | ||
3585 | //if(frcount == 0) Console.WriteLine("MoveAngular "); | ||
3586 | |||
3587 | d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body); | ||
3588 | Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z); | ||
3589 | angObjectVel = angObjectVel * irotq; // ============ Converts to LOCAL rotation | ||
3590 | |||
3591 | //if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel); | ||
3592 | |||
3593 | // Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack. | ||
3594 | float atk_decayfactor = 23.0f / (m_angularMotorTimescale * timestep); | ||
3595 | m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor; | ||
3596 | // Decay Angular Motor 2. | ||
3597 | if (m_angularMotorDecayTimescale < 300.0f) | ||
3598 | { | ||
3599 | if ( Vector3.Mag(m_angularMotorDVel) < 1.0f) | ||
3600 | { | ||
3601 | float decayfactor = (m_angularMotorDecayTimescale)/timestep; | ||
3602 | Vector3 decayAmount = (m_angularMotorDVel/decayfactor); | ||
3603 | m_angularMotorDVel -= decayAmount; | ||
3604 | } | ||
3605 | else | ||
3606 | { | ||
3607 | Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * timestep / m_angularMotorDecayTimescale; | ||
3608 | m_angularMotorDVel -= decel; | ||
3609 | } | ||
3610 | |||
3611 | if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
3612 | { | ||
3613 | m_angularMotorDVel = Vector3.Zero; | ||
3614 | } | ||
3615 | else | ||
3616 | { | ||
3617 | if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X; | ||
3618 | if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y; | ||
3619 | if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z; | ||
3620 | } | ||
3621 | } // end decay angular motor | ||
3622 | //if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
3623 | |||
3624 | //if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel); | ||
3625 | |||
3626 | // Vertical attractor section | ||
3627 | Vector3 vertattr = Vector3.Zero; | ||
3628 | |||
3629 | if(m_verticalAttractionTimescale < 300) | ||
3630 | { | ||
3631 | float VAservo = 1.0f / (m_verticalAttractionTimescale * timestep); | ||
3632 | // make a vector pointing up | ||
3633 | Vector3 verterr = Vector3.Zero; | ||
3634 | verterr.Z = 1.0f; | ||
3635 | // rotate it to Body Angle | ||
3636 | verterr = verterr * rotq; | ||
3637 | // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. | ||
3638 | // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go | ||
3639 | // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. | ||
3640 | |||
3641 | if (verterr.Z < 0.0f) | ||
3642 | { // Deflection from vertical exceeds 90-degrees. This method will ensure stable return to | ||
3643 | // vertical, BUT for some reason a z-rotation is imparted to the object. TBI. | ||
3644 | //Console.WriteLine("InvertFlip"); | ||
3645 | verterr.X = 2.0f - verterr.X; | ||
3646 | verterr.Y = 2.0f - verterr.Y; | ||
3647 | } | ||
3648 | verterr *= 0.5f; | ||
3649 | // verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt) | ||
3650 | |||
3651 | if ((!angObjectVel.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f)) | ||
3652 | { | ||
3653 | // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so | ||
3654 | // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. | ||
3655 | vertattr.X = verterr.Y; | ||
3656 | vertattr.Y = - verterr.X; | ||
3657 | vertattr.Z = 0f; | ||
3658 | //if(frcount == 0) Console.WriteLine("VAerr=" + verterr); | ||
3659 | |||
3660 | // scaling appears better usingsquare-law | ||
3661 | float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency; | ||
3662 | float bounce = 1.0f - damped; | ||
3663 | // 0 = crit damp, 1 = bouncy | ||
3664 | float oavz = angObjectVel.Z; // retain z velocity | ||
3665 | // time-scaled correction, which sums, therefore is bouncy: | ||
3666 | angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce; | ||
3667 | // damped, good @ < 90: | ||
3668 | angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped); | ||
3669 | angObjectVel.Z = oavz; | ||
3670 | //if(frcount == 0) Console.WriteLine("VA+"); | ||
3671 | //Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel); | ||
3672 | } | ||
3673 | else | ||
3674 | { | ||
3675 | // else error is very small | ||
3676 | angObjectVel.X = 0f; | ||
3677 | angObjectVel.Y = 0f; | ||
3678 | //if(frcount == 0) Console.WriteLine("VA0"); | ||
3679 | } | ||
3680 | } // else vertical attractor is off | ||
3681 | //if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel); | ||
3682 | |||
3683 | if ( (! m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
3684 | { // if motor or object have motion | ||
3685 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
3686 | |||
3687 | if (m_angularMotorTimescale < 300.0f) | ||
3688 | { | ||
3689 | Vector3 attack_error = m_angularMotorDVel - angObjectVel; | ||
3690 | float angfactor = m_angularMotorTimescale/timestep; | ||
3691 | Vector3 attackAmount = (attack_error/angfactor); | ||
3692 | angObjectVel += attackAmount; | ||
3693 | //if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount); | ||
3694 | //if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel); | ||
3695 | } | ||
3696 | |||
3697 | angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / timestep); | ||
3698 | angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / timestep); | ||
3699 | angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / timestep); | ||
3700 | } // else no signif. motion | ||
3701 | |||
3702 | //if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
3703 | // Bank section tba | ||
3704 | // Deflection section tba | ||
3705 | //if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel); | ||
3706 | |||
3707 | m_lastAngularVelocity = angObjectVel; | ||
3708 | //if(frcount == 0) Console.WriteLine("angularLock {0}", m_angularLock); | ||
3709 | |||
3710 | if (!m_angularLock.ApproxEquals(Vector3.One, 0.003f)) | ||
3711 | { | ||
3712 | if (m_angularLock.X == 0) | ||
3713 | m_lastAngularVelocity.X = 0f; | ||
3714 | if (m_angularLock.Y == 0) | ||
3715 | m_lastAngularVelocity.Y = 0f; | ||
3716 | if (m_angularLock.Z == 0) | ||
3717 | m_lastAngularVelocity.Z = 0f; | ||
3718 | } | ||
3719 | // Apply to the body | ||
3720 | // Vector3 aInc = m_lastAngularVelocity - initavel; | ||
3721 | //if(frcount == 0) Console.WriteLine("Inc {0}", aInc); | ||
3722 | m_lastAngularVelocity = m_lastAngularVelocity * rotq; // ================ Converts to WORLD rotation | ||
3723 | |||
3724 | d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); | ||
3725 | //if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity); | ||
3726 | |||
3727 | } // end VEHICLES #### | ||
3728 | else | ||
3729 | { | ||
3730 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); // KF add 161009 | ||
3731 | // NON-'VEHICLES' are dealt with here | ||
3732 | // m_angularlock = <1,1,1> means no lock. a 0 on axis means locked. | ||
3733 | |||
3734 | // NB this may be wrong - may lock global axis! Should be LOCAL axis! | ||
3735 | /// Dynamics Angular Lock ======================================================================== | ||
3736 | if (d.BodyIsEnabled(Body) && !m_angularlock.ApproxEquals(Vector3.One, 0.003f)) | ||
3737 | { | ||
3738 | d.Vector3 avel2 = d.BodyGetAngularVel(Body); | ||
3739 | if (m_angularlock.X == 0) | ||
3740 | avel2.X = 0; | ||
3741 | if (m_angularlock.Y == 0) | ||
3742 | avel2.Y = 0; | ||
3743 | if (m_angularlock.Z == 0) | ||
3744 | avel2.Z = 0; | ||
3745 | d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z); | ||
3746 | } | ||
3747 | |||
3748 | |||
3749 | /// Dynamics Buoyancy =============================================================================== | ||
3750 | //KF: m_buoyancy is set by llSetBuoyancy() and is for non-vehicle. | ||
3751 | // m_buoyancy: (unlimited value) <0=Falls fast; 0=1g; 1=0g; >1 = floats up | ||
3752 | // NB Prims in ODE are no subject to global gravity | ||
3753 | float m_mass = CalculateMass(); | ||
3754 | fz = _parent_scene.gravityz * (1.0f - m_buoyancy) * m_mass; // force = acceleration * mass | ||
3755 | |||
3756 | if (m_usePID) | ||
3757 | { | ||
3758 | //if(frcount == 0) Console.WriteLine("PID " + m_primName); | ||
3759 | // KF - this is for object MoveToTarget. | ||
3760 | |||
3761 | //if (!d.BodyIsEnabled(Body)) | ||
3762 | //d.BodySetForce(Body, 0f, 0f, 0f); | ||
3763 | |||
3764 | // no lock; for now it's only called from within Simulate() | ||
3765 | |||
3766 | // If the PID Controller isn't active then we set our force | ||
3767 | // calculating base velocity to the current position | ||
3768 | |||
3769 | if ((m_PIDTau < 1) && (m_PIDTau != 0)) | ||
3770 | { | ||
3771 | //PID_G = PID_G / m_PIDTau; | ||
3772 | m_PIDTau = 1; | ||
3773 | } | ||
3774 | |||
3775 | if ((PID_G - m_PIDTau) <= 0) | ||
3776 | { | ||
3777 | PID_G = m_PIDTau + 1; | ||
3778 | } | ||
3779 | //PidStatus = true; | ||
3780 | |||
3781 | // PhysicsVector vec = new PhysicsVector(); | ||
3782 | // d.Vector3 vel = d.BodyGetLinearVel(Body); | ||
3783 | |||
3784 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
3785 | _target_velocity = | ||
3786 | new Vector3( | ||
3787 | (m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep), | ||
3788 | (m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep), | ||
3789 | (m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep) | ||
3790 | ); | ||
3791 | |||
3792 | // if velocity is zero, use position control; otherwise, velocity control | ||
3793 | |||
3794 | if (_target_velocity.ApproxEquals(Vector3.Zero,0.1f)) | ||
3795 | { | ||
3796 | // keep track of where we stopped. No more slippin' & slidin' | ||
3797 | |||
3798 | // We only want to deactivate the PID Controller if we think we want to have our surrogate | ||
3799 | // react to the physics scene by moving it's position. | ||
3800 | // Avatar to Avatar collisions | ||
3801 | // Prim to avatar collisions | ||
3802 | |||
3803 | //fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2); | ||
3804 | //fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2); | ||
3805 | //fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P; | ||
3806 | d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z); | ||
3807 | d.BodySetLinearVel(Body, 0, 0, 0); | ||
3808 | d.BodyAddForce(Body, 0, 0, fz); | ||
3809 | return; | ||
3810 | } | ||
3811 | else | ||
3812 | { | ||
3813 | _zeroFlag = false; | ||
3814 | |||
3815 | // We're flying and colliding with something | ||
3816 | fx = ((_target_velocity.X) - vel.X) * (PID_D); | ||
3817 | fy = ((_target_velocity.Y) - vel.Y) * (PID_D); | ||
3818 | |||
3819 | // vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P; | ||
3820 | |||
3821 | fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass); | ||
3822 | } | ||
3823 | } // end if (m_usePID) | ||
3824 | |||
3825 | /// Dynamics Hover =================================================================================== | ||
3826 | // Hover PID Controller needs to be mutually exlusive to MoveTo PID controller | ||
3827 | if (m_useHoverPID && !m_usePID) | ||
3828 | { | ||
3829 | //Console.WriteLine("Hover " + m_primName); | ||
3830 | |||
3831 | // If we're using the PID controller, then we have no gravity | ||
3832 | fz = (-1 * _parent_scene.gravityz) * m_mass; | ||
3833 | |||
3834 | // no lock; for now it's only called from within Simulate() | ||
3835 | |||
3836 | // If the PID Controller isn't active then we set our force | ||
3837 | // calculating base velocity to the current position | ||
3838 | |||
3839 | if ((m_PIDTau < 1)) | ||
3840 | { | ||
3841 | PID_G = PID_G / m_PIDTau; | ||
3842 | } | ||
3843 | |||
3844 | if ((PID_G - m_PIDTau) <= 0) | ||
3845 | { | ||
3846 | PID_G = m_PIDTau + 1; | ||
3847 | } | ||
3848 | |||
3849 | |||
3850 | // Where are we, and where are we headed? | ||
3851 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
3852 | // d.Vector3 vel = d.BodyGetLinearVel(Body); | ||
3853 | |||
3854 | |||
3855 | // Non-Vehicles have a limited set of Hover options. | ||
3856 | // determine what our target height really is based on HoverType | ||
3857 | switch (m_PIDHoverType) | ||
3858 | { | ||
3859 | case PIDHoverType.Ground: | ||
3860 | m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
3861 | m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight; | ||
3862 | break; | ||
3863 | case PIDHoverType.GroundAndWater: | ||
3864 | m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
3865 | m_waterHeight = _parent_scene.GetWaterLevel(); | ||
3866 | if (m_groundHeight > m_waterHeight) | ||
3867 | { | ||
3868 | m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight; | ||
3869 | } | ||
3870 | else | ||
3871 | { | ||
3872 | m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight; | ||
3873 | } | ||
3874 | break; | ||
3875 | |||
3876 | } // end switch (m_PIDHoverType) | ||
3877 | |||
3878 | |||
3879 | _target_velocity = | ||
3880 | new Vector3(0.0f, 0.0f, | ||
3881 | (m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep) | ||
3882 | ); | ||
3883 | |||
3884 | // if velocity is zero, use position control; otherwise, velocity control | ||
3885 | |||
3886 | if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f)) | ||
3887 | { | ||
3888 | // keep track of where we stopped. No more slippin' & slidin' | ||
3889 | |||
3890 | // We only want to deactivate the PID Controller if we think we want to have our surrogate | ||
3891 | // react to the physics scene by moving it's position. | ||
3892 | // Avatar to Avatar collisions | ||
3893 | // Prim to avatar collisions | ||
3894 | |||
3895 | d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight); | ||
3896 | d.BodySetLinearVel(Body, vel.X, vel.Y, 0); | ||
3897 | d.BodyAddForce(Body, 0, 0, fz); | ||
3898 | //KF this prevents furthur motions return; | ||
3899 | } | ||
3900 | else | ||
3901 | { | ||
3902 | _zeroFlag = false; | ||
3903 | |||
3904 | // We're flying and colliding with something | ||
3905 | fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass); | ||
3906 | } | ||
3907 | } // end m_useHoverPID && !m_usePID | ||
3908 | |||
3909 | /// Dynamics RotLookAt ================================================================================= | ||
3910 | if (m_useAPID) | ||
3911 | { | ||
3912 | // RotLookAt, apparently overrides all other rotation sources. Inputs: | ||
3913 | // Quaternion m_APIDTarget | ||
3914 | // float m_APIDStrength // From SL experiments, this is the time to get there | ||
3915 | // float m_APIDDamping // From SL experiments, this is damping, 1.0 = damped, 0.1 = wobbly | ||
3916 | // Also in SL the mass of the object has no effect on time to get there. | ||
3917 | // Factors: | ||
3918 | //if(frcount == 0) Console.WriteLine("APID "); | ||
3919 | // get present body rotation | ||
3920 | float limit = 1.0f; | ||
3921 | float scaler = 50f; // adjusts damping time | ||
3922 | float RLAservo = 0f; | ||
3923 | |||
3924 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
3925 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); | ||
3926 | Quaternion rot_diff = Quaternion.Inverse(rotq) * m_APIDTarget; | ||
3927 | float diff_angle; | ||
3928 | Vector3 diff_axis; | ||
3929 | rot_diff.GetAxisAngle(out diff_axis, out diff_angle); | ||
3930 | diff_axis.Normalize(); | ||
3931 | if(diff_angle > 0.01f) // diff_angle is always +ve | ||
3932 | { | ||
3933 | // PhysicsVector rotforce = new PhysicsVector(diff_axis.X, diff_axis.Y, diff_axis.Z); | ||
3934 | Vector3 rotforce = new Vector3(diff_axis.X, diff_axis.Y, diff_axis.Z); | ||
3935 | rotforce = rotforce * rotq; | ||
3936 | if(diff_angle > limit) diff_angle = limit; // cap the rotate rate | ||
3937 | // RLAservo = timestep / m_APIDStrength * m_mass * scaler; | ||
3938 | // rotforce = rotforce * RLAservo * diff_angle ; | ||
3939 | // d.BodyAddRelTorque(Body, rotforce.X, rotforce.Y, rotforce.Z); | ||
3940 | RLAservo = timestep / m_APIDStrength * scaler; | ||
3941 | rotforce = rotforce * RLAservo * diff_angle ; | ||
3942 | |||
3943 | if (m_angularlock.X == 0) | ||
3944 | rotforce.X = 0; | ||
3945 | if (m_angularlock.Y == 0) | ||
3946 | rotforce.Y = 0; | ||
3947 | if (m_angularlock.Z == 0) | ||
3948 | rotforce.Z = 0; | ||
3949 | |||
3950 | d.BodySetAngularVel (Body, rotforce.X, rotforce.Y, rotforce.Z); | ||
3951 | //Console.WriteLine("axis= " + diff_axis + " angle= " + diff_angle + "servo= " + RLAservo); | ||
3952 | } | ||
3953 | //if(frcount == 0) Console.WriteLine("mass= " + m_mass + " servo= " + RLAservo + " angle= " + diff_angle); | ||
3954 | } // end m_useAPID | ||
3955 | |||
3956 | /// Dynamics Apply Forces =================================================================================== | ||
3957 | fx *= m_mass; | ||
3958 | fy *= m_mass; | ||
3959 | //fz *= m_mass; | ||
3960 | |||
3961 | fx += m_force.X; | ||
3962 | fy += m_force.Y; | ||
3963 | fz += m_force.Z; | ||
3964 | |||
3965 | //m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString()); | ||
3966 | if (fx != 0 || fy != 0 || fz != 0) | ||
3967 | { | ||
3968 | //m_taintdisable = true; | ||
3969 | //base.RaiseOutOfBounds(Position); | ||
3970 | //d.BodySetLinearVel(Body, fx, fy, 0f); | ||
3971 | if (!d.BodyIsEnabled(Body)) | ||
3972 | { | ||
3973 | // A physical body at rest on a surface will auto-disable after a while, | ||
3974 | // this appears to re-enable it incase the surface it is upon vanishes, | ||
3975 | // and the body should fall again. | ||
3976 | d.BodySetLinearVel(Body, 0f, 0f, 0f); | ||
3977 | d.BodySetForce(Body, 0, 0, 0); | ||
3978 | enableBodySoft(); | ||
3979 | } | ||
3980 | |||
3981 | // 35x10 = 350n times the mass per second applied maximum. | ||
3982 | float nmax = 35f * m_mass; | ||
3983 | float nmin = -35f * m_mass; | ||
3984 | |||
3985 | |||
3986 | if (fx > nmax) | ||
3987 | fx = nmax; | ||
3988 | if (fx < nmin) | ||
3989 | fx = nmin; | ||
3990 | if (fy > nmax) | ||
3991 | fy = nmax; | ||
3992 | if (fy < nmin) | ||
3993 | fy = nmin; | ||
3994 | d.BodyAddForce(Body, fx, fy, fz); | ||
3995 | //Console.WriteLine("AddForce " + fx + "," + fy + "," + fz); | ||
3996 | } | ||
3997 | } | ||
3998 | } | ||
3999 | else | ||
4000 | { // is not physical, or is not a body or is selected | ||
4001 | // from old UpdatePositionAndVelocity, ... Not a body.. so Make sure the client isn't interpolating | ||
4002 | _velocity.X = 0; | ||
4003 | _velocity.Y = 0; | ||
4004 | _velocity.Z = 0; | ||
4005 | |||
4006 | _acceleration.X = 0; | ||
4007 | _acceleration.Y = 0; | ||
4008 | _acceleration.Z = 0; | ||
4009 | |||
4010 | m_rotationalVelocity.X = 0; | ||
4011 | m_rotationalVelocity.Y = 0; | ||
4012 | m_rotationalVelocity.Z = 0; | ||
4013 | _zeroFlag = true; | ||
4014 | return; | ||
4015 | } | ||
4016 | } // end Move() | ||
4017 | } // end class | ||
3322 | } | 4018 | } |