aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
diff options
context:
space:
mode:
authorRobert Adams2012-12-21 15:21:32 -0800
committerRobert Adams2012-12-21 15:21:32 -0800
commit6dbf9c8ed4ca5646f47043f9937da5acbe124d0e (patch)
tree337ec47d2093834ccef03f83816ec3f203315c6f /OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
parentBulletSim: Move all the parameter variables, tables and get and fetch logic t... (diff)
downloadopensim-SC_OLD-6dbf9c8ed4ca5646f47043f9937da5acbe124d0e.zip
opensim-SC_OLD-6dbf9c8ed4ca5646f47043f9937da5acbe124d0e.tar.gz
opensim-SC_OLD-6dbf9c8ed4ca5646f47043f9937da5acbe124d0e.tar.bz2
opensim-SC_OLD-6dbf9c8ed4ca5646f47043f9937da5acbe124d0e.tar.xz
BulletSim: repair vehicle problems introduced in previous 'improvements'. Fix line endings in BSParams.
Diffstat (limited to '')
-rwxr-xr-xOpenSim/Region/Physics/BulletSPlugin/BSParam.cs1117
1 files changed, 559 insertions, 558 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs b/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
index 1fb4c31..5558ad5 100755
--- a/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
+++ b/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs
@@ -1,558 +1,559 @@
1/* 1/*
2 * Copyright (c) Contributors, http://opensimulator.org/ 2 * Copyright (c) Contributors, http://opensimulator.org/
3 * See CONTRIBUTORS.TXT for a full list of copyright holders. 3 * See CONTRIBUTORS.TXT for a full list of copyright holders.
4 * 4 *
5 * Redistribution and use in source and binary forms, with or without 5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met: 6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright 7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer. 8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyrightD 9 * * Redistributions in binary form must reproduce the above copyrightD
10 * notice, this list of conditions and the following disclaimer in the 10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution. 11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the OpenSimulator Project nor the 12 * * Neither the name of the OpenSimulator Project nor the
13 * names of its contributors may be used to endorse or promote products 13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission. 14 * derived from this software without specific prior written permission.
15 * 15 *
16 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY 16 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY 19 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */ 26 */
27using System; 27using System;
28using System.Collections.Generic; 28using System.Collections.Generic;
29using System.Text; 29using System.Text;
30 30
31using OpenSim.Region.Physics.Manager; 31using OpenSim.Region.Physics.Manager;
32 32
33using OpenMetaverse; 33using OpenMetaverse;
34using Nini.Config; 34using Nini.Config;
35 35
36namespace OpenSim.Region.Physics.BulletSPlugin 36namespace OpenSim.Region.Physics.BulletSPlugin
37{ 37{
38public static class BSParam 38public static class BSParam
39{ 39{
40 // Level of Detail values kept as float because that's what the Meshmerizer wants 40 // Level of Detail values kept as float because that's what the Meshmerizer wants
41 public static float MeshLOD { get; private set; } 41 public static float MeshLOD { get; private set; }
42 public static float MeshMegaPrimLOD { get; private set; } 42 public static float MeshMegaPrimLOD { get; private set; }
43 public static float MeshMegaPrimThreshold { get; private set; } 43 public static float MeshMegaPrimThreshold { get; private set; }
44 public static float SculptLOD { get; private set; } 44 public static float SculptLOD { get; private set; }
45 45
46 public static float MinimumObjectMass { get; private set; } 46 public static float MinimumObjectMass { get; private set; }
47 public static float MaximumObjectMass { get; private set; } 47 public static float MaximumObjectMass { get; private set; }
48 48
49 public static float LinearDamping { get; private set; } 49 public static float LinearDamping { get; private set; }
50 public static float AngularDamping { get; private set; } 50 public static float AngularDamping { get; private set; }
51 public static float DeactivationTime { get; private set; } 51 public static float DeactivationTime { get; private set; }
52 public static float LinearSleepingThreshold { get; private set; } 52 public static float LinearSleepingThreshold { get; private set; }
53 public static float AngularSleepingThreshold { get; private set; } 53 public static float AngularSleepingThreshold { get; private set; }
54 public static float CcdMotionThreshold { get; private set; } 54 public static float CcdMotionThreshold { get; private set; }
55 public static float CcdSweptSphereRadius { get; private set; } 55 public static float CcdSweptSphereRadius { get; private set; }
56 public static float ContactProcessingThreshold { get; private set; } 56 public static float ContactProcessingThreshold { get; private set; }
57 57
58 public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed 58 public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed
59 public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes 59 public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes
60 public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects 60 public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects
61 61
62 public static float TerrainImplementation { get; private set; } 62 public static float TerrainImplementation { get; private set; }
63 public static float TerrainFriction { get; private set; } 63 public static float TerrainFriction { get; private set; }
64 public static float TerrainHitFraction { get; private set; } 64 public static float TerrainHitFraction { get; private set; }
65 public static float TerrainRestitution { get; private set; } 65 public static float TerrainRestitution { get; private set; }
66 public static float TerrainCollisionMargin { get; private set; } 66 public static float TerrainCollisionMargin { get; private set; }
67 67
68 // Avatar parameters 68 // Avatar parameters
69 public static float AvatarFriction { get; private set; } 69 public static float AvatarFriction { get; private set; }
70 public static float AvatarStandingFriction { get; private set; } 70 public static float AvatarStandingFriction { get; private set; }
71 public static float AvatarDensity { get; private set; } 71 public static float AvatarDensity { get; private set; }
72 public static float AvatarRestitution { get; private set; } 72 public static float AvatarRestitution { get; private set; }
73 public static float AvatarCapsuleWidth { get; private set; } 73 public static float AvatarCapsuleWidth { get; private set; }
74 public static float AvatarCapsuleDepth { get; private set; } 74 public static float AvatarCapsuleDepth { get; private set; }
75 public static float AvatarCapsuleHeight { get; private set; } 75 public static float AvatarCapsuleHeight { get; private set; }
76 public static float AvatarContactProcessingThreshold { get; private set; } 76 public static float AvatarContactProcessingThreshold { get; private set; }
77 77
78 public static float VehicleAngularDamping { get; private set; } 78 public static float VehicleAngularDamping { get; private set; }
79 79
80 public static float LinksetImplementation { get; private set; } 80 public static float LinksetImplementation { get; private set; }
81 public static float LinkConstraintUseFrameOffset { get; private set; } 81 public static float LinkConstraintUseFrameOffset { get; private set; }
82 public static float LinkConstraintEnableTransMotor { get; private set; } 82 public static float LinkConstraintEnableTransMotor { get; private set; }
83 public static float LinkConstraintTransMotorMaxVel { get; private set; } 83 public static float LinkConstraintTransMotorMaxVel { get; private set; }
84 public static float LinkConstraintTransMotorMaxForce { get; private set; } 84 public static float LinkConstraintTransMotorMaxForce { get; private set; }
85 public static float LinkConstraintERP { get; private set; } 85 public static float LinkConstraintERP { get; private set; }
86 public static float LinkConstraintCFM { get; private set; } 86 public static float LinkConstraintCFM { get; private set; }
87 public static float LinkConstraintSolverIterations { get; private set; } 87 public static float LinkConstraintSolverIterations { get; private set; }
88 88
89 public static float PID_D { get; private set; } // derivative 89 public static float PID_D { get; private set; } // derivative
90 public static float PID_P { get; private set; } // proportional 90 public static float PID_P { get; private set; } // proportional
91 91
92 public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val); 92 public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val);
93 public delegate float ParamGet(BSScene scene); 93 public delegate float ParamGet(BSScene scene);
94 public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val); 94 public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val);
95 public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val); 95 public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val);
96 96
97 public struct ParameterDefn 97 public struct ParameterDefn
98 { 98 {
99 public string name; // string name of the parameter 99 public string name; // string name of the parameter
100 public string desc; // a short description of what the parameter means 100 public string desc; // a short description of what the parameter means
101 public float defaultValue; // default value if not specified anywhere else 101 public float defaultValue; // default value if not specified anywhere else
102 public ParamUser userParam; // get the value from the configuration file 102 public ParamUser userParam; // get the value from the configuration file
103 public ParamGet getter; // return the current value stored for this parameter 103 public ParamGet getter; // return the current value stored for this parameter
104 public ParamSet setter; // set the current value for this parameter 104 public ParamSet setter; // set the current value for this parameter
105 public SetOnObject onObject; // set the value on an object in the physical domain 105 public SetOnObject onObject; // set the value on an object in the physical domain
106 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s) 106 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s)
107 { 107 {
108 name = n; 108 name = n;
109 desc = d; 109 desc = d;
110 defaultValue = v; 110 defaultValue = v;
111 userParam = u; 111 userParam = u;
112 getter = g; 112 getter = g;
113 setter = s; 113 setter = s;
114 onObject = null; 114 onObject = null;
115 } 115 }
116 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o) 116 public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o)
117 { 117 {
118 name = n; 118 name = n;
119 desc = d; 119 desc = d;
120 defaultValue = v; 120 defaultValue = v;
121 userParam = u; 121 userParam = u;
122 getter = g; 122 getter = g;
123 setter = s; 123 setter = s;
124 onObject = o; 124 onObject = o;
125 } 125 }
126 } 126 }
127 127
128 // List of all of the externally visible parameters. 128 // List of all of the externally visible parameters.
129 // For each parameter, this table maps a text name to getter and setters. 129 // For each parameter, this table maps a text name to getter and setters.
130 // To add a new externally referencable/settable parameter, add the paramter storage 130 // To add a new externally referencable/settable parameter, add the paramter storage
131 // location somewhere in the program and make an entry in this table with the 131 // location somewhere in the program and make an entry in this table with the
132 // getters and setters. 132 // getters and setters.
133 // It is easiest to find an existing definition and copy it. 133 // It is easiest to find an existing definition and copy it.
134 // Parameter values are floats. Booleans are converted to a floating value. 134 // Parameter values are floats. Booleans are converted to a floating value.
135 // 135 //
136 // A ParameterDefn() takes the following parameters: 136 // A ParameterDefn() takes the following parameters:
137 // -- the text name of the parameter. This is used for console input and ini file. 137 // -- the text name of the parameter. This is used for console input and ini file.
138 // -- a short text description of the parameter. This shows up in the console listing. 138 // -- a short text description of the parameter. This shows up in the console listing.
139 // -- a delegate for fetching the parameter from the ini file. 139 // -- a default value (float)
140 // Should handle fetching the right type from the ini file and converting it. 140 // -- a delegate for fetching the parameter from the ini file.
141 // -- a delegate for getting the value as a float 141 // Should handle fetching the right type from the ini file and converting it.
142 // -- a delegate for setting the value from a float 142 // -- a delegate for getting the value as a float
143 // -- an optional delegate to update the value in the world. Most often used to 143 // -- a delegate for setting the value from a float
144 // push the new value to an in-world object. 144 // -- an optional delegate to update the value in the world. Most often used to
145 // 145 // push the new value to an in-world object.
146 // The single letter parameters for the delegates are: 146 //
147 // s = BSScene 147 // The single letter parameters for the delegates are:
148 // o = BSPhysObject 148 // s = BSScene
149 // p = string parameter name 149 // o = BSPhysObject
150 // l = localID of referenced object 150 // p = string parameter name
151 // v = float value 151 // l = localID of referenced object
152 // cf = parameter configuration class (for fetching values from ini file) 152 // v = value (float)
153 private static ParameterDefn[] ParameterDefinitions = 153 // cf = parameter configuration class (for fetching values from ini file)
154 { 154 private static ParameterDefn[] ParameterDefinitions =
155 new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties", 155 {
156 ConfigurationParameters.numericTrue, 156 new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties",
157 (s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, 157 ConfigurationParameters.numericTrue,
158 (s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); }, 158 (s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
159 (s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ), 159 (s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); },
160 new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects", 160 (s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ),
161 ConfigurationParameters.numericFalse, 161 new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects",
162 (s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, 162 ConfigurationParameters.numericFalse,
163 (s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); }, 163 (s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
164 (s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ), 164 (s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); },
165 new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects", 165 (s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ),
166 ConfigurationParameters.numericTrue, 166 new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects",
167 (s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); }, 167 ConfigurationParameters.numericTrue,
168 (s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); }, 168 (s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
169 (s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ), 169 (s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); },
170 170 (s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ),
171 new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)", 171
172 8f, 172 new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)",
173 (s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); }, 173 8f,
174 (s) => { return MeshLOD; }, 174 (s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); },
175 (s,p,l,v) => { MeshLOD = v; } ), 175 (s) => { return MeshLOD; },
176 new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters", 176 (s,p,l,v) => { MeshLOD = v; } ),
177 16f, 177 new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters",
178 (s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); }, 178 16f,
179 (s) => { return MeshMegaPrimLOD; }, 179 (s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); },
180 (s,p,l,v) => { MeshMegaPrimLOD = v; } ), 180 (s) => { return MeshMegaPrimLOD; },
181 new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD", 181 (s,p,l,v) => { MeshMegaPrimLOD = v; } ),
182 10f, 182 new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD",
183 (s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); }, 183 10f,
184 (s) => { return MeshMegaPrimThreshold; }, 184 (s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); },
185 (s,p,l,v) => { MeshMegaPrimThreshold = v; } ), 185 (s) => { return MeshMegaPrimThreshold; },
186 new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)", 186 (s,p,l,v) => { MeshMegaPrimThreshold = v; } ),
187 32f, 187 new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)",
188 (s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); }, 188 32f,
189 (s) => { return SculptLOD; }, 189 (s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); },
190 (s,p,l,v) => { SculptLOD = v; } ), 190 (s) => { return SculptLOD; },
191 191 (s,p,l,v) => { SculptLOD = v; } ),
192 new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps", 192
193 10f, 193 new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps",
194 (s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); }, 194 10f,
195 (s) => { return (float)s.m_maxSubSteps; }, 195 (s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); },
196 (s,p,l,v) => { s.m_maxSubSteps = (int)v; } ), 196 (s) => { return (float)s.m_maxSubSteps; },
197 new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)", 197 (s,p,l,v) => { s.m_maxSubSteps = (int)v; } ),
198 1f / 60f, 198 new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)",
199 (s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); }, 199 1f / 60f,
200 (s) => { return (float)s.m_fixedTimeStep; }, 200 (s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); },
201 (s,p,l,v) => { s.m_fixedTimeStep = v; } ), 201 (s) => { return (float)s.m_fixedTimeStep; },
202 new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame", 202 (s,p,l,v) => { s.m_fixedTimeStep = v; } ),
203 2048f, 203 new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame",
204 (s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); }, 204 2048f,
205 (s) => { return (float)s.m_maxCollisionsPerFrame; }, 205 (s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); },
206 (s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ), 206 (s) => { return (float)s.m_maxCollisionsPerFrame; },
207 new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame", 207 (s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ),
208 8000f, 208 new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame",
209 (s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); }, 209 8000f,
210 (s) => { return (float)s.m_maxUpdatesPerFrame; }, 210 (s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); },
211 (s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ), 211 (s) => { return (float)s.m_maxUpdatesPerFrame; },
212 new ParameterDefn("MaxTaintsToProcessPerStep", "Number of update taints to process before each simulation step", 212 (s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ),
213 500f, 213 new ParameterDefn("MaxTaintsToProcessPerStep", "Number of update taints to process before each simulation step",
214 (s,cf,p,v) => { s.m_taintsToProcessPerStep = cf.GetInt(p, (int)v); }, 214 500f,
215 (s) => { return (float)s.m_taintsToProcessPerStep; }, 215 (s,cf,p,v) => { s.m_taintsToProcessPerStep = cf.GetInt(p, (int)v); },
216 (s,p,l,v) => { s.m_taintsToProcessPerStep = (int)v; } ), 216 (s) => { return (float)s.m_taintsToProcessPerStep; },
217 new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)", 217 (s,p,l,v) => { s.m_taintsToProcessPerStep = (int)v; } ),
218 0.0001f, 218 new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)",
219 (s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); }, 219 0.0001f,
220 (s) => { return (float)MinimumObjectMass; }, 220 (s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); },
221 (s,p,l,v) => { MinimumObjectMass = v; } ), 221 (s) => { return (float)MinimumObjectMass; },
222 new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)", 222 (s,p,l,v) => { MinimumObjectMass = v; } ),
223 10000.01f, 223 new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)",
224 (s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); }, 224 10000.01f,
225 (s) => { return (float)MaximumObjectMass; }, 225 (s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); },
226 (s,p,l,v) => { MaximumObjectMass = v; } ), 226 (s) => { return (float)MaximumObjectMass; },
227 227 (s,p,l,v) => { MaximumObjectMass = v; } ),
228 new ParameterDefn("PID_D", "Derivitive factor for motion smoothing", 228
229 2200f, 229 new ParameterDefn("PID_D", "Derivitive factor for motion smoothing",
230 (s,cf,p,v) => { PID_D = cf.GetFloat(p, v); }, 230 2200f,
231 (s) => { return (float)PID_D; }, 231 (s,cf,p,v) => { PID_D = cf.GetFloat(p, v); },
232 (s,p,l,v) => { PID_D = v; } ), 232 (s) => { return (float)PID_D; },
233 new ParameterDefn("PID_P", "Parameteric factor for motion smoothing", 233 (s,p,l,v) => { PID_D = v; } ),
234 900f, 234 new ParameterDefn("PID_P", "Parameteric factor for motion smoothing",
235 (s,cf,p,v) => { PID_P = cf.GetFloat(p, v); }, 235 900f,
236 (s) => { return (float)PID_P; }, 236 (s,cf,p,v) => { PID_P = cf.GetFloat(p, v); },
237 (s,p,l,v) => { PID_P = v; } ), 237 (s) => { return (float)PID_P; },
238 238 (s,p,l,v) => { PID_P = v; } ),
239 new ParameterDefn("DefaultFriction", "Friction factor used on new objects", 239
240 0.2f, 240 new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
241 (s,cf,p,v) => { s.UnmanagedParams[0].defaultFriction = cf.GetFloat(p, v); }, 241 0.2f,
242 (s) => { return s.UnmanagedParams[0].defaultFriction; }, 242 (s,cf,p,v) => { s.UnmanagedParams[0].defaultFriction = cf.GetFloat(p, v); },
243 (s,p,l,v) => { s.UnmanagedParams[0].defaultFriction = v; } ), 243 (s) => { return s.UnmanagedParams[0].defaultFriction; },
244 new ParameterDefn("DefaultDensity", "Density for new objects" , 244 (s,p,l,v) => { s.UnmanagedParams[0].defaultFriction = v; } ),
245 10.000006836f, // Aluminum g/cm3 245 new ParameterDefn("DefaultDensity", "Density for new objects" ,
246 (s,cf,p,v) => { s.UnmanagedParams[0].defaultDensity = cf.GetFloat(p, v); }, 246 10.000006836f, // Aluminum g/cm3
247 (s) => { return s.UnmanagedParams[0].defaultDensity; }, 247 (s,cf,p,v) => { s.UnmanagedParams[0].defaultDensity = cf.GetFloat(p, v); },
248 (s,p,l,v) => { s.UnmanagedParams[0].defaultDensity = v; } ), 248 (s) => { return s.UnmanagedParams[0].defaultDensity; },
249 new ParameterDefn("DefaultRestitution", "Bouncyness of an object" , 249 (s,p,l,v) => { s.UnmanagedParams[0].defaultDensity = v; } ),
250 0f, 250 new ParameterDefn("DefaultRestitution", "Bouncyness of an object" ,
251 (s,cf,p,v) => { s.UnmanagedParams[0].defaultRestitution = cf.GetFloat(p, v); }, 251 0f,
252 (s) => { return s.UnmanagedParams[0].defaultRestitution; }, 252 (s,cf,p,v) => { s.UnmanagedParams[0].defaultRestitution = cf.GetFloat(p, v); },
253 (s,p,l,v) => { s.UnmanagedParams[0].defaultRestitution = v; } ), 253 (s) => { return s.UnmanagedParams[0].defaultRestitution; },
254 new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)", 254 (s,p,l,v) => { s.UnmanagedParams[0].defaultRestitution = v; } ),
255 0.04f, 255 new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
256 (s,cf,p,v) => { s.UnmanagedParams[0].collisionMargin = cf.GetFloat(p, v); }, 256 0.04f,
257 (s) => { return s.UnmanagedParams[0].collisionMargin; }, 257 (s,cf,p,v) => { s.UnmanagedParams[0].collisionMargin = cf.GetFloat(p, v); },
258 (s,p,l,v) => { s.UnmanagedParams[0].collisionMargin = v; } ), 258 (s) => { return s.UnmanagedParams[0].collisionMargin; },
259 new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)", 259 (s,p,l,v) => { s.UnmanagedParams[0].collisionMargin = v; } ),
260 -9.80665f, 260 new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)",
261 (s,cf,p,v) => { s.UnmanagedParams[0].gravity = cf.GetFloat(p, v); }, 261 -9.80665f,
262 (s) => { return s.UnmanagedParams[0].gravity; }, 262 (s,cf,p,v) => { s.UnmanagedParams[0].gravity = cf.GetFloat(p, v); },
263 (s,p,l,v) => { s.UpdateParameterObject((x)=>{s.UnmanagedParams[0].gravity=x;}, p, PhysParameterEntry.APPLY_TO_NONE, v); }, 263 (s) => { return s.UnmanagedParams[0].gravity; },
264 (s,o,v) => { BulletSimAPI.SetGravity2(s.World.ptr, new Vector3(0f,0f,v)); } ), 264 (s,p,l,v) => { s.UpdateParameterObject((x)=>{s.UnmanagedParams[0].gravity=x;}, p, PhysParameterEntry.APPLY_TO_NONE, v); },
265 265 (s,o,v) => { BulletSimAPI.SetGravity2(s.World.ptr, new Vector3(0f,0f,v)); } ),
266 266
267 new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)", 267
268 0f, 268 new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)",
269 (s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); }, 269 0f,
270 (s) => { return LinearDamping; }, 270 (s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); },
271 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearDamping=x;}, p, l, v); }, 271 (s) => { return LinearDamping; },
272 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, v, AngularDamping); } ), 272 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearDamping=x;}, p, l, v); },
273 new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)", 273 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, v, AngularDamping); } ),
274 0f, 274 new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)",
275 (s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); }, 275 0f,
276 (s) => { return AngularDamping; }, 276 (s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); },
277 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularDamping=x;}, p, l, v); }, 277 (s) => { return AngularDamping; },
278 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, LinearDamping, v); } ), 278 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularDamping=x;}, p, l, v); },
279 new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static", 279 (s,o,v) => { BulletSimAPI.SetDamping2(o.PhysBody.ptr, LinearDamping, v); } ),
280 0.2f, 280 new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static",
281 (s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); }, 281 0.2f,
282 (s) => { return DeactivationTime; }, 282 (s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); },
283 (s,p,l,v) => { s.UpdateParameterObject((x)=>{DeactivationTime=x;}, p, l, v); }, 283 (s) => { return DeactivationTime; },
284 (s,o,v) => { BulletSimAPI.SetDeactivationTime2(o.PhysBody.ptr, v); } ), 284 (s,p,l,v) => { s.UpdateParameterObject((x)=>{DeactivationTime=x;}, p, l, v); },
285 new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static", 285 (s,o,v) => { BulletSimAPI.SetDeactivationTime2(o.PhysBody.ptr, v); } ),
286 0.8f, 286 new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static",
287 (s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); }, 287 0.8f,
288 (s) => { return LinearSleepingThreshold; }, 288 (s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); },
289 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearSleepingThreshold=x;}, p, l, v); }, 289 (s) => { return LinearSleepingThreshold; },
290 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ), 290 (s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearSleepingThreshold=x;}, p, l, v); },
291 new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static", 291 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ),
292 1.0f, 292 new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static",
293 (s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); }, 293 1.0f,
294 (s) => { return AngularSleepingThreshold; }, 294 (s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); },
295 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularSleepingThreshold=x;}, p, l, v); }, 295 (s) => { return AngularSleepingThreshold; },
296 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ), 296 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularSleepingThreshold=x;}, p, l, v); },
297 new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" , 297 (s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.PhysBody.ptr, v, v); } ),
298 0f, // set to zero to disable 298 new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" ,
299 (s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); }, 299 0f, // set to zero to disable
300 (s) => { return CcdMotionThreshold; }, 300 (s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); },
301 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdMotionThreshold=x;}, p, l, v); }, 301 (s) => { return CcdMotionThreshold; },
302 (s,o,v) => { BulletSimAPI.SetCcdMotionThreshold2(o.PhysBody.ptr, v); } ), 302 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdMotionThreshold=x;}, p, l, v); },
303 new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" , 303 (s,o,v) => { BulletSimAPI.SetCcdMotionThreshold2(o.PhysBody.ptr, v); } ),
304 0f, 304 new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" ,
305 (s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); }, 305 0f,
306 (s) => { return CcdSweptSphereRadius; }, 306 (s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); },
307 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdSweptSphereRadius=x;}, p, l, v); }, 307 (s) => { return CcdSweptSphereRadius; },
308 (s,o,v) => { BulletSimAPI.SetCcdSweptSphereRadius2(o.PhysBody.ptr, v); } ), 308 (s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdSweptSphereRadius=x;}, p, l, v); },
309 new ParameterDefn("ContactProcessingThreshold", "Distance between contacts before doing collision check" , 309 (s,o,v) => { BulletSimAPI.SetCcdSweptSphereRadius2(o.PhysBody.ptr, v); } ),
310 0.1f, 310 new ParameterDefn("ContactProcessingThreshold", "Distance between contacts before doing collision check" ,
311 (s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); }, 311 0.1f,
312 (s) => { return ContactProcessingThreshold; }, 312 (s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); },
313 (s,p,l,v) => { s.UpdateParameterObject((x)=>{ContactProcessingThreshold=x;}, p, l, v); }, 313 (s) => { return ContactProcessingThreshold; },
314 (s,o,v) => { BulletSimAPI.SetContactProcessingThreshold2(o.PhysBody.ptr, v); } ), 314 (s,p,l,v) => { s.UpdateParameterObject((x)=>{ContactProcessingThreshold=x;}, p, l, v); },
315 315 (s,o,v) => { BulletSimAPI.SetContactProcessingThreshold2(o.PhysBody.ptr, v); } ),
316 new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)", 316
317 (float)BSTerrainPhys.TerrainImplementation.Mesh, 317 new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)",
318 (s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); }, 318 (float)BSTerrainPhys.TerrainImplementation.Mesh,
319 (s) => { return TerrainImplementation; }, 319 (s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); },
320 (s,p,l,v) => { TerrainImplementation = v; } ), 320 (s) => { return TerrainImplementation; },
321 new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" , 321 (s,p,l,v) => { TerrainImplementation = v; } ),
322 0.3f, 322 new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
323 (s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); }, 323 0.3f,
324 (s) => { return TerrainFriction; }, 324 (s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); },
325 (s,p,l,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ), 325 (s) => { return TerrainFriction; },
326 new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" , 326 (s,p,l,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ),
327 0.8f, 327 new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" ,
328 (s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); }, 328 0.8f,
329 (s) => { return TerrainHitFraction; }, 329 (s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); },
330 (s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ), 330 (s) => { return TerrainHitFraction; },
331 new ParameterDefn("TerrainRestitution", "Bouncyness" , 331 (s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ),
332 0f, 332 new ParameterDefn("TerrainRestitution", "Bouncyness" ,
333 (s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); }, 333 0f,
334 (s) => { return TerrainRestitution; }, 334 (s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); },
335 (s,p,l,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ), 335 (s) => { return TerrainRestitution; },
336 new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" , 336 (s,p,l,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ),
337 0.04f, 337 new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" ,
338 (s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); }, 338 0.04f,
339 (s) => { return TerrainCollisionMargin; }, 339 (s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); },
340 (s,p,l,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ), 340 (s) => { return TerrainCollisionMargin; },
341 341 (s,p,l,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ),
342 new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.", 342
343 0.2f, 343 new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
344 (s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); }, 344 0.2f,
345 (s) => { return AvatarFriction; }, 345 (s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); },
346 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarFriction=x;}, p, l, v); } ), 346 (s) => { return AvatarFriction; },
347 new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.", 347 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarFriction=x;}, p, l, v); } ),
348 10.0f, 348 new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
349 (s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); }, 349 10.0f,
350 (s) => { return AvatarStandingFriction; }, 350 (s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); },
351 (s,p,l,v) => { AvatarStandingFriction = v; } ), 351 (s) => { return AvatarStandingFriction; },
352 new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.", 352 (s,p,l,v) => { AvatarStandingFriction = v; } ),
353 60f, 353 new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.",
354 (s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); }, 354 60f,
355 (s) => { return AvatarDensity; }, 355 (s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); },
356 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarDensity=x;}, p, l, v); } ), 356 (s) => { return AvatarDensity; },
357 new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.", 357 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarDensity=x;}, p, l, v); } ),
358 0f, 358 new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.",
359 (s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); }, 359 0f,
360 (s) => { return AvatarRestitution; }, 360 (s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); },
361 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarRestitution=x;}, p, l, v); } ), 361 (s) => { return AvatarRestitution; },
362 new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule", 362 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarRestitution=x;}, p, l, v); } ),
363 0.6f, 363 new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule",
364 (s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); }, 364 0.6f,
365 (s) => { return AvatarCapsuleWidth; }, 365 (s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); },
366 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleWidth=x;}, p, l, v); } ), 366 (s) => { return AvatarCapsuleWidth; },
367 new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule", 367 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleWidth=x;}, p, l, v); } ),
368 0.45f, 368 new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule",
369 (s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); }, 369 0.45f,
370 (s) => { return AvatarCapsuleDepth; }, 370 (s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); },
371 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleDepth=x;}, p, l, v); } ), 371 (s) => { return AvatarCapsuleDepth; },
372 new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar", 372 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleDepth=x;}, p, l, v); } ),
373 1.5f, 373 new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar",
374 (s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); }, 374 1.5f,
375 (s) => { return AvatarCapsuleHeight; }, 375 (s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); },
376 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleHeight=x;}, p, l, v); } ), 376 (s) => { return AvatarCapsuleHeight; },
377 new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions", 377 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleHeight=x;}, p, l, v); } ),
378 0.1f, 378 new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions",
379 (s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); }, 379 0.1f,
380 (s) => { return AvatarContactProcessingThreshold; }, 380 (s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); },
381 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarContactProcessingThreshold=x;}, p, l, v); } ), 381 (s) => { return AvatarContactProcessingThreshold; },
382 382 (s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarContactProcessingThreshold=x;}, p, l, v); } ),
383 new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)", 383
384 0.95f, 384 new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)",
385 (s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); }, 385 0.95f,
386 (s) => { return VehicleAngularDamping; }, 386 (s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); },
387 (s,p,l,v) => { VehicleAngularDamping = v; } ), 387 (s) => { return VehicleAngularDamping; },
388 388 (s,p,l,v) => { VehicleAngularDamping = v; } ),
389 new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)", 389
390 0f, 390 new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
391 (s,cf,p,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); }, 391 0f,
392 (s) => { return s.UnmanagedParams[0].maxPersistantManifoldPoolSize; }, 392 (s,cf,p,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); },
393 (s,p,l,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ), 393 (s) => { return s.UnmanagedParams[0].maxPersistantManifoldPoolSize; },
394 new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)", 394 (s,p,l,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ),
395 0f, 395 new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)",
396 (s,cf,p,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); }, 396 0f,
397 (s) => { return s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize; }, 397 (s,cf,p,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); },
398 (s,p,l,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ), 398 (s) => { return s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize; },
399 new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count", 399 (s,p,l,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ),
400 ConfigurationParameters.numericFalse, 400 new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count",
401 (s,cf,p,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 401 ConfigurationParameters.numericFalse,
402 (s) => { return s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation; }, 402 (s,cf,p,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
403 (s,p,l,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ), 403 (s) => { return s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation; },
404 new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step", 404 (s,p,l,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ),
405 ConfigurationParameters.numericFalse, 405 new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step",
406 (s,cf,p,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 406 ConfigurationParameters.numericFalse,
407 (s) => { return s.UnmanagedParams[0].shouldForceUpdateAllAabbs; }, 407 (s,cf,p,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
408 (s,p,l,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ), 408 (s) => { return s.UnmanagedParams[0].shouldForceUpdateAllAabbs; },
409 new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction", 409 (s,p,l,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ),
410 ConfigurationParameters.numericTrue, 410 new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction",
411 (s,cf,p,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 411 ConfigurationParameters.numericTrue,
412 (s) => { return s.UnmanagedParams[0].shouldRandomizeSolverOrder; }, 412 (s,cf,p,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
413 (s,p,l,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ), 413 (s) => { return s.UnmanagedParams[0].shouldRandomizeSolverOrder; },
414 new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands", 414 (s,p,l,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ),
415 ConfigurationParameters.numericTrue, 415 new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands",
416 (s,cf,p,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 416 ConfigurationParameters.numericTrue,
417 (s) => { return s.UnmanagedParams[0].shouldSplitSimulationIslands; }, 417 (s,cf,p,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
418 (s,p,l,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ), 418 (s) => { return s.UnmanagedParams[0].shouldSplitSimulationIslands; },
419 new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching", 419 (s,p,l,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ),
420 ConfigurationParameters.numericFalse, 420 new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching",
421 (s,cf,p,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 421 ConfigurationParameters.numericFalse,
422 (s) => { return s.UnmanagedParams[0].shouldEnableFrictionCaching; }, 422 (s,cf,p,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
423 (s,p,l,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ), 423 (s) => { return s.UnmanagedParams[0].shouldEnableFrictionCaching; },
424 new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)", 424 (s,p,l,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ),
425 0f, // zero says use Bullet default 425 new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)",
426 (s,cf,p,v) => { s.UnmanagedParams[0].numberOfSolverIterations = cf.GetFloat(p, v); }, 426 0f, // zero says use Bullet default
427 (s) => { return s.UnmanagedParams[0].numberOfSolverIterations; }, 427 (s,cf,p,v) => { s.UnmanagedParams[0].numberOfSolverIterations = cf.GetFloat(p, v); },
428 (s,p,l,v) => { s.UnmanagedParams[0].numberOfSolverIterations = v; } ), 428 (s) => { return s.UnmanagedParams[0].numberOfSolverIterations; },
429 429 (s,p,l,v) => { s.UnmanagedParams[0].numberOfSolverIterations = v; } ),
430 new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)", 430
431 (float)BSLinkset.LinksetImplementation.Compound, 431 new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)",
432 (s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); }, 432 (float)BSLinkset.LinksetImplementation.Compound,
433 (s) => { return LinksetImplementation; }, 433 (s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); },
434 (s,p,l,v) => { LinksetImplementation = v; } ), 434 (s) => { return LinksetImplementation; },
435 new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.", 435 (s,p,l,v) => { LinksetImplementation = v; } ),
436 ConfigurationParameters.numericFalse, 436 new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.",
437 (s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 437 ConfigurationParameters.numericFalse,
438 (s) => { return LinkConstraintUseFrameOffset; }, 438 (s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
439 (s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ), 439 (s) => { return LinkConstraintUseFrameOffset; },
440 new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints", 440 (s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ),
441 ConfigurationParameters.numericTrue, 441 new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints",
442 (s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); }, 442 ConfigurationParameters.numericTrue,
443 (s) => { return LinkConstraintEnableTransMotor; }, 443 (s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
444 (s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ), 444 (s) => { return LinkConstraintEnableTransMotor; },
445 new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints", 445 (s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ),
446 5.0f, 446 new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints",
447 (s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); }, 447 5.0f,
448 (s) => { return LinkConstraintTransMotorMaxVel; }, 448 (s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); },
449 (s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ), 449 (s) => { return LinkConstraintTransMotorMaxVel; },
450 new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints", 450 (s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ),
451 0.1f, 451 new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints",
452 (s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); }, 452 0.1f,
453 (s) => { return LinkConstraintTransMotorMaxForce; }, 453 (s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); },
454 (s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ), 454 (s) => { return LinkConstraintTransMotorMaxForce; },
455 new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1", 455 (s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ),
456 0.1f, 456 new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1",
457 (s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); }, 457 0.1f,
458 (s) => { return LinkConstraintCFM; }, 458 (s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); },
459 (s,p,l,v) => { LinkConstraintCFM = v; } ), 459 (s) => { return LinkConstraintCFM; },
460 new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2", 460 (s,p,l,v) => { LinkConstraintCFM = v; } ),
461 0.1f, 461 new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2",
462 (s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); }, 462 0.1f,
463 (s) => { return LinkConstraintERP; }, 463 (s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); },
464 (s,p,l,v) => { LinkConstraintERP = v; } ), 464 (s) => { return LinkConstraintERP; },
465 new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)", 465 (s,p,l,v) => { LinkConstraintERP = v; } ),
466 40, 466 new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)",
467 (s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); }, 467 40,
468 (s) => { return LinkConstraintSolverIterations; }, 468 (s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); },
469 (s,p,l,v) => { LinkConstraintSolverIterations = v; } ), 469 (s) => { return LinkConstraintSolverIterations; },
470 470 (s,p,l,v) => { LinkConstraintSolverIterations = v; } ),
471 new ParameterDefn("LogPhysicsStatisticsFrames", "Frames between outputting detailed phys stats. (0 is off)", 471
472 0f, 472 new ParameterDefn("LogPhysicsStatisticsFrames", "Frames between outputting detailed phys stats. (0 is off)",
473 (s,cf,p,v) => { s.UnmanagedParams[0].physicsLoggingFrames = cf.GetInt(p, (int)v); }, 473 0f,
474 (s) => { return (float)s.UnmanagedParams[0].physicsLoggingFrames; }, 474 (s,cf,p,v) => { s.UnmanagedParams[0].physicsLoggingFrames = cf.GetInt(p, (int)v); },
475 (s,p,l,v) => { s.UnmanagedParams[0].physicsLoggingFrames = (int)v; } ), 475 (s) => { return (float)s.UnmanagedParams[0].physicsLoggingFrames; },
476 }; 476 (s,p,l,v) => { s.UnmanagedParams[0].physicsLoggingFrames = (int)v; } ),
477 477 };
478 // Convert a boolean to our numeric true and false values 478
479 public static float NumericBool(bool b) 479 // Convert a boolean to our numeric true and false values
480 { 480 public static float NumericBool(bool b)
481 return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse); 481 {
482 } 482 return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse);
483 483 }
484 // Convert numeric true and false values to a boolean 484
485 public static bool BoolNumeric(float b) 485 // Convert numeric true and false values to a boolean
486 { 486 public static bool BoolNumeric(float b)
487 return (b == ConfigurationParameters.numericTrue ? true : false); 487 {
488 } 488 return (b == ConfigurationParameters.numericTrue ? true : false);
489 489 }
490 // Search through the parameter definitions and return the matching 490
491 // ParameterDefn structure. 491 // Search through the parameter definitions and return the matching
492 // Case does not matter as names are compared after converting to lower case. 492 // ParameterDefn structure.
493 // Returns 'false' if the parameter is not found. 493 // Case does not matter as names are compared after converting to lower case.
494 internal static bool TryGetParameter(string paramName, out ParameterDefn defn) 494 // Returns 'false' if the parameter is not found.
495 { 495 internal static bool TryGetParameter(string paramName, out ParameterDefn defn)
496 bool ret = false; 496 {
497 ParameterDefn foundDefn = new ParameterDefn(); 497 bool ret = false;
498 string pName = paramName.ToLower(); 498 ParameterDefn foundDefn = new ParameterDefn();
499 499 string pName = paramName.ToLower();
500 foreach (ParameterDefn parm in ParameterDefinitions) 500
501 { 501 foreach (ParameterDefn parm in ParameterDefinitions)
502 if (pName == parm.name.ToLower()) 502 {
503 { 503 if (pName == parm.name.ToLower())
504 foundDefn = parm; 504 {
505 ret = true; 505 foundDefn = parm;
506 break; 506 ret = true;
507 } 507 break;
508 } 508 }
509 defn = foundDefn; 509 }
510 return ret; 510 defn = foundDefn;
511 } 511 return ret;
512 512 }
513 // Pass through the settable parameters and set the default values 513
514 internal static void SetParameterDefaultValues(BSScene physicsScene) 514 // Pass through the settable parameters and set the default values
515 { 515 internal static void SetParameterDefaultValues(BSScene physicsScene)
516 foreach (ParameterDefn parm in ParameterDefinitions) 516 {
517 { 517 foreach (ParameterDefn parm in ParameterDefinitions)
518 parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue); 518 {
519 } 519 parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue);
520 } 520 }
521 521 }
522 // Get user set values out of the ini file. 522
523 internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg) 523 // Get user set values out of the ini file.
524 { 524 internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg)
525 foreach (ParameterDefn parm in ParameterDefinitions) 525 {
526 { 526 foreach (ParameterDefn parm in ParameterDefinitions)
527 parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue); 527 {
528 } 528 parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue);
529 } 529 }
530 530 }
531 internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1]; 531
532 532 internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1];
533 // This creates an array in the correct format for returning the list of 533
534 // parameters. This is used by the 'list' option of the 'physics' command. 534 // This creates an array in the correct format for returning the list of
535 internal static void BuildParameterTable() 535 // parameters. This is used by the 'list' option of the 'physics' command.
536 { 536 internal static void BuildParameterTable()
537 if (SettableParameters.Length < ParameterDefinitions.Length) 537 {
538 { 538 if (SettableParameters.Length < ParameterDefinitions.Length)
539 List<PhysParameterEntry> entries = new List<PhysParameterEntry>(); 539 {
540 for (int ii = 0; ii < ParameterDefinitions.Length; ii++) 540 List<PhysParameterEntry> entries = new List<PhysParameterEntry>();
541 { 541 for (int ii = 0; ii < ParameterDefinitions.Length; ii++)
542 ParameterDefn pd = ParameterDefinitions[ii]; 542 {
543 entries.Add(new PhysParameterEntry(pd.name, pd.desc)); 543 ParameterDefn pd = ParameterDefinitions[ii];
544 } 544 entries.Add(new PhysParameterEntry(pd.name, pd.desc));
545 545 }
546 // make the list in alphabetical order for estetic reasons 546
547 entries.Sort(delegate(PhysParameterEntry ppe1, PhysParameterEntry ppe2) 547 // make the list in alphabetical order for estetic reasons
548 { 548 entries.Sort(delegate(PhysParameterEntry ppe1, PhysParameterEntry ppe2)
549 return ppe1.name.CompareTo(ppe2.name); 549 {
550 }); 550 return ppe1.name.CompareTo(ppe2.name);
551 551 });
552 SettableParameters = entries.ToArray(); 552
553 } 553 SettableParameters = entries.ToArray();
554 } 554 }
555 555 }
556 556
557} 557
558} 558}
559}