aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9\/ode/src/joint.cpp
blob: d83294b3463cd32784db0608809595f4ad5562c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

/*

design note: the general principle for giving a joint the option of connecting
to the static environment (i.e. the absolute frame) is to check the second
body (joint->node[1].body), and if it is zero then behave as if its body
transform is the identity.

*/

#include <ode/ode.h>
#include <ode/odemath.h>
#include <ode/rotation.h>
#include <ode/matrix.h>
#include "joint.h"

//****************************************************************************
// externs

// extern "C" void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz);
// extern "C" void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz);

//****************************************************************************
// utility

// set three "ball-and-socket" rows in the constraint equation, and the
// corresponding right hand side.

static inline void setBall (dxJoint *joint, dxJoint::Info2 *info,
			    dVector3 anchor1, dVector3 anchor2)
{
  // anchor points in global coordinates with respect to body PORs.
  dVector3 a1,a2;

  int s = info->rowskip;

  // set jacobian
  info->J1l[0] = 1;
  info->J1l[s+1] = 1;
  info->J1l[2*s+2] = 1;
  dMULTIPLY0_331 (a1,joint->node[0].body->posr.R,anchor1);
  dCROSSMAT (info->J1a,a1,s,-,+);
  if (joint->node[1].body) {
    info->J2l[0] = -1;
    info->J2l[s+1] = -1;
    info->J2l[2*s+2] = -1;
    dMULTIPLY0_331 (a2,joint->node[1].body->posr.R,anchor2);
    dCROSSMAT (info->J2a,a2,s,+,-);
  }

  // set right hand side
  dReal k = info->fps * info->erp;
  if (joint->node[1].body) {
    for (int j=0; j<3; j++) {
      info->c[j] = k * (a2[j] + joint->node[1].body->posr.pos[j] -
			a1[j] - joint->node[0].body->posr.pos[j]);
    }
  }
  else {
    for (int j=0; j<3; j++) {
      info->c[j] = k * (anchor2[j] - a1[j] -
			joint->node[0].body->posr.pos[j]);
    }
  }
}


// this is like setBall(), except that `axis' is a unit length vector
// (in global coordinates) that should be used for the first jacobian
// position row (the other two row vectors will be derived from this).
// `erp1' is the erp value to use along the axis.

static inline void setBall2 (dxJoint *joint, dxJoint::Info2 *info,
			    dVector3 anchor1, dVector3 anchor2,
			    dVector3 axis, dReal erp1)
{
  // anchor points in global coordinates with respect to body PORs.
  dVector3 a1,a2;

  int i,s = info->rowskip;

  // get vectors normal to the axis. in setBall() axis,q1,q2 is [1 0 0],
  // [0 1 0] and [0 0 1], which makes everything much easier.
  dVector3 q1,q2;
  dPlaneSpace (axis,q1,q2);

  // set jacobian
  for (i=0; i<3; i++) info->J1l[i] = axis[i];
  for (i=0; i<3; i++) info->J1l[s+i] = q1[i];
  for (i=0; i<3; i++) info->J1l[2*s+i] = q2[i];
  dMULTIPLY0_331 (a1,joint->node[0].body->posr.R,anchor1);
  dCROSS (info->J1a,=,a1,axis);
  dCROSS (info->J1a+s,=,a1,q1);
  dCROSS (info->J1a+2*s,=,a1,q2);
  if (joint->node[1].body) {
    for (i=0; i<3; i++) info->J2l[i] = -axis[i];
    for (i=0; i<3; i++) info->J2l[s+i] = -q1[i];
    for (i=0; i<3; i++) info->J2l[2*s+i] = -q2[i];
    dMULTIPLY0_331 (a2,joint->node[1].body->posr.R,anchor2);
    dCROSS (info->J2a,= -,a2,axis);
    dCROSS (info->J2a+s,= -,a2,q1);
    dCROSS (info->J2a+2*s,= -,a2,q2);
  }

  // set right hand side - measure error along (axis,q1,q2)
  dReal k1 = info->fps * erp1;
  dReal k = info->fps * info->erp;

  for (i=0; i<3; i++) a1[i] += joint->node[0].body->posr.pos[i];
  if (joint->node[1].body) {
    for (i=0; i<3; i++) a2[i] += joint->node[1].body->posr.pos[i];
    info->c[0] = k1 * (dDOT(axis,a2) - dDOT(axis,a1));
    info->c[1] = k * (dDOT(q1,a2) - dDOT(q1,a1));
    info->c[2] = k * (dDOT(q2,a2) - dDOT(q2,a1));
  }
  else {
    info->c[0] = k1 * (dDOT(axis,anchor2) - dDOT(axis,a1));
    info->c[1] = k * (dDOT(q1,anchor2) - dDOT(q1,a1));
    info->c[2] = k * (dDOT(q2,anchor2) - dDOT(q2,a1));
  }
}


// set three orientation rows in the constraint equation, and the
// corresponding right hand side.

static void setFixedOrientation(dxJoint *joint, dxJoint::Info2 *info, dQuaternion qrel, int start_row)
{
  int s = info->rowskip;
  int start_index = start_row * s;

  // 3 rows to make body rotations equal
  info->J1a[start_index] = 1;
  info->J1a[start_index + s + 1] = 1;
  info->J1a[start_index + s*2+2] = 1;
  if (joint->node[1].body) {
    info->J2a[start_index] = -1;
    info->J2a[start_index + s+1] = -1;
    info->J2a[start_index + s*2+2] = -1;
  }

  // compute the right hand side. the first three elements will result in
  // relative angular velocity of the two bodies - this is set to bring them
  // back into alignment. the correcting angular velocity is
  //   |angular_velocity| = angle/time = erp*theta / stepsize
  //                      = (erp*fps) * theta
  //    angular_velocity  = |angular_velocity| * u
  //                      = (erp*fps) * theta * u
  // where rotation along unit length axis u by theta brings body 2's frame
  // to qrel with respect to body 1's frame. using a small angle approximation
  // for sin(), this gives
  //    angular_velocity  = (erp*fps) * 2 * v
  // where the quaternion of the relative rotation between the two bodies is
  //    q = [cos(theta/2) sin(theta/2)*u] = [s v]

  // get qerr = relative rotation (rotation error) between two bodies
  dQuaternion qerr,e;
  if (joint->node[1].body) {
    dQuaternion qq;
    dQMultiply1 (qq,joint->node[0].body->q,joint->node[1].body->q);
    dQMultiply2 (qerr,qq,qrel);
  }
  else {
    dQMultiply3 (qerr,joint->node[0].body->q,qrel);
  }
  if (qerr[0] < 0) {
    qerr[1] = -qerr[1];		// adjust sign of qerr to make theta small
    qerr[2] = -qerr[2];
    qerr[3] = -qerr[3];
  }
  dMULTIPLY0_331 (e,joint->node[0].body->posr.R,qerr+1); // @@@ bad SIMD padding!
  dReal k = info->fps * info->erp;
  info->c[start_row] = 2*k * e[0];
  info->c[start_row+1] = 2*k * e[1];
  info->c[start_row+2] = 2*k * e[2];
}


// compute anchor points relative to bodies

static void setAnchors (dxJoint *j, dReal x, dReal y, dReal z,
			dVector3 anchor1, dVector3 anchor2)
{
  if (j->node[0].body) {
    dReal q[4];
    q[0] = x - j->node[0].body->posr.pos[0];
    q[1] = y - j->node[0].body->posr.pos[1];
    q[2] = z - j->node[0].body->posr.pos[2];
    q[3] = 0;
    dMULTIPLY1_331 (anchor1,j->node[0].body->posr.R,q);
    if (j->node[1].body) {
      q[0] = x - j->node[1].body->posr.pos[0];
      q[1] = y - j->node[1].body->posr.pos[1];
      q[2] = z - j->node[1].body->posr.pos[2];
      q[3] = 0;
      dMULTIPLY1_331 (anchor2,j->node[1].body->posr.R,q);
    }
    else {
      anchor2[0] = x;
      anchor2[1] = y;
      anchor2[2] = z;
    }
  }
  anchor1[3] = 0;
  anchor2[3] = 0;
}


// compute axes relative to bodies. either axis1 or axis2 can be 0.

static void setAxes (dxJoint *j, dReal x, dReal y, dReal z,
		     dVector3 axis1, dVector3 axis2)
{
  if (j->node[0].body) {
    dReal q[4];
    q[0] = x;
    q[1] = y;
    q[2] = z;
    q[3] = 0;
    dNormalize3 (q);
    if (axis1) {
      dMULTIPLY1_331 (axis1,j->node[0].body->posr.R,q);
      axis1[3] = 0;
    }
    if (axis2) {
      if (j->node[1].body) {
	dMULTIPLY1_331 (axis2,j->node[1].body->posr.R,q);
      }
      else {
	axis2[0] = x;
	axis2[1] = y;
	axis2[2] = z;
      }
      axis2[3] = 0;
    }
  }
}


static void getAnchor (dxJoint *j, dVector3 result, dVector3 anchor1)
{
  if (j->node[0].body) {
    dMULTIPLY0_331 (result,j->node[0].body->posr.R,anchor1);
    result[0] += j->node[0].body->posr.pos[0];
    result[1] += j->node[0].body->posr.pos[1];
    result[2] += j->node[0].body->posr.pos[2];
  }
}


static void getAnchor2 (dxJoint *j, dVector3 result, dVector3 anchor2)
{
  if (j->node[1].body) {
    dMULTIPLY0_331 (result,j->node[1].body->posr.R,anchor2);
    result[0] += j->node[1].body->posr.pos[0];
    result[1] += j->node[1].body->posr.pos[1];
    result[2] += j->node[1].body->posr.pos[2];
  }
  else {
    result[0] = anchor2[0];
    result[1] = anchor2[1];
    result[2] = anchor2[2];
  }
}


static void getAxis (dxJoint *j, dVector3 result, dVector3 axis1)
{
  if (j->node[0].body) {
    dMULTIPLY0_331 (result,j->node[0].body->posr.R,axis1);
  }
}


static void getAxis2 (dxJoint *j, dVector3 result, dVector3 axis2)
{
  if (j->node[1].body) {
    dMULTIPLY0_331 (result,j->node[1].body->posr.R,axis2);
  }
  else {
    result[0] = axis2[0];
    result[1] = axis2[1];
    result[2] = axis2[2];
  }
}


static dReal getHingeAngleFromRelativeQuat (dQuaternion qrel, dVector3 axis)
{
  // the angle between the two bodies is extracted from the quaternion that
  // represents the relative rotation between them. recall that a quaternion
  // q is:
  //    [s,v] = [ cos(theta/2) , sin(theta/2) * u ]
  // where s is a scalar and v is a 3-vector. u is a unit length axis and
  // theta is a rotation along that axis. we can get theta/2 by:
  //    theta/2 = atan2 ( sin(theta/2) , cos(theta/2) )
  // but we can't get sin(theta/2) directly, only its absolute value, i.e.:
  //    |v| = |sin(theta/2)| * |u|
  //        = |sin(theta/2)|
  // using this value will have a strange effect. recall that there are two
  // quaternion representations of a given rotation, q and -q. typically as
  // a body rotates along the axis it will go through a complete cycle using
  // one representation and then the next cycle will use the other
  // representation. this corresponds to u pointing in the direction of the
  // hinge axis and then in the opposite direction. the result is that theta
  // will appear to go "backwards" every other cycle. here is a fix: if u
  // points "away" from the direction of the hinge (motor) axis (i.e. more
  // than 90 degrees) then use -q instead of q. this represents the same
  // rotation, but results in the cos(theta/2) value being sign inverted.

  // extract the angle from the quaternion. cost2 = cos(theta/2),
  // sint2 = |sin(theta/2)|
  dReal cost2 = qrel[0];
  dReal sint2 = dSqrt (qrel[1]*qrel[1]+qrel[2]*qrel[2]+qrel[3]*qrel[3]);
  dReal theta = (dDOT(qrel+1,axis) >= 0) ?	// @@@ padding assumptions
    (2 * dAtan2(sint2,cost2)) :		// if u points in direction of axis
    (2 * dAtan2(sint2,-cost2));		// if u points in opposite direction

  // the angle we get will be between 0..2*pi, but we want to return angles
  // between -pi..pi
  if (theta > M_PI) theta -= 2*M_PI;

  // the angle we've just extracted has the wrong sign
  theta = -theta;

  return theta;
}


// given two bodies (body1,body2), the hinge axis that they are connected by
// w.r.t. body1 (axis), and the initial relative orientation between them
// (q_initial), return the relative rotation angle. the initial relative
// orientation corresponds to an angle of zero. if body2 is 0 then measure the
// angle between body1 and the static frame.
//
// this will not return the correct angle if the bodies rotate along any axis
// other than the given hinge axis.

static dReal getHingeAngle (dxBody *body1, dxBody *body2, dVector3 axis,
			    dQuaternion q_initial)
{
  // get qrel = relative rotation between the two bodies
  dQuaternion qrel;
  if (body2) {
    dQuaternion qq;
    dQMultiply1 (qq,body1->q,body2->q);
    dQMultiply2 (qrel,qq,q_initial);
  }
  else {
    // pretend body2->q is the identity
    dQMultiply3 (qrel,body1->q,q_initial);
  }

  return getHingeAngleFromRelativeQuat (qrel,axis);
}

//****************************************************************************
// dxJointLimitMotor

void dxJointLimitMotor::init (dxWorld *world)
{
  vel = 0;
  fmax = 0;
  lostop = -dInfinity;
  histop = dInfinity;
  fudge_factor = 1;
  normal_cfm = world->global_cfm;
  stop_erp = world->global_erp;
  stop_cfm = world->global_cfm;
  bounce = 0;
  limit = 0;
  limit_err = 0;
}


void dxJointLimitMotor::set (int num, dReal value)
{
  switch (num) {
  case dParamLoStop:
    lostop = value;
    break;
  case dParamHiStop:
    histop = value;
    break;
  case dParamVel:
    vel = value;
    break;
  case dParamFMax:
    if (value >= 0) fmax = value;
    break;
  case dParamFudgeFactor:
    if (value >= 0 && value <= 1) fudge_factor = value;
    break;
  case dParamBounce:
    bounce = value;
    break;
  case dParamCFM:
    normal_cfm = value;
    break;
  case dParamStopERP:
    stop_erp = value;
    break;
  case dParamStopCFM:
    stop_cfm = value;
    break;
  }
}


dReal dxJointLimitMotor::get (int num)
{
  switch (num) {
  case dParamLoStop: return lostop;
  case dParamHiStop: return histop;
  case dParamVel: return vel;
  case dParamFMax: return fmax;
  case dParamFudgeFactor: return fudge_factor;
  case dParamBounce: return bounce;
  case dParamCFM: return normal_cfm;
  case dParamStopERP: return stop_erp;
  case dParamStopCFM: return stop_cfm;
  default: return 0;
  }
}


int dxJointLimitMotor::testRotationalLimit (dReal angle)
{
  if (angle <= lostop) {
    limit = 1;
    limit_err = angle - lostop;
    return 1;
  }
  else if (angle >= histop) {
    limit = 2;
    limit_err = angle - histop;
    return 1;
  }
  else {
    limit = 0;
    return 0;
  }
}


int dxJointLimitMotor::addLimot (dxJoint *joint,
				 dxJoint::Info2 *info, int row,
				 dVector3 ax1, int rotational)
{
  int srow = row * info->rowskip;

  // if the joint is powered, or has joint limits, add in the extra row
  int powered = fmax > 0;
  if (powered || limit) {
    dReal *J1 = rotational ? info->J1a : info->J1l;
    dReal *J2 = rotational ? info->J2a : info->J2l;

    J1[srow+0] = ax1[0];
    J1[srow+1] = ax1[1];
    J1[srow+2] = ax1[2];
    if (joint->node[1].body) {
      J2[srow+0] = -ax1[0];
      J2[srow+1] = -ax1[1];
      J2[srow+2] = -ax1[2];
    }

    // linear limot torque decoupling step:
    //
    // if this is a linear limot (e.g. from a slider), we have to be careful
    // that the linear constraint forces (+/- ax1) applied to the two bodies
    // do not create a torque couple. in other words, the points that the
    // constraint force is applied at must lie along the same ax1 axis.
    // a torque couple will result in powered or limited slider-jointed free
    // bodies from gaining angular momentum.
    // the solution used here is to apply the constraint forces at the point
    // halfway between the body centers. there is no penalty (other than an
    // extra tiny bit of computation) in doing this adjustment. note that we
    // only need to do this if the constraint connects two bodies.

    dVector3 ltd;	// Linear Torque Decoupling vector (a torque)
    if (!rotational && joint->node[1].body) {
      dVector3 c;
      c[0]=REAL(0.5)*(joint->node[1].body->posr.pos[0]-joint->node[0].body->posr.pos[0]);
      c[1]=REAL(0.5)*(joint->node[1].body->posr.pos[1]-joint->node[0].body->posr.pos[1]);
      c[2]=REAL(0.5)*(joint->node[1].body->posr.pos[2]-joint->node[0].body->posr.pos[2]);
      dCROSS (ltd,=,c,ax1);
      info->J1a[srow+0] = ltd[0];
      info->J1a[srow+1] = ltd[1];
      info->J1a[srow+2] = ltd[2];
      info->J2a[srow+0] = ltd[0];
      info->J2a[srow+1] = ltd[1];
      info->J2a[srow+2] = ltd[2];
    }

    // if we're limited low and high simultaneously, the joint motor is
    // ineffective
    if (limit && (lostop == histop)) powered = 0;

    if (powered) {
      info->cfm[row] = normal_cfm;
      if (! limit) {
	info->c[row] = vel;
	info->lo[row] = -fmax;
	info->hi[row] = fmax;
      }
      else {
	// the joint is at a limit, AND is being powered. if the joint is
	// being powered into the limit then we apply the maximum motor force
	// in that direction, because the motor is working against the
	// immovable limit. if the joint is being powered away from the limit
	// then we have problems because actually we need *two* lcp
	// constraints to handle this case. so we fake it and apply some
	// fraction of the maximum force. the fraction to use can be set as
	// a fudge factor.

	dReal fm = fmax;
	if ((vel > 0) || (vel==0 && limit==2)) fm = -fm;

	// if we're powering away from the limit, apply the fudge factor
	if ((limit==1 && vel > 0) || (limit==2 && vel < 0)) fm *= fudge_factor;

	if (rotational) {
	  dBodyAddTorque (joint->node[0].body,-fm*ax1[0],-fm*ax1[1],
			  -fm*ax1[2]);
	  if (joint->node[1].body)
	    dBodyAddTorque (joint->node[1].body,fm*ax1[0],fm*ax1[1],fm*ax1[2]);
	}
	else {
	  dBodyAddForce (joint->node[0].body,-fm*ax1[0],-fm*ax1[1],-fm*ax1[2]);
	  if (joint->node[1].body) {
	    dBodyAddForce (joint->node[1].body,fm*ax1[0],fm*ax1[1],fm*ax1[2]);

	    // linear limot torque decoupling step: refer to above discussion
	    dBodyAddTorque (joint->node[0].body,-fm*ltd[0],-fm*ltd[1],
			    -fm*ltd[2]);
	    dBodyAddTorque (joint->node[1].body,-fm*ltd[0],-fm*ltd[1],
			    -fm*ltd[2]);
	  }
	}
      }
    }

    if (limit) {
      dReal k = info->fps * stop_erp;
      info->c[row] = -k * limit_err;
      info->cfm[row] = stop_cfm;

      if (lostop == histop) {
	// limited low and high simultaneously
	info->lo[row] = -dInfinity;
	info->hi[row] = dInfinity;
      }
      else {
	if (limit == 1) {
	  // low limit
	  info->lo[row] = 0;
	  info->hi[row] = dInfinity;
	}
	else {
	  // high limit
	  info->lo[row] = -dInfinity;
	  info->hi[row] = 0;
	}

	// deal with bounce
	if (bounce > 0) {
	  // calculate joint velocity
	  dReal vel;
	  if (rotational) {
	    vel = dDOT(joint->node[0].body->avel,ax1);
	    if (joint->node[1].body)
	      vel -= dDOT(joint->node[1].body->avel,ax1);
	  }
	  else {
	    vel = dDOT(joint->node[0].body->lvel,ax1);
	    if (joint->node[1].body)
	      vel -= dDOT(joint->node[1].body->lvel,ax1);
	  }

	  // only apply bounce if the velocity is incoming, and if the
	  // resulting c[] exceeds what we already have.
	  if (limit == 1) {
	    // low limit
	    if (vel < 0) {
	      dReal newc = -bounce * vel;
	      if (newc > info->c[row]) info->c[row] = newc;
	    }
	  }
	  else {
	    // high limit - all those computations are reversed
	    if (vel > 0) {
	      dReal newc = -bounce * vel;
	      if (newc < info->c[row]) info->c[row] = newc;
	    }
	  }
	}
      }
    }
    return 1;
  }
  else return 0;
}

//****************************************************************************
// ball and socket

static void ballInit (dxJointBall *j)
{
  dSetZero (j->anchor1,4);
  dSetZero (j->anchor2,4);
  j->erp = j->world->global_erp;
  j->cfm = j->world->global_cfm;
}


static void ballGetInfo1 (dxJointBall *j, dxJoint::Info1 *info)
{
  info->m = 3;
  info->nub = 3;
}


static void ballGetInfo2 (dxJointBall *joint, dxJoint::Info2 *info)
{
  info->erp = joint->erp;
  info->cfm[0] = joint->cfm;
  info->cfm[1] = joint->cfm;
  info->cfm[2] = joint->cfm;
  setBall (joint,info,joint->anchor1,joint->anchor2);
}


void dJointSetBallAnchor (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball");
  setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2);
}


void dJointSetBallAnchor2 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball");
  joint->anchor2[0] = x;
  joint->anchor2[1] = y;
  joint->anchor2[2] = z;
  joint->anchor2[3] = 0;

}

void dJointGetBallAnchor (dJointID j, dVector3 result)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor2 (joint,result,joint->anchor2);
  else
    getAnchor (joint,result,joint->anchor1);
}


void dJointGetBallAnchor2 (dJointID j, dVector3 result)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor (joint,result,joint->anchor1);
  else
    getAnchor2 (joint,result,joint->anchor2);
}


void dxJointBall::set (int num, dReal value)
{
  switch (num) {
  case dParamCFM:
    cfm = value;
    break;
  case dParamERP:
    erp = value;
    break;
  }
}
 

dReal dxJointBall::get (int num)
{
  switch (num) {
  case dParamCFM:
    return cfm;
  case dParamERP:
    return erp;
  default:
	return 0;
  }
}


void dJointSetBallParam (dJointID j, int parameter, dReal value)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball joint");
  joint->set (parameter,value);
}


dReal dJointGetBallParam (dJointID j, int parameter)
{
  dxJointBall* joint = (dxJointBall*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball joint");
  return joint->get (parameter);
}


dxJoint::Vtable __dball_vtable = {
  sizeof(dxJointBall),
  (dxJoint::init_fn*) ballInit,
  (dxJoint::getInfo1_fn*) ballGetInfo1,
  (dxJoint::getInfo2_fn*) ballGetInfo2,
  dJointTypeBall};

//****************************************************************************
// hinge

static void hingeInit (dxJointHinge *j)
{
  dSetZero (j->anchor1,4);
  dSetZero (j->anchor2,4);
  dSetZero (j->axis1,4);
  j->axis1[0] = 1;
  dSetZero (j->axis2,4);
  j->axis2[0] = 1;
  dSetZero (j->qrel,4);
  j->limot.init (j->world);
}


static void hingeGetInfo1 (dxJointHinge *j, dxJoint::Info1 *info)
{
  info->nub = 5;

  // see if joint is powered
  if (j->limot.fmax > 0)
    info->m = 6;	// powered hinge needs an extra constraint row
  else info->m = 5;

  // see if we're at a joint limit.
  if ((j->limot.lostop >= -M_PI || j->limot.histop <= M_PI) &&
       j->limot.lostop <= j->limot.histop) {
    dReal angle = getHingeAngle (j->node[0].body,j->node[1].body,j->axis1,
				 j->qrel);
    if (j->limot.testRotationalLimit (angle)) info->m = 6;
  }
}


static void hingeGetInfo2 (dxJointHinge *joint, dxJoint::Info2 *info)
{
  // set the three ball-and-socket rows
  setBall (joint,info,joint->anchor1,joint->anchor2);

  // set the two hinge rows. the hinge axis should be the only unconstrained
  // rotational axis, the angular velocity of the two bodies perpendicular to
  // the hinge axis should be equal. thus the constraint equations are
  //    p*w1 - p*w2 = 0
  //    q*w1 - q*w2 = 0
  // where p and q are unit vectors normal to the hinge axis, and w1 and w2
  // are the angular velocity vectors of the two bodies.

  dVector3 ax1;  // length 1 joint axis in global coordinates, from 1st body
  dVector3 p,q;  // plane space vectors for ax1
  dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1);
  dPlaneSpace (ax1,p,q);

  int s3=3*info->rowskip;
  int s4=4*info->rowskip;

  info->J1a[s3+0] = p[0];
  info->J1a[s3+1] = p[1];
  info->J1a[s3+2] = p[2];
  info->J1a[s4+0] = q[0];
  info->J1a[s4+1] = q[1];
  info->J1a[s4+2] = q[2];

  if (joint->node[1].body) {
    info->J2a[s3+0] = -p[0];
    info->J2a[s3+1] = -p[1];
    info->J2a[s3+2] = -p[2];
    info->J2a[s4+0] = -q[0];
    info->J2a[s4+1] = -q[1];
    info->J2a[s4+2] = -q[2];
  }

  // compute the right hand side of the constraint equation. set relative
  // body velocities along p and q to bring the hinge back into alignment.
  // if ax1,ax2 are the unit length hinge axes as computed from body1 and
  // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
  // if `theta' is the angle between ax1 and ax2, we need an angular velocity
  // along u to cover angle erp*theta in one step :
  //   |angular_velocity| = angle/time = erp*theta / stepsize
  //                      = (erp*fps) * theta
  //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
  //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
  // ...as ax1 and ax2 are unit length. if theta is smallish,
  // theta ~= sin(theta), so
  //    angular_velocity  = (erp*fps) * (ax1 x ax2)
  // ax1 x ax2 is in the plane space of ax1, so we project the angular
  // velocity to p and q to find the right hand side.

  dVector3 ax2,b;
  if (joint->node[1].body) {
    dMULTIPLY0_331 (ax2,joint->node[1].body->posr.R,joint->axis2);
  }
  else {
    ax2[0] = joint->axis2[0];
    ax2[1] = joint->axis2[1];
    ax2[2] = joint->axis2[2];
  }
  dCROSS (b,=,ax1,ax2);
  dReal k = info->fps * info->erp;
  info->c[3] = k * dDOT(b,p);
  info->c[4] = k * dDOT(b,q);

  // if the hinge is powered, or has joint limits, add in the stuff
  joint->limot.addLimot (joint,info,5,ax1,1);
}


// compute initial relative rotation body1 -> body2, or env -> body1

static void hingeComputeInitialRelativeRotation (dxJointHinge *joint)
{
  if (joint->node[0].body) {
    if (joint->node[1].body) {
      dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q);
    }
    else {
      // set joint->qrel to the transpose of the first body q
      joint->qrel[0] = joint->node[0].body->q[0];
      for (int i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i];
    }
  }
}


void dJointSetHingeAnchor (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2);
  hingeComputeInitialRelativeRotation (joint);
}


void dJointSetHingeAnchorDelta (dJointID j, dReal x, dReal y, dReal z, dReal dx, dReal dy, dReal dz)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");

  if (joint->node[0].body) {
    dReal q[4];
    q[0] = x - joint->node[0].body->posr.pos[0];
    q[1] = y - joint->node[0].body->posr.pos[1];
    q[2] = z - joint->node[0].body->posr.pos[2];
    q[3] = 0;
    dMULTIPLY1_331 (joint->anchor1,joint->node[0].body->posr.R,q);

    if (joint->node[1].body) {
      q[0] = x - joint->node[1].body->posr.pos[0];
      q[1] = y - joint->node[1].body->posr.pos[1];
      q[2] = z - joint->node[1].body->posr.pos[2];
      q[3] = 0;
      dMULTIPLY1_331 (joint->anchor2,joint->node[1].body->posr.R,q);
    }
    else {
      // Move the relative displacement between the passive body and the
      //  anchor in the same direction as the passive body has just moved
      joint->anchor2[0] = x + dx;
      joint->anchor2[1] = y + dy;
      joint->anchor2[2] = z + dz;
    }
  }
  joint->anchor1[3] = 0;
  joint->anchor2[3] = 0;

  hingeComputeInitialRelativeRotation (joint);
}



void dJointSetHingeAxis (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  setAxes (joint,x,y,z,joint->axis1,joint->axis2);
  hingeComputeInitialRelativeRotation (joint);
}


void dJointGetHingeAnchor (dJointID j, dVector3 result)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor2 (joint,result,joint->anchor2);
  else
    getAnchor (joint,result,joint->anchor1);
}


void dJointGetHingeAnchor2 (dJointID j, dVector3 result)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor (joint,result,joint->anchor1);
  else
    getAnchor2 (joint,result,joint->anchor2);
}


void dJointGetHingeAxis (dJointID j, dVector3 result)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  getAxis (joint,result,joint->axis1);
}


void dJointSetHingeParam (dJointID j, int parameter, dReal value)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  joint->limot.set (parameter,value);
}


dReal dJointGetHingeParam (dJointID j, int parameter)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  return joint->limot.get (parameter);
}


dReal dJointGetHingeAngle (dJointID j)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge");
  if (joint->node[0].body) {
    dReal ang = getHingeAngle (joint->node[0].body,joint->node[1].body,joint->axis1,
			  joint->qrel);
	if (joint->flags & dJOINT_REVERSE)
	   return -ang;
	else
	   return ang;
  }
  else return 0;
}


dReal dJointGetHingeAngleRate (dJointID j)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a Hinge");
  if (joint->node[0].body) {
    dVector3 axis;
    dMULTIPLY0_331 (axis,joint->node[0].body->posr.R,joint->axis1);
    dReal rate = dDOT(axis,joint->node[0].body->avel);
    if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel);
    if (joint->flags & dJOINT_REVERSE) rate = - rate;
    return rate;
  }
  else return 0;
}


void dJointAddHingeTorque (dJointID j, dReal torque)
{
  dxJointHinge* joint = (dxJointHinge*)j;
  dVector3 axis;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a Hinge");

  if (joint->flags & dJOINT_REVERSE)
    torque = -torque;

  getAxis (joint,axis,joint->axis1);
  axis[0] *= torque;
  axis[1] *= torque;
  axis[2] *= torque;

  if (joint->node[0].body != 0)
    dBodyAddTorque (joint->node[0].body, axis[0], axis[1], axis[2]);
  if (joint->node[1].body != 0)
    dBodyAddTorque(joint->node[1].body, -axis[0], -axis[1], -axis[2]);
}


dxJoint::Vtable __dhinge_vtable = {
  sizeof(dxJointHinge),
  (dxJoint::init_fn*) hingeInit,
  (dxJoint::getInfo1_fn*) hingeGetInfo1,
  (dxJoint::getInfo2_fn*) hingeGetInfo2,
  dJointTypeHinge};

//****************************************************************************
// slider

static void sliderInit (dxJointSlider *j)
{
  dSetZero (j->axis1,4);
  j->axis1[0] = 1;
  dSetZero (j->qrel,4);
  dSetZero (j->offset,4);
  j->limot.init (j->world);
}


dReal dJointGetSliderPosition (dJointID j)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");

  // get axis1 in global coordinates
  dVector3 ax1,q;
  dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1);

  if (joint->node[1].body) {
    // get body2 + offset point in global coordinates
    dMULTIPLY0_331 (q,joint->node[1].body->posr.R,joint->offset);
    for (int i=0; i<3; i++) q[i] = joint->node[0].body->posr.pos[i] - q[i] -
			      joint->node[1].body->posr.pos[i];
  }
  else {
    for (int i=0; i<3; i++) q[i] = joint->node[0].body->posr.pos[i] -
			      joint->offset[i];

  }
  return dDOT(ax1,q);
}


dReal dJointGetSliderPositionRate (dJointID j)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");

  // get axis1 in global coordinates
  dVector3 ax1;
  dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1);

  if (joint->node[1].body) {
    return dDOT(ax1,joint->node[0].body->lvel) -
      dDOT(ax1,joint->node[1].body->lvel);
  }
  else {
    return dDOT(ax1,joint->node[0].body->lvel);
  }
}


static void sliderGetInfo1 (dxJointSlider *j, dxJoint::Info1 *info)
{
  info->nub = 5;

  // see if joint is powered
  if (j->limot.fmax > 0)
    info->m = 6;	// powered slider needs an extra constraint row
  else info->m = 5;

  // see if we're at a joint limit.
  j->limot.limit = 0;
  if ((j->limot.lostop > -dInfinity || j->limot.histop < dInfinity) &&
      j->limot.lostop <= j->limot.histop) {
    // measure joint position
    dReal pos = dJointGetSliderPosition (j);
    if (pos <= j->limot.lostop) {
      j->limot.limit = 1;
      j->limot.limit_err = pos - j->limot.lostop;
      info->m = 6;
    }
    else if (pos >= j->limot.histop) {
      j->limot.limit = 2;
      j->limot.limit_err = pos - j->limot.histop;
      info->m = 6;
    }
  }
}


static void sliderGetInfo2 (dxJointSlider *joint, dxJoint::Info2 *info)
{
  int i,s = info->rowskip;
  int s3=3*s,s4=4*s;

  // pull out pos and R for both bodies. also get the `connection'
  // vector pos2-pos1.

  dReal *pos1,*pos2,*R1,*R2;
  dVector3 c;
  pos1 = joint->node[0].body->posr.pos;
  R1 = joint->node[0].body->posr.R;
  if (joint->node[1].body) {
    pos2 = joint->node[1].body->posr.pos;
    R2 = joint->node[1].body->posr.R;
    for (i=0; i<3; i++) c[i] = pos2[i] - pos1[i];
  }
  else {
    pos2 = 0;
    R2 = 0;
  }

  // 3 rows to make body rotations equal
  setFixedOrientation(joint, info, joint->qrel, 0);

  // remaining two rows. we want: vel2 = vel1 + w1 x c ... but this would
  // result in three equations, so we project along the planespace vectors
  // so that sliding along the slider axis is disregarded. for symmetry we
  // also substitute (w1+w2)/2 for w1, as w1 is supposed to equal w2.

  dVector3 ax1;	// joint axis in global coordinates (unit length)
  dVector3 p,q;	// plane space of ax1
  dMULTIPLY0_331 (ax1,R1,joint->axis1);
  dPlaneSpace (ax1,p,q);
  if (joint->node[1].body) {
    dVector3 tmp;
    dCROSS (tmp, = REAL(0.5) * ,c,p);
    for (i=0; i<3; i++) info->J1a[s3+i] = tmp[i];
    for (i=0; i<3; i++) info->J2a[s3+i] = tmp[i];
    dCROSS (tmp, = REAL(0.5) * ,c,q);
    for (i=0; i<3; i++) info->J1a[s4+i] = tmp[i];
    for (i=0; i<3; i++) info->J2a[s4+i] = tmp[i];
    for (i=0; i<3; i++) info->J2l[s3+i] = -p[i];
    for (i=0; i<3; i++) info->J2l[s4+i] = -q[i];
  }
  for (i=0; i<3; i++) info->J1l[s3+i] = p[i];
  for (i=0; i<3; i++) info->J1l[s4+i] = q[i];

  // compute last two elements of right hand side. we want to align the offset
  // point (in body 2's frame) with the center of body 1.
  dReal k = info->fps * info->erp;
  if (joint->node[1].body) {
    dVector3 ofs;		// offset point in global coordinates
    dMULTIPLY0_331 (ofs,R2,joint->offset);
    for (i=0; i<3; i++) c[i] += ofs[i];
    info->c[3] = k * dDOT(p,c);
    info->c[4] = k * dDOT(q,c);
  }
  else {
    dVector3 ofs;		// offset point in global coordinates
    for (i=0; i<3; i++) ofs[i] = joint->offset[i] - pos1[i];
    info->c[3] = k * dDOT(p,ofs);
    info->c[4] = k * dDOT(q,ofs);
  }

  // if the slider is powered, or has joint limits, add in the extra row
  joint->limot.addLimot (joint,info,5,ax1,0);
}


void dJointSetSliderAxis (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  int i;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");
  setAxes (joint,x,y,z,joint->axis1,0);

  // compute initial relative rotation body1 -> body2, or env -> body1
  // also compute center of body1 w.r.t body 2
  if (joint->node[1].body) {
    dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q);
    dVector3 c;
    for (i=0; i<3; i++)
      c[i] = joint->node[0].body->posr.pos[i] - joint->node[1].body->posr.pos[i];
    dMULTIPLY1_331 (joint->offset,joint->node[1].body->posr.R,c);
  }
  else {
    // set joint->qrel to the transpose of the first body's q
    joint->qrel[0] = joint->node[0].body->q[0];
    for (i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i];
    for (i=0; i<3; i++) joint->offset[i] = joint->node[0].body->posr.pos[i];
  }
}


void dJointSetSliderAxisDelta (dJointID j, dReal x, dReal y, dReal z, dReal dx, dReal dy, dReal dz)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  int i;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");
  setAxes (joint,x,y,z,joint->axis1,0);

  // compute initial relative rotation body1 -> body2, or env -> body1
  // also compute center of body1 w.r.t body 2
  if (joint->node[1].body) {
    dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q);
    dVector3 c;
    for (i=0; i<3; i++)
      c[i] = joint->node[0].body->posr.pos[i] - joint->node[1].body->posr.pos[i];
    dMULTIPLY1_331 (joint->offset,joint->node[1].body->posr.R,c);
  }
  else {
    // set joint->qrel to the transpose of the first body's q
    joint->qrel[0] = joint->node[0].body->q[0];

    for (i=1; i<4; i++)
      joint->qrel[i] = -joint->node[0].body->q[i];

    joint->offset[0] = joint->node[0].body->posr.pos[0] + dx;
    joint->offset[1] = joint->node[0].body->posr.pos[1] + dy;
    joint->offset[2] = joint->node[0].body->posr.pos[2] + dz;
  }
}



void dJointGetSliderAxis (dJointID j, dVector3 result)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");
  getAxis (joint,result,joint->axis1);
}


void dJointSetSliderParam (dJointID j, int parameter, dReal value)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");
  joint->limot.set (parameter,value);
}


dReal dJointGetSliderParam (dJointID j, int parameter)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");
  return joint->limot.get (parameter);
}


void dJointAddSliderForce (dJointID j, dReal force)
{
  dxJointSlider* joint = (dxJointSlider*)j;
  dVector3 axis;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider");

  if (joint->flags & dJOINT_REVERSE)
    force -= force;

  getAxis (joint,axis,joint->axis1);
  axis[0] *= force;
  axis[1] *= force;
  axis[2] *= force;

  if (joint->node[0].body != 0)
    dBodyAddForce (joint->node[0].body,axis[0],axis[1],axis[2]);
  if (joint->node[1].body != 0)
    dBodyAddForce(joint->node[1].body, -axis[0], -axis[1], -axis[2]);

  if (joint->node[0].body != 0 && joint->node[1].body != 0) {
    // linear torque decoupling:
    // we have to compensate the torque, that this slider force may generate
    // if body centers are not aligned along the slider axis

    dVector3 ltd; // Linear Torque Decoupling vector (a torque)

    dVector3 c;
    c[0]=REAL(0.5)*(joint->node[1].body->posr.pos[0]-joint->node[0].body->posr.pos[0]);
    c[1]=REAL(0.5)*(joint->node[1].body->posr.pos[1]-joint->node[0].body->posr.pos[1]);
    c[2]=REAL(0.5)*(joint->node[1].body->posr.pos[2]-joint->node[0].body->posr.pos[2]);
    dCROSS (ltd,=,c,axis);

    dBodyAddTorque (joint->node[0].body,ltd[0],ltd[1], ltd[2]);
    dBodyAddTorque (joint->node[1].body,ltd[0],ltd[1], ltd[2]);
  }
}


dxJoint::Vtable __dslider_vtable = {
  sizeof(dxJointSlider),
  (dxJoint::init_fn*) sliderInit,
  (dxJoint::getInfo1_fn*) sliderGetInfo1,
  (dxJoint::getInfo2_fn*) sliderGetInfo2,
  dJointTypeSlider};

//****************************************************************************
// contact

static void contactInit (dxJointContact *j)
{
  // default frictionless contact. hmmm, this info gets overwritten straight
  // away anyway, so why bother?
#if 0 /* so don't bother ;) */
  j->contact.surface.mode = 0;
  j->contact.surface.mu = 0;
  dSetZero (j->contact.geom.pos,4);
  dSetZero (j->contact.geom.normal,4);
  j->contact.geom.depth = 0;
#endif
}


static void contactGetInfo1 (dxJointContact *j, dxJoint::Info1 *info)
{
  // make sure mu's >= 0, then calculate number of constraint rows and number
  // of unbounded rows.
  int m = 1, nub=0;
  if (j->contact.surface.mu < 0) j->contact.surface.mu = 0;
  if (j->contact.surface.mode & dContactMu2) {
    if (j->contact.surface.mu > 0) m++;
    if (j->contact.surface.mu2 < 0) j->contact.surface.mu2 = 0;
    if (j->contact.surface.mu2 > 0) m++;
    if (j->contact.surface.mu  == dInfinity) nub ++;
    if (j->contact.surface.mu2 == dInfinity) nub ++;
  }
  else {
    if (j->contact.surface.mu > 0) m += 2;
    if (j->contact.surface.mu == dInfinity) nub += 2;
  }

  j->the_m = m;
  info->m = m;
  info->nub = nub;
}


static void contactGetInfo2 (dxJointContact *j, dxJoint::Info2 *info)
{
  int s = info->rowskip;
  int s2 = 2*s;

  // get normal, with sign adjusted for body1/body2 polarity
  dVector3 normal;
  if (j->flags & dJOINT_REVERSE) {
    normal[0] = - j->contact.geom.normal[0];
    normal[1] = - j->contact.geom.normal[1];
    normal[2] = - j->contact.geom.normal[2];
  }
  else {
    normal[0] = j->contact.geom.normal[0];
    normal[1] = j->contact.geom.normal[1];
    normal[2] = j->contact.geom.normal[2];
  }
  normal[3] = 0;	// @@@ hmmm

  // c1,c2 = contact points with respect to body PORs
  dVector3 c1,c2;
  c1[0] = j->contact.geom.pos[0] - j->node[0].body->posr.pos[0];
  c1[1] = j->contact.geom.pos[1] - j->node[0].body->posr.pos[1];
  c1[2] = j->contact.geom.pos[2] - j->node[0].body->posr.pos[2];

  // set jacobian for normal
  info->J1l[0] = normal[0];
  info->J1l[1] = normal[1];
  info->J1l[2] = normal[2];
  dCROSS (info->J1a,=,c1,normal);
  if (j->node[1].body) {
    c2[0] = j->contact.geom.pos[0] - j->node[1].body->posr.pos[0];
    c2[1] = j->contact.geom.pos[1] - j->node[1].body->posr.pos[1];
    c2[2] = j->contact.geom.pos[2] - j->node[1].body->posr.pos[2];
    info->J2l[0] = -normal[0];
    info->J2l[1] = -normal[1];
    info->J2l[2] = -normal[2];
    dCROSS (info->J2a,= -,c2,normal);
  }

  // set right hand side and cfm value for normal
  dReal erp = info->erp;
  if (j->contact.surface.mode & dContactSoftERP)
    erp = j->contact.surface.soft_erp;
  dReal k = info->fps * erp;
  dReal depth = j->contact.geom.depth - j->world->contactp.min_depth;
  if (depth < 0) depth = 0;

  const dReal maxvel = j->world->contactp.max_vel;
  info->c[0] = k*depth;
  if (info->c[0] > maxvel)
    info->c[0] = maxvel;

  if (j->contact.surface.mode & dContactSoftCFM)
    info->cfm[0] = j->contact.surface.soft_cfm;

  // deal with bounce
  if (j->contact.surface.mode & dContactBounce) {
    // calculate outgoing velocity (-ve for incoming contact)
    dReal outgoing = dDOT(info->J1l,j->node[0].body->lvel) +
      dDOT(info->J1a,j->node[0].body->avel);
    if (j->node[1].body) {
      outgoing += dDOT(info->J2l,j->node[1].body->lvel) +
	dDOT(info->J2a,j->node[1].body->avel);
    }
    // only apply bounce if the outgoing velocity is greater than the
    // threshold, and if the resulting c[0] exceeds what we already have.
    if (j->contact.surface.bounce_vel >= 0 &&
	(-outgoing) > j->contact.surface.bounce_vel) {
      dReal newc = - j->contact.surface.bounce * outgoing;
      if (newc > info->c[0]) info->c[0] = newc;
    }
  }

  // set LCP limits for normal
  info->lo[0] = 0;
  info->hi[0] = dInfinity;

  // now do jacobian for tangential forces
  dVector3 t1,t2;	// two vectors tangential to normal

  // first friction direction
  if (j->the_m >= 2) {
    if (j->contact.surface.mode & dContactFDir1) {	// use fdir1 ?
      t1[0] = j->contact.fdir1[0];
      t1[1] = j->contact.fdir1[1];
      t1[2] = j->contact.fdir1[2];
      dCROSS (t2,=,normal,t1);
    }
    else {
      dPlaneSpace (normal,t1,t2);
    }
    info->J1l[s+0] = t1[0];
    info->J1l[s+1] = t1[1];
    info->J1l[s+2] = t1[2];
    dCROSS (info->J1a+s,=,c1,t1);
    if (j->node[1].body) {
      info->J2l[s+0] = -t1[0];
      info->J2l[s+1] = -t1[1];
      info->J2l[s+2] = -t1[2];
      dCROSS (info->J2a+s,= -,c2,t1);
    }
    // set right hand side
    if (j->contact.surface.mode & dContactMotion1) {
      info->c[1] = j->contact.surface.motion1;
    }
    // set LCP bounds and friction index. this depends on the approximation
    // mode
    info->lo[1] = -j->contact.surface.mu;
    info->hi[1] = j->contact.surface.mu;
    if (j->contact.surface.mode & dContactApprox1_1) info->findex[1] = 0;

    // set slip (constraint force mixing)
    if (j->contact.surface.mode & dContactSlip1)
      info->cfm[1] = j->contact.surface.slip1;
  }

  // second friction direction
  if (j->the_m >= 3) {
    info->J1l[s2+0] = t2[0];
    info->J1l[s2+1] = t2[1];
    info->J1l[s2+2] = t2[2];
    dCROSS (info->J1a+s2,=,c1,t2);
    if (j->node[1].body) {
      info->J2l[s2+0] = -t2[0];
      info->J2l[s2+1] = -t2[1];
      info->J2l[s2+2] = -t2[2];
      dCROSS (info->J2a+s2,= -,c2,t2);
    }
    // set right hand side
    if (j->contact.surface.mode & dContactMotion2) {
      info->c[2] = j->contact.surface.motion2;
    }
    // set LCP bounds and friction index. this depends on the approximation
    // mode
    if (j->contact.surface.mode & dContactMu2) {
      info->lo[2] = -j->contact.surface.mu2;
      info->hi[2] = j->contact.surface.mu2;
    }
    else {
      info->lo[2] = -j->contact.surface.mu;
      info->hi[2] = j->contact.surface.mu;
    }
    if (j->contact.surface.mode & dContactApprox1_2) info->findex[2] = 0;

    // set slip (constraint force mixing)
    if (j->contact.surface.mode & dContactSlip2)
      info->cfm[2] = j->contact.surface.slip2;
  }
}


dxJoint::Vtable __dcontact_vtable = {
  sizeof(dxJointContact),
  (dxJoint::init_fn*) contactInit,
  (dxJoint::getInfo1_fn*) contactGetInfo1,
  (dxJoint::getInfo2_fn*) contactGetInfo2,
  dJointTypeContact};

//****************************************************************************
// hinge 2. note that this joint must be attached to two bodies for it to work

static dReal measureHinge2Angle (dxJointHinge2 *joint)
{
  dVector3 a1,a2;
  dMULTIPLY0_331 (a1,joint->node[1].body->posr.R,joint->axis2);
  dMULTIPLY1_331 (a2,joint->node[0].body->posr.R,a1);
  dReal x = dDOT(joint->v1,a2);
  dReal y = dDOT(joint->v2,a2);
  return -dAtan2 (y,x);
}


static void hinge2Init (dxJointHinge2 *j)
{
  dSetZero (j->anchor1,4);
  dSetZero (j->anchor2,4);
  dSetZero (j->axis1,4);
  j->axis1[0] = 1;
  dSetZero (j->axis2,4);
  j->axis2[1] = 1;
  j->c0 = 0;
  j->s0 = 0;

  dSetZero (j->v1,4);
  j->v1[0] = 1;
  dSetZero (j->v2,4);
  j->v2[1] = 1;

  j->limot1.init (j->world);
  j->limot2.init (j->world);

  j->susp_erp = j->world->global_erp;
  j->susp_cfm = j->world->global_cfm;

  j->flags |= dJOINT_TWOBODIES;
}


static void hinge2GetInfo1 (dxJointHinge2 *j, dxJoint::Info1 *info)
{
  info->m = 4;
  info->nub = 4;

  // see if we're powered or at a joint limit for axis 1
  int atlimit=0;
  if ((j->limot1.lostop >= -M_PI || j->limot1.histop <= M_PI) &&
      j->limot1.lostop <= j->limot1.histop) {
    dReal angle = measureHinge2Angle (j);
    if (j->limot1.testRotationalLimit (angle)) atlimit = 1;
  }
  if (atlimit || j->limot1.fmax > 0) info->m++;

  // see if we're powering axis 2 (we currently never limit this axis)
  j->limot2.limit = 0;
  if (j->limot2.fmax > 0) info->m++;
}


// macro that computes ax1,ax2 = axis 1 and 2 in global coordinates (they are
// relative to body 1 and 2 initially) and then computes the constrained
// rotational axis as the cross product of ax1 and ax2.
// the sin and cos of the angle between axis 1 and 2 is computed, this comes
// from dot and cross product rules.

#define HINGE2_GET_AXIS_INFO(axis,sin_angle,cos_angle) \
  dVector3 ax1,ax2; \
  dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1); \
  dMULTIPLY0_331 (ax2,joint->node[1].body->posr.R,joint->axis2); \
  dCROSS (axis,=,ax1,ax2); \
  sin_angle = dSqrt (axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2]); \
  cos_angle = dDOT (ax1,ax2);


static void hinge2GetInfo2 (dxJointHinge2 *joint, dxJoint::Info2 *info)
{
  // get information we need to set the hinge row
  dReal s,c;
  dVector3 q;
  HINGE2_GET_AXIS_INFO (q,s,c);
  dNormalize3 (q);		// @@@ quicker: divide q by s ?

  // set the three ball-and-socket rows (aligned to the suspension axis ax1)
  setBall2 (joint,info,joint->anchor1,joint->anchor2,ax1,joint->susp_erp);

  // set the hinge row
  int s3=3*info->rowskip;
  info->J1a[s3+0] = q[0];
  info->J1a[s3+1] = q[1];
  info->J1a[s3+2] = q[2];
  if (joint->node[1].body) {
    info->J2a[s3+0] = -q[0];
    info->J2a[s3+1] = -q[1];
    info->J2a[s3+2] = -q[2];
  }

  // compute the right hand side for the constrained rotational DOF.
  // axis 1 and axis 2 are separated by an angle `theta'. the desired
  // separation angle is theta0. sin(theta0) and cos(theta0) are recorded
  // in the joint structure. the correcting angular velocity is:
  //   |angular_velocity| = angle/time = erp*(theta0-theta) / stepsize
  //                      = (erp*fps) * (theta0-theta)
  // (theta0-theta) can be computed using the following small-angle-difference
  // approximation:
  //   theta0-theta ~= tan(theta0-theta)
  //                 = sin(theta0-theta)/cos(theta0-theta)
  //                 = (c*s0 - s*c0) / (c*c0 + s*s0)
  //                 = c*s0 - s*c0         assuming c*c0 + s*s0 ~= 1
  // where c = cos(theta), s = sin(theta)
  //       c0 = cos(theta0), s0 = sin(theta0)

  dReal k = info->fps * info->erp;
  info->c[3] = k * (joint->c0 * s - joint->s0 * c);

  // if the axis1 hinge is powered, or has joint limits, add in more stuff
  int row = 4 + joint->limot1.addLimot (joint,info,4,ax1,1);

  // if the axis2 hinge is powered, add in more stuff
  joint->limot2.addLimot (joint,info,row,ax2,1);

  // set parameter for the suspension
  info->cfm[0] = joint->susp_cfm;
}


// compute vectors v1 and v2 (embedded in body1), used to measure angle
// between body 1 and body 2

static void makeHinge2V1andV2 (dxJointHinge2 *joint)
{
  if (joint->node[0].body) {
    // get axis 1 and 2 in global coords
    dVector3 ax1,ax2,v;
    dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1);
    dMULTIPLY0_331 (ax2,joint->node[1].body->posr.R,joint->axis2);

    // don't do anything if the axis1 or axis2 vectors are zero or the same
    if ((ax1[0]==0 && ax1[1]==0 && ax1[2]==0) ||
	(ax2[0]==0 && ax2[1]==0 && ax2[2]==0) ||
	(ax1[0]==ax2[0] && ax1[1]==ax2[1] && ax1[2]==ax2[2])) return;

    // modify axis 2 so it's perpendicular to axis 1
    dReal k = dDOT(ax1,ax2);
    for (int i=0; i<3; i++) ax2[i] -= k*ax1[i];
    dNormalize3 (ax2);

    // make v1 = modified axis2, v2 = axis1 x (modified axis2)
    dCROSS (v,=,ax1,ax2);
    dMULTIPLY1_331 (joint->v1,joint->node[0].body->posr.R,ax2);
    dMULTIPLY1_331 (joint->v2,joint->node[0].body->posr.R,v);
  }
}


void dJointSetHinge2Anchor (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2);
  makeHinge2V1andV2 (joint);
}


void dJointSetHinge2Axis1 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[0].body) {
    dReal q[4];
    q[0] = x;
    q[1] = y;
    q[2] = z;
    q[3] = 0;
    dNormalize3 (q);
    dMULTIPLY1_331 (joint->axis1,joint->node[0].body->posr.R,q);
    joint->axis1[3] = 0;

    // compute the sin and cos of the angle between axis 1 and axis 2
    dVector3 ax;
    HINGE2_GET_AXIS_INFO(ax,joint->s0,joint->c0);
  }
  makeHinge2V1andV2 (joint);
}


void dJointSetHinge2Axis2 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[1].body) {
    dReal q[4];
    q[0] = x;
    q[1] = y;
    q[2] = z;
    q[3] = 0;
    dNormalize3 (q);
    dMULTIPLY1_331 (joint->axis2,joint->node[1].body->posr.R,q);
    joint->axis1[3] = 0;

    // compute the sin and cos of the angle between axis 1 and axis 2
    dVector3 ax;
    HINGE2_GET_AXIS_INFO(ax,joint->s0,joint->c0);
  }
  makeHinge2V1andV2 (joint);
}


void dJointSetHinge2Param (dJointID j, int parameter, dReal value)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if ((parameter & 0xff00) == 0x100) {
    joint->limot2.set (parameter & 0xff,value);
  }
  else {
    if (parameter == dParamSuspensionERP) joint->susp_erp = value;
    else if (parameter == dParamSuspensionCFM) joint->susp_cfm = value;
    else joint->limot1.set (parameter,value);
  }
}


void dJointGetHinge2Anchor (dJointID j, dVector3 result)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor2 (joint,result,joint->anchor2);
  else
    getAnchor (joint,result,joint->anchor1);
}


void dJointGetHinge2Anchor2 (dJointID j, dVector3 result)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor (joint,result,joint->anchor1);
  else
    getAnchor2 (joint,result,joint->anchor2);
}


void dJointGetHinge2Axis1 (dJointID j, dVector3 result)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[0].body) {
    dMULTIPLY0_331 (result,joint->node[0].body->posr.R,joint->axis1);
  }
}


void dJointGetHinge2Axis2 (dJointID j, dVector3 result)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[1].body) {
    dMULTIPLY0_331 (result,joint->node[1].body->posr.R,joint->axis2);
  }
}


dReal dJointGetHinge2Param (dJointID j, int parameter)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if ((parameter & 0xff00) == 0x100) {
    return joint->limot2.get (parameter & 0xff);
  }
  else {
    if (parameter == dParamSuspensionERP) return joint->susp_erp;
    else if (parameter == dParamSuspensionCFM) return joint->susp_cfm;
    else return joint->limot1.get (parameter);
  }
}


dReal dJointGetHinge2Angle1 (dJointID j)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[0].body) return measureHinge2Angle (joint);
  else return 0;
}


dReal dJointGetHinge2Angle1Rate (dJointID j)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[0].body) {
    dVector3 axis;
    dMULTIPLY0_331 (axis,joint->node[0].body->posr.R,joint->axis1);
    dReal rate = dDOT(axis,joint->node[0].body->avel);
    if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel);
    return rate;
  }
  else return 0;
}


dReal dJointGetHinge2Angle2Rate (dJointID j)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");
  if (joint->node[0].body && joint->node[1].body) {
    dVector3 axis;
    dMULTIPLY0_331 (axis,joint->node[1].body->posr.R,joint->axis2);
    dReal rate = dDOT(axis,joint->node[0].body->avel);
    if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel);
    return rate;
  }
  else return 0;
}


void dJointAddHinge2Torques (dJointID j, dReal torque1, dReal torque2)
{
  dxJointHinge2* joint = (dxJointHinge2*)j;
  dVector3 axis1, axis2;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2");

  if (joint->node[0].body && joint->node[1].body) {
    dMULTIPLY0_331 (axis1,joint->node[0].body->posr.R,joint->axis1);
    dMULTIPLY0_331 (axis2,joint->node[1].body->posr.R,joint->axis2);
    axis1[0] = axis1[0] * torque1 + axis2[0] * torque2;
    axis1[1] = axis1[1] * torque1 + axis2[1] * torque2;
    axis1[2] = axis1[2] * torque1 + axis2[2] * torque2;
    dBodyAddTorque (joint->node[0].body,axis1[0],axis1[1],axis1[2]);
    dBodyAddTorque(joint->node[1].body, -axis1[0], -axis1[1], -axis1[2]);
  }
}


dxJoint::Vtable __dhinge2_vtable = {
  sizeof(dxJointHinge2),
  (dxJoint::init_fn*) hinge2Init,
  (dxJoint::getInfo1_fn*) hinge2GetInfo1,
  (dxJoint::getInfo2_fn*) hinge2GetInfo2,
  dJointTypeHinge2};

//****************************************************************************
// universal

// I just realized that the universal joint is equivalent to a hinge 2 joint with
// perfectly stiff suspension.  By comparing the hinge 2 implementation to
// the universal implementation, you may be able to improve this
// implementation (or, less likely, the hinge2 implementation).

static void universalInit (dxJointUniversal *j)
{
  dSetZero (j->anchor1,4);
  dSetZero (j->anchor2,4);
  dSetZero (j->axis1,4);
  j->axis1[0] = 1;
  dSetZero (j->axis2,4);
  j->axis2[1] = 1;
  dSetZero(j->qrel1,4);
  dSetZero(j->qrel2,4);
  j->limot1.init (j->world);
  j->limot2.init (j->world);
}


static void getUniversalAxes(dxJointUniversal *joint, dVector3 ax1, dVector3 ax2)
{
  // This says "ax1 = joint->node[0].body->posr.R * joint->axis1"
  dMULTIPLY0_331 (ax1,joint->node[0].body->posr.R,joint->axis1);

  if (joint->node[1].body) {
    dMULTIPLY0_331 (ax2,joint->node[1].body->posr.R,joint->axis2);
  }
  else {
    ax2[0] = joint->axis2[0];
    ax2[1] = joint->axis2[1];
    ax2[2] = joint->axis2[2];
  }
}

static void getUniversalAngles(dxJointUniversal *joint, dReal *angle1, dReal *angle2)
{
  if (joint->node[0].body)
  {
    // length 1 joint axis in global coordinates, from each body
    dVector3 ax1, ax2;
    dMatrix3 R;
    dQuaternion qcross, qq, qrel;

    getUniversalAxes (joint,ax1,ax2);

    // It should be possible to get both angles without explicitly
    // constructing the rotation matrix of the cross.  Basically,
    // orientation of the cross about axis1 comes from body 2,
    // about axis 2 comes from body 1, and the perpendicular
    // axis can come from the two bodies somehow.  (We don't really
    // want to assume it's 90 degrees, because in general the
    // constraints won't be perfectly satisfied, or even very well
    // satisfied.)
    //
    // However, we'd need a version of getHingeAngleFromRElativeQuat()
    // that CAN handle when its relative quat is rotated along a direction
    // other than the given axis.  What I have here works,
    // although it's probably much slower than need be.

    dRFrom2Axes (R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]);

    dRtoQ (R, qcross);


    // This code is essentialy the same as getHingeAngle(), see the comments
    // there for details.

    // get qrel = relative rotation between node[0] and the cross
    dQMultiply1 (qq, joint->node[0].body->q, qcross);
    dQMultiply2 (qrel, qq, joint->qrel1);

    *angle1 = getHingeAngleFromRelativeQuat(qrel, joint->axis1);

    // This is equivalent to
    // dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]);
    // You see that the R is constructed from the same 2 axis as for angle1
    // but the first and second axis are swapped.
    // So we can take the first R and rapply a rotation to it.
    // The rotation is around the axis between the 2 axes (ax1 and ax2).
    // We do a rotation of 180deg.

    dQuaternion qcross2;
    // Find the vector between ax1 and ax2 (i.e. in the middle)
    // We need to turn around this vector by 180deg

    // The 2 axes should be normalize so to find the vector between the 2.
    // Add and devide by 2 then normalize or simply normalize
    //    ax2
    //    ^
    //    |
    //    |
    ///   *------------> ax1
    //    We want the vector a 45deg
    //
    // N.B. We don't need to normalize the ax1 and ax2 since there are
    //      normalized when we set them.

    // We set the quaternion q = [cos(theta), dir*sin(theta)] = [w, x, y, Z]
    qrel[0] = 0;                // equivalent to cos(Pi/2)
    qrel[1] = ax1[0] + ax2[0];  // equivalent to x*sin(Pi/2); since sin(Pi/2) = 1
    qrel[2] = ax1[1] + ax2[1];
    qrel[3] = ax1[2] + ax2[2];

    dReal l = dRecip(sqrt(qrel[1]*qrel[1] + qrel[2]*qrel[2] + qrel[3]*qrel[3]));
    qrel[1] *= l;
    qrel[2] *= l;
    qrel[3] *= l;

    dQMultiply0 (qcross2, qrel, qcross);

    if (joint->node[1].body) {
      dQMultiply1 (qq, joint->node[1].body->q, qcross2);
      dQMultiply2 (qrel, qq, joint->qrel2);
    }
    else {
      // pretend joint->node[1].body->q is the identity
      dQMultiply2 (qrel, qcross2, joint->qrel2);
    }

    *angle2 = - getHingeAngleFromRelativeQuat(qrel, joint->axis2);

  }
  else
  {
    *angle1 = 0;
    *angle2 = 0;
  }
}

static dReal getUniversalAngle1(dxJointUniversal *joint)
{
  if (joint->node[0].body) {
    // length 1 joint axis in global coordinates, from each body
    dVector3 ax1, ax2;
    dMatrix3 R;
    dQuaternion qcross, qq, qrel;

    getUniversalAxes (joint,ax1,ax2);

    // It should be possible to get both angles without explicitly
    // constructing the rotation matrix of the cross.  Basically,
    // orientation of the cross about axis1 comes from body 2,
    // about axis 2 comes from body 1, and the perpendicular
    // axis can come from the two bodies somehow.  (We don't really
    // want to assume it's 90 degrees, because in general the
    // constraints won't be perfectly satisfied, or even very well
    // satisfied.)
    //
    // However, we'd need a version of getHingeAngleFromRElativeQuat()
    // that CAN handle when its relative quat is rotated along a direction
    // other than the given axis.  What I have here works,
    // although it's probably much slower than need be.

    dRFrom2Axes(R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]);
    dRtoQ (R,qcross);

    // This code is essential the same as getHingeAngle(), see the comments
    // there for details.

    // get qrel = relative rotation between node[0] and the cross
    dQMultiply1 (qq,joint->node[0].body->q,qcross);
    dQMultiply2 (qrel,qq,joint->qrel1);

    return getHingeAngleFromRelativeQuat(qrel, joint->axis1);
  }
  return 0;
}


static dReal getUniversalAngle2(dxJointUniversal *joint)
{
  if (joint->node[0].body) {
    // length 1 joint axis in global coordinates, from each body
    dVector3 ax1, ax2;
    dMatrix3 R;
    dQuaternion qcross, qq, qrel;

    getUniversalAxes (joint,ax1,ax2);

    // It should be possible to get both angles without explicitly
    // constructing the rotation matrix of the cross.  Basically,
    // orientation of the cross about axis1 comes from body 2,
    // about axis 2 comes from body 1, and the perpendicular
    // axis can come from the two bodies somehow.  (We don't really
    // want to assume it's 90 degrees, because in general the
    // constraints won't be perfectly satisfied, or even very well
    // satisfied.)
    //
    // However, we'd need a version of getHingeAngleFromRElativeQuat()
    // that CAN handle when its relative quat is rotated along a direction
    // other than the given axis.  What I have here works,
    // although it's probably much slower than need be.

    dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]);
    dRtoQ(R, qcross);

    if (joint->node[1].body) {
      dQMultiply1 (qq, joint->node[1].body->q, qcross);
      dQMultiply2 (qrel,qq,joint->qrel2);
    }
    else {
      // pretend joint->node[1].body->q is the identity
      dQMultiply2 (qrel,qcross, joint->qrel2);
    }

    return - getHingeAngleFromRelativeQuat(qrel, joint->axis2);
  }
  return 0;
}


static void universalGetInfo1 (dxJointUniversal *j, dxJoint::Info1 *info)
{
  info->nub = 4;
  info->m = 4;

  // see if we're powered or at a joint limit.
  bool constraint1 = j->limot1.fmax > 0;
  bool constraint2 = j->limot2.fmax > 0;

  bool limiting1 = (j->limot1.lostop >= -M_PI || j->limot1.histop <= M_PI) &&
       j->limot1.lostop <= j->limot1.histop;
  bool limiting2 = (j->limot2.lostop >= -M_PI || j->limot2.histop <= M_PI) &&
       j->limot2.lostop <= j->limot2.histop;

  // We need to call testRotationLimit() even if we're motored, since it
  // records the result.
  if (limiting1 || limiting2) {
    dReal angle1, angle2;
    getUniversalAngles (j, &angle1, &angle2);
    if (limiting1 && j->limot1.testRotationalLimit (angle1)) constraint1 = true;
    if (limiting2 && j->limot2.testRotationalLimit (angle2)) constraint2 = true;
  }
  if (constraint1)
    info->m++;
  if (constraint2)
    info->m++;
}


static void universalGetInfo2 (dxJointUniversal *joint, dxJoint::Info2 *info)
{
  // set the three ball-and-socket rows
  setBall (joint,info,joint->anchor1,joint->anchor2);

  // set the universal joint row. the angular velocity about an axis
  // perpendicular to both joint axes should be equal. thus the constraint
  // equation is
  //    p*w1 - p*w2 = 0
  // where p is a vector normal to both joint axes, and w1 and w2
  // are the angular velocity vectors of the two bodies.

  // length 1 joint axis in global coordinates, from each body
  dVector3 ax1, ax2;
  dVector3 ax2_temp;
  // length 1 vector perpendicular to ax1 and ax2. Neither body can rotate
  // about this.
  dVector3 p;
  dReal k;

  getUniversalAxes(joint, ax1, ax2);
  k = dDOT(ax1, ax2);
  ax2_temp[0] = ax2[0] - k*ax1[0];
  ax2_temp[1] = ax2[1] - k*ax1[1];
  ax2_temp[2] = ax2[2] - k*ax1[2];
  dCROSS(p, =, ax1, ax2_temp);
  dNormalize3(p);

  int s3=3*info->rowskip;

  info->J1a[s3+0] = p[0];
  info->J1a[s3+1] = p[1];
  info->J1a[s3+2] = p[2];

  if (joint->node[1].body) {
    info->J2a[s3+0] = -p[0];
    info->J2a[s3+1] = -p[1];
    info->J2a[s3+2] = -p[2];
  }

  // compute the right hand side of the constraint equation. set relative
  // body velocities along p to bring the axes back to perpendicular.
  // If ax1, ax2 are unit length joint axes as computed from body1 and
  // body2, we need to rotate both bodies along the axis p.  If theta
  // is the angle between ax1 and ax2, we need an angular velocity
  // along p to cover the angle erp * (theta - Pi/2) in one step:
  //
  //   |angular_velocity| = angle/time = erp*(theta - Pi/2) / stepsize
  //                      = (erp*fps) * (theta - Pi/2)
  //
  // if theta is close to Pi/2,
  // theta - Pi/2 ~= cos(theta), so
  //    |angular_velocity|  ~= (erp*fps) * (ax1 dot ax2)

  info->c[3] = info->fps * info->erp * - dDOT(ax1, ax2);

  // if the first angle is powered, or has joint limits, add in the stuff
  int row = 4 + joint->limot1.addLimot (joint,info,4,ax1,1);

  // if the second angle is powered, or has joint limits, add in more stuff
  joint->limot2.addLimot (joint,info,row,ax2,1);
}


static void universalComputeInitialRelativeRotations (dxJointUniversal *joint)
{
  if (joint->node[0].body) {
    dVector3 ax1, ax2;
    dMatrix3 R;
    dQuaternion qcross;

    getUniversalAxes(joint, ax1, ax2);

    // Axis 1.
    dRFrom2Axes(R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]);
    dRtoQ(R, qcross);
    dQMultiply1 (joint->qrel1, joint->node[0].body->q, qcross);

    // Axis 2.
    dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]);
    dRtoQ(R, qcross);
    if (joint->node[1].body) {
      dQMultiply1 (joint->qrel2, joint->node[1].body->q, qcross);
    }
    else {
      // set joint->qrel to qcross
      for (int i=0; i<4; i++) joint->qrel2[i] = qcross[i];
    }
  }
}


void dJointSetUniversalAnchor (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2);
  universalComputeInitialRelativeRotations(joint);
}


void dJointSetUniversalAxis1 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    setAxes (joint,x,y,z,NULL,joint->axis2);
  else
    setAxes (joint,x,y,z,joint->axis1,NULL);
  universalComputeInitialRelativeRotations(joint);
}


void dJointSetUniversalAxis2 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    setAxes (joint,x,y,z,joint->axis1,NULL);
  else
    setAxes (joint,x,y,z,NULL,joint->axis2);
  universalComputeInitialRelativeRotations(joint);
}


void dJointGetUniversalAnchor (dJointID j, dVector3 result)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor2 (joint,result,joint->anchor2);
  else
    getAnchor (joint,result,joint->anchor1);
}


void dJointGetUniversalAnchor2 (dJointID j, dVector3 result)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    getAnchor (joint,result,joint->anchor1);
  else
    getAnchor2 (joint,result,joint->anchor2);
}


void dJointGetUniversalAxis1 (dJointID j, dVector3 result)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    getAxis2 (joint,result,joint->axis2);
  else
    getAxis (joint,result,joint->axis1);
}


void dJointGetUniversalAxis2 (dJointID j, dVector3 result)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    getAxis (joint,result,joint->axis1);
  else
    getAxis2 (joint,result,joint->axis2);
}


void dJointSetUniversalParam (dJointID j, int parameter, dReal value)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if ((parameter & 0xff00) == 0x100) {
    joint->limot2.set (parameter & 0xff,value);
  }
  else {
    joint->limot1.set (parameter,value);
  }
}


dReal dJointGetUniversalParam (dJointID j, int parameter)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if ((parameter & 0xff00) == 0x100) {
    return joint->limot2.get (parameter & 0xff);
  }
  else {
    return joint->limot1.get (parameter);
  }
}

void dJointGetUniversalAngles (dJointID j, dReal *angle1, dReal *angle2)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    return getUniversalAngles (joint, angle2, angle1);
  else
    return getUniversalAngles (joint, angle1, angle2);
}


dReal dJointGetUniversalAngle1 (dJointID j)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    return getUniversalAngle2 (joint);
  else
    return getUniversalAngle1 (joint);
}


dReal dJointGetUniversalAngle2 (dJointID j)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");
  if (joint->flags & dJOINT_REVERSE)
    return getUniversalAngle1 (joint);
  else
    return getUniversalAngle2 (joint);
}


dReal dJointGetUniversalAngle1Rate (dJointID j)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");

  if (joint->node[0].body) {
    dVector3 axis;

    if (joint->flags & dJOINT_REVERSE)
      getAxis2 (joint,axis,joint->axis2);
    else
      getAxis (joint,axis,joint->axis1);

    dReal rate = dDOT(axis, joint->node[0].body->avel);
    if (joint->node[1].body) rate -= dDOT(axis, joint->node[1].body->avel);
    return rate;
  }
  return 0;
}


dReal dJointGetUniversalAngle2Rate (dJointID j)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");

  if (joint->node[0].body) {
    dVector3 axis;

    if (joint->flags & dJOINT_REVERSE)
      getAxis (joint,axis,joint->axis1);
    else
      getAxis2 (joint,axis,joint->axis2);

    dReal rate = dDOT(axis, joint->node[0].body->avel);
    if (joint->node[1].body) rate -= dDOT(axis, joint->node[1].body->avel);
    return rate;
  }
  return 0;
}


void dJointAddUniversalTorques (dJointID j, dReal torque1, dReal torque2)
{
  dxJointUniversal* joint = (dxJointUniversal*)j;
  dVector3 axis1, axis2;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal");

  if (joint->flags & dJOINT_REVERSE) {
    dReal temp = torque1;
    torque1 = - torque2;
    torque2 = - temp;
  }

  getAxis (joint,axis1,joint->axis1);
  getAxis2 (joint,axis2,joint->axis2);
  axis1[0] = axis1[0] * torque1 + axis2[0] * torque2;
  axis1[1] = axis1[1] * torque1 + axis2[1] * torque2;
  axis1[2] = axis1[2] * torque1 + axis2[2] * torque2;

  if (joint->node[0].body != 0)
    dBodyAddTorque (joint->node[0].body,axis1[0],axis1[1],axis1[2]);
  if (joint->node[1].body != 0)
    dBodyAddTorque(joint->node[1].body, -axis1[0], -axis1[1], -axis1[2]);
}





dxJoint::Vtable __duniversal_vtable = {
  sizeof(dxJointUniversal),
  (dxJoint::init_fn*) universalInit,
  (dxJoint::getInfo1_fn*) universalGetInfo1,
  (dxJoint::getInfo2_fn*) universalGetInfo2,
  dJointTypeUniversal};



//****************************************************************************
// Prismatic and Rotoide

static void PRInit (dxJointPR *j)
{
  // Default Position
  // Z^
  //  | Body 1       P      R          Body2
  //  |+---------+   _      _         +-----------+
  //  ||         |----|----(_)--------+           |
  //  |+---------+   -                +-----------+
  //  |
  // X.-----------------------------------------> Y
  // N.B. X is comming out of the page
  dSetZero (j->anchor2,4);

  dSetZero (j->axisR1,4);
  j->axisR1[0] = 1;
  dSetZero (j->axisR2,4);
  j->axisR2[0] = 1;

  dSetZero (j->axisP1,4);
  j->axisP1[1] = 1;
  dSetZero (j->qrel,4);
  dSetZero (j->offset,4);

  j->limotR.init (j->world);
  j->limotP.init (j->world);
}


dReal dJointGetPRPosition (dJointID j)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");

  dVector3 q;
  // get the offset in global coordinates
  dMULTIPLY0_331 (q,joint->node[0].body->posr.R,joint->offset);

  if (joint->node[1].body) {
    dVector3 anchor2;

    // get the anchor2 in global coordinates
    dMULTIPLY0_331 (anchor2,joint->node[1].body->posr.R,joint->anchor2);

    q[0] = ( (joint->node[0].body->posr.pos[0] + q[0]) -
             (joint->node[1].body->posr.pos[0] + anchor2[0]) );
    q[1] = ( (joint->node[0].body->posr.pos[1] + q[1]) -
             (joint->node[1].body->posr.pos[1] + anchor2[1]) );
    q[2] = ( (joint->node[0].body->posr.pos[2] + q[2]) -
             (joint->node[1].body->posr.pos[2] + anchor2[2]) );

  }
  else {
    //N.B. When there is no body 2 the joint->anchor2 is already in
    //     global coordinates

    q[0] = ( (joint->node[0].body->posr.pos[0] + q[0]) -
             (joint->anchor2[0]) );
    q[1] = ( (joint->node[0].body->posr.pos[1] + q[1]) -
             (joint->anchor2[1]) );
    q[2] = ( (joint->node[0].body->posr.pos[2] + q[2]) -
             (joint->anchor2[2]) );

  }

  dVector3 axP;
  // get prismatic axis in global coordinates
  dMULTIPLY0_331 (axP,joint->node[0].body->posr.R,joint->axisP1);

  return dDOT(axP, q);
}


dReal dJointGetPRPositionRate (dJointID j)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");

  if (joint->node[0].body) {
		// We want to find the rate of change of the prismatic part of the joint
		// We can find it by looking at the speed difference between body1 and the
		// anchor point.

		// r will be used to find the distance between body1 and the anchor point
		dVector3 r;
		if (joint->node[1].body) {
			// Find joint->anchor2 in global coordinates
			dVector3 anchor2;
			dMULTIPLY0_331 (anchor2,joint->node[1].body->posr.R,joint->anchor2);

			r[0] = joint->node[0].body->posr.pos[0] - anchor2[0];
			r[1] = joint->node[0].body->posr.pos[1] - anchor2[1];
			r[2] = joint->node[0].body->posr.pos[2] - anchor2[2];
		}
		else {
			//N.B. When there is no body 2 the joint->anchor2 is already in
			//     global coordinates
			r[0] = joint->node[0].body->posr.pos[0] - joint->anchor2[0];
			r[1] = joint->node[0].body->posr.pos[1] - joint->anchor2[1];
			r[2] = joint->node[0].body->posr.pos[2] - joint->anchor2[2];
		}

		// The body1 can have velocity coming from the rotation of
		// the rotoide axis. We need to remove this.

		// Take only the angular rotation coming from the rotation
		// of the rotoide articulation
		// N.B. Body1 and Body2 should have the same rotation along axis
		//      other than the rotoide axis.
		dVector3 angular;
		dMULTIPLY0_331 (angular,joint->node[0].body->posr.R,joint->axisR1);
		dReal omega = dDOT(angular, joint->node[0].body->avel);
		angular[0] *= omega;
		angular[1] *= omega;
		angular[2] *= omega;

		// Find the contribution of the angular rotation to the linear speed
		// N.B. We do vel = r X w instead of vel = w x r to have vel negative
		//      since we want to remove it from the linear velocity of the body
		dVector3 lvel1;
		dCROSS(lvel1, =, r, angular);

		lvel1[0] += joint->node[0].body->lvel[0];
		lvel1[1] += joint->node[0].body->lvel[1];
		lvel1[2] += joint->node[0].body->lvel[2];

		// Since we want rate of change along the prismatic axis
		// get axisP1 in global coordinates and get the component
		// along this axis only
		dVector3 axP1;
		dMULTIPLY0_331 (axP1,joint->node[0].body->posr.R,joint->axisP1);
		return dDOT(axP1, lvel1);
	}

	return 0.0;
}



static void PRGetInfo1 (dxJointPR *j, dxJoint::Info1 *info)
{
  info->m = 4;
  info->nub = 4;

  bool added = false;

  added = false;
  // see if the prismatic articulation is powered
  if (j->limotP.fmax > 0)
  {
    added = true;
    (info->m)++;  // powered needs an extra constraint row
  }

  // see if we're at a joint limit.
  j->limotP.limit = 0;
  if ((j->limotP.lostop > -dInfinity || j->limotP.histop < dInfinity) &&
      j->limotP.lostop <= j->limotP.histop) {
    // measure joint position
    dReal pos = dJointGetPRPosition (j);
    if (pos <= j->limotP.lostop) {
      j->limotP.limit = 1;
      j->limotP.limit_err = pos - j->limotP.lostop;
      if (!added)
        (info->m)++;
    }

    if (pos >= j->limotP.histop) {
      j->limotP.limit = 2;
      j->limotP.limit_err = pos - j->limotP.histop;
      if (!added)
        (info->m)++;
    }
  }

}



static void PRGetInfo2 (dxJointPR *joint, dxJoint::Info2 *info)
{
  int s = info->rowskip;
  int s2= 2*s;
  int s3= 3*s;
  int s4= 4*s;

  dReal k = info->fps * info->erp;


  dVector3 q;  // plane space of axP and after that axR

  // pull out pos and R for both bodies. also get the `connection'
  // vector pos2-pos1.

  dReal *pos1,*pos2,*R1,*R2;
  pos1 = joint->node[0].body->posr.pos;
  R1 = joint->node[0].body->posr.R;
  if (joint->node[1].body) {
    pos2 = joint->node[1].body->posr.pos;
    R2 = joint->node[1].body->posr.R;
  }
  else {
   //     pos2 = 0; // N.B. We can do that to be safe but it is no necessary
   //     R2 = 0;   // N.B. We can do that to be safe but it is no necessary
  }


  dVector3 axP; // Axis of the prismatic joint in global frame
  dMULTIPLY0_331 (axP, R1, joint->axisP1);

  // distance between the body1 and the anchor2 in global frame
  // Calculated in the same way as the offset
  dVector3 dist;

  if (joint->node[1].body)
  {
    dMULTIPLY0_331 (dist, R2, joint->anchor2);
    dist[0] += pos2[0] - pos1[0];
    dist[1] += pos2[1] - pos1[1];
    dist[2] += pos2[2] - pos1[2];
  }
  else {
    dist[0] = joint->anchor2[0] - pos1[0];
    dist[1] = joint->anchor2[1] - pos1[1];
    dist[2] = joint->anchor2[2] - pos1[2];
  }


  // ======================================================================
  // Work on the Rotoide part (i.e. row 0, 1 and maybe 4 if rotoide powered

  // Set the two rotoide rows. The rotoide axis should be the only unconstrained
  // rotational axis, the angular velocity of the two bodies perpendicular to
  // the rotoide axis should be equal. Thus the constraint equations are
  //    p*w1 - p*w2 = 0
  //    q*w1 - q*w2 = 0
  // where p and q are unit vectors normal to the rotoide axis, and w1 and w2
  // are the angular velocity vectors of the two bodies.
  dVector3 ax1;
  dMULTIPLY0_331 (ax1, joint->node[0].body->posr.R, joint->axisR1);
  dCROSS(q , =, ax1, axP);

  info->J1a[0] = axP[0];
  info->J1a[1] = axP[1];
  info->J1a[2] = axP[2];
  info->J1a[s+0] = q[0];
  info->J1a[s+1] = q[1];
  info->J1a[s+2] = q[2];

  if (joint->node[1].body) {
    info->J2a[0] = -axP[0];
    info->J2a[1] = -axP[1];
    info->J2a[2] = -axP[2];
    info->J2a[s+0] = -q[0];
    info->J2a[s+1] = -q[1];
    info->J2a[s+2] = -q[2];
  }


  // Compute the right hand side of the constraint equation set. Relative
  // body velocities along p and q to bring the rotoide back into alignment.
  // ax1,ax2 are the unit length rotoide axes of body1 and body2 in world frame.
  // We need to rotate both bodies along the axis u = (ax1 x ax2).
  // if `theta' is the angle between ax1 and ax2, we need an angular velocity
  // along u to cover angle erp*theta in one step :
  //   |angular_velocity| = angle/time = erp*theta / stepsize
  //                      = (erp*fps) * theta
  //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
  //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
  // ...as ax1 and ax2 are unit length. if theta is smallish,
  // theta ~= sin(theta), so
  //    angular_velocity  = (erp*fps) * (ax1 x ax2)
  // ax1 x ax2 is in the plane space of ax1, so we project the angular
  // velocity to p and q to find the right hand side.

  dVector3 ax2;
  if (joint->node[1].body) {
    dMULTIPLY0_331 (ax2, R2, joint->axisR2);
  }
  else {
    ax2[0] = joint->axisR2[0];
    ax2[1] = joint->axisR2[1];
    ax2[2] = joint->axisR2[2];
  }

  dVector3 b;
  dCROSS (b,=,ax1, ax2);
  info->c[0] = k * dDOT(b, axP);
  info->c[1] = k * dDOT(b, q);



  // ==========================
  // Work on the Prismatic part (i.e row 2,3 and 4 if only the prismatic is powered
  // or 5 if rotoide and prismatic powered

  // two rows. we want: vel2 = vel1 + w1 x c ... but this would
  // result in three equations, so we project along the planespace vectors
  // so that sliding along the prismatic axis is disregarded. for symmetry we
  // also substitute (w1+w2)/2 for w1, as w1 is supposed to equal w2.

  // p1 + R1 dist' = p2 + R2 anchor2' ## OLD ## p1 + R1 anchor1' = p2 + R2 dist'
  // v1 + w1 x R1 dist' + v_p = v2 + w2 x R2 anchor2'## OLD  v1 + w1 x R1 anchor1' = v2 + w2 x R2 dist' + v_p
  // v_p is speed of prismatic joint (i.e. elongation rate)
  // Since the constraints are perpendicular to v_p we have:
  // p dot v_p = 0 and q dot v_p = 0
  // ax1 dot ( v1 + w1 x dist = v2 + w2 x anchor2 )
  // q dot ( v1 + w1 x dist = v2 + w2 x anchor2 )
  // ==
  // ax1 . v1 + ax1 . w1 x dist = ax1 . v2 + ax1 . w2 x anchor2 ## OLD ## ax1 . v1 + ax1 . w1 x anchor1 = ax1 . v2 + ax1 . w2 x dist
  // since a . (b x c) = - b . (a x c) = - (a x c) . b
  // and a x b = - b x a
  // ax1 . v1 - ax1 x dist . w1 - ax1 . v2 - (- ax1 x anchor2 . w2) = 0
  // ax1 . v1 + dist x ax1 . w1 - ax1 . v2 - anchor2 x ax1 . w2 = 0
  // Coeff for 1er line of: J1l => ax1, J2l => -ax1
  // Coeff for 2er line of: J1l => q, J2l => -q
  // Coeff for 1er line of: J1a => dist x ax1, J2a => - anchor2 x ax1
  // Coeff for 2er line of: J1a => dist x q,   J2a => - anchor2 x q


	dCROSS ((info->J1a)+s2, = , dist, ax1);

	dCROSS ((info->J1a)+s3, = , dist, q);


  info->J1l[s2+0] = ax1[0];
	info->J1l[s2+1] = ax1[1];
	info->J1l[s2+2] = ax1[2];

  info->J1l[s3+0] = q[0];
	info->J1l[s3+1] = q[1];
	info->J1l[s3+2] = q[2];

  if (joint->node[1].body) {
    dVector3 anchor2;

    // Calculate anchor2 in world coordinate
    dMULTIPLY0_331 (anchor2, R2, joint->anchor2);

		// ax2 x anchor2 instead of anchor2 x ax2 since we want the negative value
		dCROSS ((info->J2a)+s2, = , ax2, anchor2); // since ax1 == ax2

		// The cross product is in reverse order since we want the negative value
		dCROSS ((info->J2a)+s3, = , q, anchor2);

		info->J2l[s2+0] = -ax1[0];
		info->J2l[s2+1] = -ax1[1];
		info->J2l[s2+2] = -ax1[2];

    info->J2l[s3+0] = -q[0];
		info->J2l[s3+1] = -q[1];
		info->J2l[s3+2] = -q[2];
  }


  // We want to make correction for motion not in the line of the axisP
  // We calculate the displacement w.r.t. the anchor pt.
  //
  // compute the elements 2 and 3 of right hand side.
  // we want to align the offset point (in body 2's frame) with the center of body 1.
  // The position should be the same when we are not along the prismatic axis
  dVector3 err;
  dMULTIPLY0_331 (err, R1, joint->offset);
  err[0] += dist[0];
  err[1] += dist[1];
  err[2] += dist[2];
  info->c[2] = k * dDOT(ax1, err);
  info->c[3] = k * dDOT(q, err);

  // Here we can't use addLimot because of some assumption in the function
  int powered = joint->limotP.fmax > 0;
  if (powered || joint->limotP.limit) {
    info->J1l[s4+0] = axP[0];
    info->J1l[s4+1] = axP[1];
    info->J1l[s4+2] = axP[2];
    if (joint->node[1].body) {
      info->J2l[s4+0] = -axP[0];
      info->J2l[s4+1] = -axP[1];
      info->J2l[s4+2] = -axP[2];
    }
    // linear limot torque decoupling step:
    //
    // if this is a linear limot (e.g. from a slider), we have to be careful
    // that the linear constraint forces (+/- ax1) applied to the two bodies
    // do not create a torque couple. in other words, the points that the
    // constraint force is applied at must lie along the same ax1 axis.
    // a torque couple will result in powered or limited slider-jointed free
    // bodies from gaining angular momentum.
    // the solution used here is to apply the constraint forces at the point
    // halfway between the body centers. there is no penalty (other than an
    // extra tiny bit of computation) in doing this adjustment. note that we
    // only need to do this if the constraint connects two bodies.

		dVector3 ltd;  // Linear Torque Decoupling vector (a torque)
    if (joint->node[1].body) {
			dVector3 c;
      c[0]=REAL(0.5)*(joint->node[1].body->posr.pos[0]-joint->node[0].body->posr.pos[0]);
      c[1]=REAL(0.5)*(joint->node[1].body->posr.pos[1]-joint->node[0].body->posr.pos[1]);
      c[2]=REAL(0.5)*(joint->node[1].body->posr.pos[2]-joint->node[0].body->posr.pos[2]);
			dReal val = dDOT(q, c);
			c[0] -= val * c[0];
			c[1] -= val * c[1];
			c[2] -= val * c[2];

      dCROSS (ltd,=,c,axP);
      info->J1a[s4+0] = ltd[0];
      info->J1a[s4+1] = ltd[1];
      info->J1a[s4+2] = ltd[2];
      info->J2a[s4+0] = ltd[0];
      info->J2a[s4+1] = ltd[1];
      info->J2a[s4+2] = ltd[2];
    }

    // if we're limited low and high simultaneously, the joint motor is
    // ineffective
    if (joint->limotP.limit && (joint->limotP.lostop == joint->limotP.histop))
      powered = 0;

    int row = 4;
    if (powered) {
      info->cfm[row] = joint->limotP.normal_cfm;
      if (!joint->limotP.limit) {
        info->c[row] = joint->limotP.vel;
        info->lo[row] = -joint->limotP.fmax;
        info->hi[row] = joint->limotP.fmax;
      }
      else {
        // the joint is at a limit, AND is being powered. if the joint is
        // being powered into the limit then we apply the maximum motor force
        // in that direction, because the motor is working against the
        // immovable limit. if the joint is being powered away from the limit
        // then we have problems because actually we need *two* lcp
        // constraints to handle this case. so we fake it and apply some
        // fraction of the maximum force. the fraction to use can be set as
        // a fudge factor.

        dReal fm = joint->limotP.fmax;
        dReal vel = joint->limotP.vel;
        int limit = joint->limotP.limit;
        if ((vel > 0) || (vel==0 && limit==2)) fm = -fm;

        // if we're powering away from the limit, apply the fudge factor
        if ((limit==1 && vel > 0) || (limit==2 && vel < 0))
          fm *= joint->limotP.fudge_factor;


        dBodyAddForce (joint->node[0].body,-fm*axP[0],-fm*axP[1],-fm*axP[2]);

				if (joint->node[1].body) {
					dBodyAddForce (joint->node[1].body,fm*axP[0],fm*axP[1],fm*axP[2]);

					// linear limot torque decoupling step: refer to above discussion
					dBodyAddTorque (joint->node[0].body,-fm*ltd[0],-fm*ltd[1],
													-fm*ltd[2]);
					dBodyAddTorque (joint->node[1].body,-fm*ltd[0],-fm*ltd[1],
													-fm*ltd[2]);
				}
      }
    }

		if (joint->limotP.limit) {
      dReal k = info->fps * joint->limotP.stop_erp;
      info->c[row] = -k * joint->limotP.limit_err;
      info->cfm[row] = joint->limotP.stop_cfm;

      if (joint->limotP.lostop == joint->limotP.histop) {
				// limited low and high simultaneously
				info->lo[row] = -dInfinity;
				info->hi[row] = dInfinity;
      }
      else {
        if (joint->limotP.limit == 1) {
					// low limit
					info->lo[row] = 0;
					info->hi[row] = dInfinity;
				}
				else {
					// high limit
					info->lo[row] = -dInfinity;
					info->hi[row] = 0;
				}

				// deal with bounce
        if (joint->limotP.bounce > 0) {
					// calculate joint velocity
          dReal vel;
          vel = dDOT(joint->node[0].body->lvel, axP);
          if (joint->node[1].body)
            vel -= dDOT(joint->node[1].body->lvel, axP);

					// only apply bounce if the velocity is incoming, and if the
					// resulting c[] exceeds what we already have.
          if (joint->limotP.limit == 1) {
						// low limit
						if (vel < 0) {
              dReal newc = -joint->limotP.bounce * vel;
							if (newc > info->c[row]) info->c[row] = newc;
						}
					}
					else {
						// high limit - all those computations are reversed
						if (vel > 0) {
              dReal newc = -joint->limotP.bounce * vel;
							if (newc < info->c[row]) info->c[row] = newc;
						}
					}
				}
      }
    }
  }
}


// compute initial relative rotation body1 -> body2, or env -> body1
static void PRComputeInitialRelativeRotation (dxJointPR *joint)
{
  if (joint->node[0].body) {
    if (joint->node[1].body) {
      dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q);
    }
    else {
      // set joint->qrel to the transpose of the first body q
      joint->qrel[0] = joint->node[0].body->q[0];
      for (int i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i];
      // WARNING do we need the - in -joint->node[0].body->q[i]; or not
    }
  }
}

void dJointSetPRAnchor (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");

  dVector3 dummy;
  setAnchors (joint,x,y,z,dummy,joint->anchor2);
}


void dJointSetPRAxis1 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a  Prismatic and Rotoide");

  setAxes (joint,x,y,z,joint->axisP1, 0);

  PRComputeInitialRelativeRotation (joint);

  // compute initial relative rotation body1 -> body2, or env -> body1
  // also compute distance between anchor of body1 w.r.t center of body 2
  dVector3 c;
  if (joint->node[1].body) {
    dVector3 anchor2;
    dMULTIPLY0_331 (anchor2,joint->node[1].body->posr.R, joint->anchor2);

    c[0] = ( joint->node[1].body->posr.pos[0] + anchor2[0] -
             joint->node[0].body->posr.pos[0] );
    c[1] = ( joint->node[1].body->posr.pos[1] + anchor2[1] -
             joint->node[0].body->posr.pos[1] );
    c[2] = ( joint->node[1].body->posr.pos[2] + anchor2[2] -
             joint->node[0].body->posr.pos[2] );
  }
  else if (joint->node[0].body) {
    c[0] = joint->anchor2[0] - joint->node[0].body->posr.pos[0];
    c[1] = joint->anchor2[1] - joint->node[0].body->posr.pos[1];
    c[2] = joint->anchor2[2] - joint->node[0].body->posr.pos[2];
  }
	else
	{
    joint->offset[0] = joint->anchor2[0];
		joint->offset[1] = joint->anchor2[1];
		joint->offset[2] = joint->anchor2[2];

		return;
	}


  dMULTIPLY1_331 (joint->offset,joint->node[0].body->posr.R,c);
}


void dJointSetPRAxis2 (dJointID j, dReal x, dReal y, dReal z)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");
  setAxes (joint,x,y,z,joint->axisR1,joint->axisR2);
  PRComputeInitialRelativeRotation (joint);
}


void dJointSetPRParam (dJointID j, int parameter, dReal value)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");
  if ((parameter & 0xff00) == 0x100) {
    joint->limotR.set (parameter,value);
  }
  else {
    joint->limotP.set (parameter & 0xff,value);
  }
}

void dJointGetPRAnchor (dJointID j, dVector3 result)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");

  if (joint->node[1].body)
    getAnchor2 (joint,result,joint->anchor2);
  else
  {
    result[0] = joint->anchor2[0];
    result[1] = joint->anchor2[1];
    result[2] = joint->anchor2[2];
  }

}

void dJointGetPRAxis1 (dJointID j, dVector3 result)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");
  getAxis(joint, result, joint->axisP1);
}

void dJointGetPRAxis2 (dJointID j, dVector3 result)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(result,"bad result argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");
  getAxis(joint, result, joint->axisR1);
}

dReal dJointGetPRParam (dJointID j, int parameter)
{
  dxJointPR* joint = (dxJointPR*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not Prismatic and Rotoide");
  if ((parameter & 0xff00) == 0x100) {
    return joint->limotR.get (parameter & 0xff);
  }
	else {
		return joint->limotP.get (parameter);
	}
}

void dJointAddPRTorque (dJointID j, dReal torque)
{
  dxJointPR* joint = (dxJointPR*)j;
  dVector3 axis;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dPR_vtable,"joint is not a Prismatic and Rotoide");

  if (joint->flags & dJOINT_REVERSE)
    torque = -torque;

  getAxis (joint,axis,joint->axisR1);
  axis[0] *= torque;
  axis[1] *= torque;
  axis[2] *= torque;

  if (joint->node[0].body != 0)
    dBodyAddTorque (joint->node[0].body, axis[0], axis[1], axis[2]);
  if (joint->node[1].body != 0)
    dBodyAddTorque(joint->node[1].body, -axis[0], -axis[1], -axis[2]);
}


dxJoint::Vtable __dPR_vtable = {
  sizeof(dxJointPR),
  (dxJoint::init_fn*) PRInit,
  (dxJoint::getInfo1_fn*) PRGetInfo1,
  (dxJoint::getInfo2_fn*) PRGetInfo2,
  dJointTypePR
};


//****************************************************************************
// angular motor

static void amotorInit (dxJointAMotor *j)
{
  int i;
  j->num = 0;
  j->mode = dAMotorUser;
  for (i=0; i<3; i++) {
    j->rel[i] = 0;
    dSetZero (j->axis[i],4);
    j->limot[i].init (j->world);
    j->angle[i] = 0;
  }
  dSetZero (j->reference1,4);
  dSetZero (j->reference2,4);
}


// compute the 3 axes in global coordinates

static void amotorComputeGlobalAxes (dxJointAMotor *joint, dVector3 ax[3])
{
  if (joint->mode == dAMotorEuler) {
    // special handling for euler mode
    dMULTIPLY0_331 (ax[0],joint->node[0].body->posr.R,joint->axis[0]);
    if (joint->node[1].body) {
      dMULTIPLY0_331 (ax[2],joint->node[1].body->posr.R,joint->axis[2]);
    }
    else {
      ax[2][0] = joint->axis[2][0];
      ax[2][1] = joint->axis[2][1];
      ax[2][2] = joint->axis[2][2];
    }
    dCROSS (ax[1],=,ax[2],ax[0]);
    dNormalize3 (ax[1]);
  }
  else {
    for (int i=0; i < joint->num; i++) {
      if (joint->rel[i] == 1) {
	// relative to b1
	dMULTIPLY0_331 (ax[i],joint->node[0].body->posr.R,joint->axis[i]);
      }
      else if (joint->rel[i] == 2) {
	// relative to b2
	if (joint->node[1].body) {   // jds: don't assert, just ignore
	        dMULTIPLY0_331 (ax[i],joint->node[1].body->posr.R,joint->axis[i]);
        }
      }
      else {
	// global - just copy it
	ax[i][0] = joint->axis[i][0];
	ax[i][1] = joint->axis[i][1];
	ax[i][2] = joint->axis[i][2];
      }
    }
  }
}


static void amotorComputeEulerAngles (dxJointAMotor *joint, dVector3 ax[3])
{
  // assumptions:
  //   global axes already calculated --> ax
  //   axis[0] is relative to body 1 --> global ax[0]
  //   axis[2] is relative to body 2 --> global ax[2]
  //   ax[1] = ax[2] x ax[0]
  //   original ax[0] and ax[2] are perpendicular
  //   reference1 is perpendicular to ax[0] (in body 1 frame)
  //   reference2 is perpendicular to ax[2] (in body 2 frame)
  //   all ax[] and reference vectors are unit length

  // calculate references in global frame
  dVector3 ref1,ref2;
  dMULTIPLY0_331 (ref1,joint->node[0].body->posr.R,joint->reference1);
  if (joint->node[1].body) {
    dMULTIPLY0_331 (ref2,joint->node[1].body->posr.R,joint->reference2);
  }
  else {
    ref2[0] = joint->reference2[0];
    ref2[1] = joint->reference2[1];
    ref2[2] = joint->reference2[2];
  }

  // get q perpendicular to both ax[0] and ref1, get first euler angle
  dVector3 q;
  dCROSS (q,=,ax[0],ref1);
  joint->angle[0] = -dAtan2 (dDOT(ax[2],q),dDOT(ax[2],ref1));

  // get q perpendicular to both ax[0] and ax[1], get second euler angle
  dCROSS (q,=,ax[0],ax[1]);
  joint->angle[1] = -dAtan2 (dDOT(ax[2],ax[0]),dDOT(ax[2],q));

  // get q perpendicular to both ax[1] and ax[2], get third euler angle
  dCROSS (q,=,ax[1],ax[2]);
  joint->angle[2] = -dAtan2 (dDOT(ref2,ax[1]), dDOT(ref2,q));
}


// set the reference vectors as follows:
//   * reference1 = current axis[2] relative to body 1
//   * reference2 = current axis[0] relative to body 2
// this assumes that:
//    * axis[0] is relative to body 1
//    * axis[2] is relative to body 2

static void amotorSetEulerReferenceVectors (dxJointAMotor *j)
{
  if (j->node[0].body && j->node[1].body) {
    dVector3 r;		// axis[2] and axis[0] in global coordinates
    dMULTIPLY0_331 (r,j->node[1].body->posr.R,j->axis[2]);
    dMULTIPLY1_331 (j->reference1,j->node[0].body->posr.R,r);
    dMULTIPLY0_331 (r,j->node[0].body->posr.R,j->axis[0]);
    dMULTIPLY1_331 (j->reference2,j->node[1].body->posr.R,r);
  }

  else {   // jds
    // else if (j->node[0].body) {
    // dMULTIPLY1_331 (j->reference1,j->node[0].body->posr.R,j->axis[2]);
    // dMULTIPLY0_331 (j->reference2,j->node[0].body->posr.R,j->axis[0]);

    // We want to handle angular motors attached to passive geoms
    dVector3 r;		// axis[2] and axis[0] in global coordinates
    r[0] = j->axis[2][0]; r[1] = j->axis[2][1]; r[2] = j->axis[2][2]; r[3] = j->axis[2][3];
    dMULTIPLY1_331 (j->reference1,j->node[0].body->posr.R,r);
    dMULTIPLY0_331 (r,j->node[0].body->posr.R,j->axis[0]);
    j->reference2[0] += r[0]; j->reference2[1] += r[1];
    j->reference2[2] += r[2]; j->reference2[3] += r[3];
  }
}


static void amotorGetInfo1 (dxJointAMotor *j, dxJoint::Info1 *info)
{
  info->m = 0;
  info->nub = 0;

  // compute the axes and angles, if in euler mode
  if (j->mode == dAMotorEuler) {
    dVector3 ax[3];
    amotorComputeGlobalAxes (j,ax);
    amotorComputeEulerAngles (j,ax);
  }

  // see if we're powered or at a joint limit for each axis
  for (int i=0; i < j->num; i++) {
    if (j->limot[i].testRotationalLimit (j->angle[i]) ||
	j->limot[i].fmax > 0) {
      info->m++;
    }
  }
}


static void amotorGetInfo2 (dxJointAMotor *joint, dxJoint::Info2 *info)
{
  int i;

  // compute the axes (if not global)
  dVector3 ax[3];
  amotorComputeGlobalAxes (joint,ax);

  // in euler angle mode we do not actually constrain the angular velocity
  // along the axes axis[0] and axis[2] (although we do use axis[1]) :
  //
  //    to get			constrain w2-w1 along		...not
  //    ------			---------------------		------
  //    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
  //    d(angle[1])/dt = 0	ax[1]
  //    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
  //
  // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
  // to prove the result for angle[0], write the expression for angle[0] from
  // GetInfo1 then take the derivative. to prove this for angle[2] it is
  // easier to take the euler rate expression for d(angle[2])/dt with respect
  // to the components of w and set that to 0.

  dVector3 *axptr[3];
  axptr[0] = &ax[0];
  axptr[1] = &ax[1];
  axptr[2] = &ax[2];

  dVector3 ax0_cross_ax1;
  dVector3 ax1_cross_ax2;
  if (joint->mode == dAMotorEuler) {
    dCROSS (ax0_cross_ax1,=,ax[0],ax[1]);
    axptr[2] = &ax0_cross_ax1;
    dCROSS (ax1_cross_ax2,=,ax[1],ax[2]);
    axptr[0] = &ax1_cross_ax2;
  }

  int row=0;
  for (i=0; i < joint->num; i++) {
    row += joint->limot[i].addLimot (joint,info,row,*(axptr[i]),1);
  }
}


void dJointSetAMotorNumAxes (dJointID j, int num)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && num >= 0 && num <= 3);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  if (joint->mode == dAMotorEuler) {
    joint->num = 3;
  }
  else {
    if (num < 0) num = 0;
    if (num > 3) num = 3;
    joint->num = num;
  }
}


void dJointSetAMotorAxis (dJointID j, int anum, int rel, dReal x, dReal y, dReal z)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && anum >= 0 && anum <= 2 && rel >= 0 && rel <= 2);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  dUASSERT(!(!joint->node[1].body &&  (joint->flags & dJOINT_REVERSE) && rel == 1),"no first body, can't set axis rel=1");
  dUASSERT(!(!joint->node[1].body && !(joint->flags & dJOINT_REVERSE) && rel == 2),"no second body, can't set axis rel=2");
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;

  // adjust rel to match the internal body order
  if (!joint->node[1].body && rel==2) rel = 1;

  joint->rel[anum] = rel;

  // x,y,z is always in global coordinates regardless of rel, so we may have
  // to convert it to be relative to a body
  dVector3 r;
  r[0] = x;
  r[1] = y;
  r[2] = z;
  r[3] = 0;
  if (rel > 0) {
    if (rel==1) {
      dMULTIPLY1_331 (joint->axis[anum],joint->node[0].body->posr.R,r);
    }
    else {
      // don't assert; handle the case of attachment to a bodiless geom
      if (joint->node[1].body) {   // jds
      dMULTIPLY1_331 (joint->axis[anum],joint->node[1].body->posr.R,r);
    }
      else {
	joint->axis[anum][0] = r[0]; joint->axis[anum][1] = r[1];
	joint->axis[anum][2] = r[2]; joint->axis[anum][3] = r[3];
      }
    }
  }
  else {
    joint->axis[anum][0] = r[0];
    joint->axis[anum][1] = r[1];
    joint->axis[anum][2] = r[2];
  }
  dNormalize3 (joint->axis[anum]);
  if (joint->mode == dAMotorEuler) amotorSetEulerReferenceVectors (joint);
}


void dJointSetAMotorAngle (dJointID j, int anum, dReal angle)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && anum >= 0 && anum < 3);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  if (joint->mode == dAMotorUser) {
    if (anum < 0) anum = 0;
    if (anum > 3) anum = 3;
    joint->angle[anum] = angle;
  }
}


void dJointSetAMotorParam (dJointID j, int parameter, dReal value)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  int anum = parameter >> 8;
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  parameter &= 0xff;
  joint->limot[anum].set (parameter, value);
}


void dJointSetAMotorMode (dJointID j, int mode)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  joint->mode = mode;
  if (joint->mode == dAMotorEuler) {
    joint->num = 3;
    amotorSetEulerReferenceVectors (joint);
  }
}


int dJointGetAMotorNumAxes (dJointID j)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  return joint->num;
}


void dJointGetAMotorAxis (dJointID j, int anum, dVector3 result)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && anum >= 0 && anum < 3);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  if (joint->rel[anum] > 0) {
    if (joint->rel[anum]==1) {
      dMULTIPLY0_331 (result,joint->node[0].body->posr.R,joint->axis[anum]);
    }
    else {
      if (joint->node[1].body) {   // jds
      dMULTIPLY0_331 (result,joint->node[1].body->posr.R,joint->axis[anum]);
      }
      else {
	result[0] = joint->axis[anum][0]; result[1] = joint->axis[anum][1];
	result[2] = joint->axis[anum][2]; result[3] = joint->axis[anum][3];
      }
    }
  }
  else {
    result[0] = joint->axis[anum][0];
    result[1] = joint->axis[anum][1];
    result[2] = joint->axis[anum][2];
  }
}


int dJointGetAMotorAxisRel (dJointID j, int anum)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && anum >= 0 && anum < 3);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  return joint->rel[anum];
}


dReal dJointGetAMotorAngle (dJointID j, int anum)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint && anum >= 0 && anum < 3);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  if (anum < 0) anum = 0;
  if (anum > 3) anum = 3;
  return joint->angle[anum];
}


dReal dJointGetAMotorAngleRate (dJointID j, int anum)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  // @@@
  dDebug (0,"not yet implemented");
  return 0;
}


dReal dJointGetAMotorParam (dJointID j, int parameter)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  int anum = parameter >> 8;
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  parameter &= 0xff;
  return joint->limot[anum].get (parameter);
}


int dJointGetAMotorMode (dJointID j)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");
  return joint->mode;
}


void dJointAddAMotorTorques (dJointID j, dReal torque1, dReal torque2, dReal torque3)
{
  dxJointAMotor* joint = (dxJointAMotor*)j;
  dVector3 axes[3];
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor");

  if (joint->num == 0)
    return;
  dUASSERT((joint->flags & dJOINT_REVERSE) == 0, "dJointAddAMotorTorques not yet implemented for reverse AMotor joints");

  amotorComputeGlobalAxes (joint,axes);
  axes[0][0] *= torque1;
  axes[0][1] *= torque1;
  axes[0][2] *= torque1;
  if (joint->num >= 2) {
    axes[0][0] += axes[1][0] * torque2;
    axes[0][1] += axes[1][1] * torque2;
    axes[0][2] += axes[1][2] * torque2;
    if (joint->num >= 3) {
      axes[0][0] += axes[2][0] * torque3;
      axes[0][1] += axes[2][1] * torque3;
      axes[0][2] += axes[2][2] * torque3;
    }
  }

  if (joint->node[0].body != 0)
    dBodyAddTorque (joint->node[0].body,axes[0][0],axes[0][1],axes[0][2]);
  if (joint->node[1].body != 0)
    dBodyAddTorque(joint->node[1].body, -axes[0][0], -axes[0][1], -axes[0][2]);
}


dxJoint::Vtable __damotor_vtable = {
  sizeof(dxJointAMotor),
  (dxJoint::init_fn*) amotorInit,
  (dxJoint::getInfo1_fn*) amotorGetInfo1,
  (dxJoint::getInfo2_fn*) amotorGetInfo2,
  dJointTypeAMotor};



//****************************************************************************
// lmotor joint
static void lmotorInit (dxJointLMotor *j)
{
  int i;
  j->num = 0;
  for (i=0;i<3;i++) {
    dSetZero(j->axis[i],4);
    j->limot[i].init(j->world);
  }
}

static void lmotorComputeGlobalAxes (dxJointLMotor *joint, dVector3 ax[3])
{
  for (int i=0; i< joint->num; i++) {
    if (joint->rel[i] == 1) {
      dMULTIPLY0_331 (ax[i],joint->node[0].body->posr.R,joint->axis[i]);
    }
    else if (joint->rel[i] == 2) {
      if (joint->node[1].body) {   // jds: don't assert, just ignore
        dMULTIPLY0_331 (ax[i],joint->node[1].body->posr.R,joint->axis[i]);
      }
    } else {
      ax[i][0] = joint->axis[i][0];
      ax[i][1] = joint->axis[i][1];
      ax[i][2] = joint->axis[i][2];
    }
  }
}

static void lmotorGetInfo1 (dxJointLMotor *j, dxJoint::Info1 *info)
{
  info->m = 0;
  info->nub = 0;
  for (int i=0; i < j->num; i++) {
    if (j->limot[i].fmax > 0) {
      info->m++;
    }
  }
}

static void lmotorGetInfo2 (dxJointLMotor *joint, dxJoint::Info2 *info)
{
  int row=0;
  dVector3 ax[3];
  lmotorComputeGlobalAxes(joint, ax);

  for (int i=0;i<joint->num;i++) {
    row += joint->limot[i].addLimot(joint,info,row,ax[i], 0);
  }
}

void dJointSetLMotorAxis (dJointID j, int anum, int rel, dReal x, dReal y, dReal z)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
//for now we are ignoring rel!
  dAASSERT(joint && anum >= 0 && anum <= 2 && rel >= 0 && rel <= 2);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;

  if (!joint->node[1].body && rel==2) rel = 1; //ref 1

  joint->rel[anum] = rel;

  dVector3 r;
  r[0] = x;
  r[1] = y;
  r[2] = z;
  r[3] = 0;
  if (rel > 0) {
    if (rel==1) {
      dMULTIPLY1_331 (joint->axis[anum],joint->node[0].body->posr.R,r);
	} else {
	  //second body has to exists thanks to ref 1 line
      dMULTIPLY1_331 (joint->axis[anum],joint->node[1].body->posr.R,r);
	}
  } else {
    joint->axis[anum][0] = r[0];
    joint->axis[anum][1] = r[1];
    joint->axis[anum][2] = r[2];
  }

  dNormalize3 (joint->axis[anum]);
}

void dJointSetLMotorNumAxes (dJointID j, int num)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
  dAASSERT(joint && num >= 0 && num <= 3);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  if (num < 0) num = 0;
  if (num > 3) num = 3;
  joint->num = num;
}

void dJointSetLMotorParam (dJointID j, int parameter, dReal value)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  int anum = parameter >> 8;
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  parameter &= 0xff;
  joint->limot[anum].set (parameter, value);
}

int dJointGetLMotorNumAxes (dJointID j)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  return joint->num;
}


void dJointGetLMotorAxis (dJointID j, int anum, dVector3 result)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
  dAASSERT(joint && anum >= 0 && anum < 3);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  result[0] = joint->axis[anum][0];
  result[1] = joint->axis[anum][1];
  result[2] = joint->axis[anum][2];
}

dReal dJointGetLMotorParam (dJointID j, int parameter)
{
  dxJointLMotor* joint = (dxJointLMotor*)j;
  dAASSERT(joint);
  dUASSERT(joint->vtable == &__dlmotor_vtable,"joint is not an lmotor");
  int anum = parameter >> 8;
  if (anum < 0) anum = 0;
  if (anum > 2) anum = 2;
  parameter &= 0xff;
  return joint->limot[anum].get (parameter);
}

dxJoint::Vtable __dlmotor_vtable = {
  sizeof(dxJointLMotor),
	(dxJoint::init_fn*) lmotorInit,
	(dxJoint::getInfo1_fn*) lmotorGetInfo1,
	(dxJoint::getInfo2_fn*) lmotorGetInfo2,
	dJointTypeLMotor
};


//****************************************************************************
// fixed joint

static void fixedInit (dxJointFixed *j)
{
  dSetZero (j->offset,4);
  dSetZero (j->qrel,4);
  j->erp = j->world->global_erp;
  j->cfm = j->world->global_cfm;
}


static void fixedGetInfo1 (dxJointFixed *j, dxJoint::Info1 *info)
{
  info->m = 6;
  info->nub = 6;
}


static void fixedGetInfo2 (dxJointFixed *joint, dxJoint::Info2 *info)
{
  int s = info->rowskip;

  // Three rows for orientation
  setFixedOrientation(joint, info, joint->qrel, 3);

  // Three rows for position.
  // set jacobian
  info->J1l[0] = 1;
  info->J1l[s+1] = 1;
  info->J1l[2*s+2] = 1;

  info->erp = joint->erp;
  info->cfm[0] = joint->cfm;
  info->cfm[1] = joint->cfm;
  info->cfm[2] = joint->cfm;

  dVector3 ofs;
  dMULTIPLY0_331 (ofs,joint->node[0].body->posr.R,joint->offset);
  if (joint->node[1].body) {
    dCROSSMAT (info->J1a,ofs,s,+,-);
    info->J2l[0] = -1;
    info->J2l[s+1] = -1;
    info->J2l[2*s+2] = -1;
  }

  // set right hand side for the first three rows (linear)
  dReal k = info->fps * info->erp;
  if (joint->node[1].body) {
    for (int j=0; j<3; j++)
      info->c[j] = k * (joint->node[1].body->posr.pos[j] -
			joint->node[0].body->posr.pos[j] + ofs[j]);
  }
  else {
    for (int j=0; j<3; j++)
      info->c[j] = k * (joint->offset[j] - joint->node[0].body->posr.pos[j]);
  }
}


void dJointSetFixed (dJointID j)
{
  dxJointFixed* joint = (dxJointFixed*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dfixed_vtable,"joint is not fixed");
  int i;

  // This code is taken from sJointSetSliderAxis(), we should really put the
  // common code in its own function.
  // compute the offset between the bodies
  if (joint->node[0].body) {
    if (joint->node[1].body) {
      dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q);
      dReal ofs[4];
      for (i=0; i<4; i++) ofs[i] = joint->node[0].body->posr.pos[i];
      for (i=0; i<4; i++) ofs[i] -= joint->node[1].body->posr.pos[i];
      dMULTIPLY1_331 (joint->offset,joint->node[0].body->posr.R,ofs);
    }
    else {
      // set joint->qrel to the transpose of the first body's q
      joint->qrel[0] = joint->node[0].body->q[0];
      for (i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i];
      for (i=0; i<4; i++) joint->offset[i] = joint->node[0].body->posr.pos[i];
    }
  }
}

void dxJointFixed::set (int num, dReal value)
{
  switch (num) {
  case dParamCFM:
    cfm = value;
    break;
  case dParamERP:
    erp = value;
    break;
  }
}
 

dReal dxJointFixed::get (int num)
{
  switch (num) {
  case dParamCFM:
    return cfm;
  case dParamERP:
    return erp;
  default:
	return 0;
  }
}


void dJointSetFixedParam (dJointID j, int parameter, dReal value)
{
  dxJointFixed* joint = (dxJointFixed*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dfixed_vtable,"joint is not a fixed joint");
  joint->set (parameter,value);
}


dReal dJointGetFixedParam (dJointID j, int parameter)
{
  dxJointFixed* joint = (dxJointFixed*)j;
  dUASSERT(joint,"bad joint argument");
  dUASSERT(joint->vtable == &__dfixed_vtable,"joint is not a fixed joint");
  return joint->get (parameter);
}


dxJoint::Vtable __dfixed_vtable = {
  sizeof(dxJointFixed),
  (dxJoint::init_fn*) fixedInit,
  (dxJoint::getInfo1_fn*) fixedGetInfo1,
  (dxJoint::getInfo2_fn*) fixedGetInfo2,
  dJointTypeFixed};

//****************************************************************************
// null joint

static void nullGetInfo1 (dxJointNull *j, dxJoint::Info1 *info)
{
  info->m = 0;
  info->nub = 0;
}


static void nullGetInfo2 (dxJointNull *joint, dxJoint::Info2 *info)
{
  dDebug (0,"this should never get called");
}


dxJoint::Vtable __dnull_vtable = {
  sizeof(dxJointNull),
  (dxJoint::init_fn*) 0,
  (dxJoint::getInfo1_fn*) nullGetInfo1,
  (dxJoint::getInfo2_fn*) nullGetInfo2,
  dJointTypeNull};




/*
    This code is part of the Plane2D ODE joint
    by psero@gmx.de
    Wed Apr 23 18:53:43 CEST 2003

    Add this code to the file: ode/src/joint.cpp
*/


# define        VoXYZ(v1, o1, x, y, z) \
                    ( \
                        (v1)[0] o1 (x), \
                        (v1)[1] o1 (y), \
                        (v1)[2] o1 (z)  \
                    )

static dReal   Midentity[3][3] =
                {
                    {   1,  0,  0   },
                    {   0,  1,  0   },
                    {   0,  0,  1,  }
                };



static void     plane2dInit (dxJointPlane2D *j)
/*********************************************/
{
    /* MINFO ("plane2dInit ()"); */
    j->motor_x.init (j->world);
    j->motor_y.init (j->world);
    j->motor_angle.init (j->world);
}



static void     plane2dGetInfo1 (dxJointPlane2D *j, dxJoint::Info1 *info)
/***********************************************************************/
{
  /* MINFO ("plane2dGetInfo1 ()"); */

  info->nub = 3;
  info->m = 3;

  if (j->motor_x.fmax > 0)
      j->row_motor_x = info->m ++;
  if (j->motor_y.fmax > 0)
      j->row_motor_y = info->m ++;
  if (j->motor_angle.fmax > 0)
      j->row_motor_angle = info->m ++;
}



static void     plane2dGetInfo2 (dxJointPlane2D *joint, dxJoint::Info2 *info)
/***************************************************************************/
{
    int         r0 = 0,
                r1 = info->rowskip,
                r2 = 2 * r1;
    dReal       eps = info->fps * info->erp;

    /* MINFO ("plane2dGetInfo2 ()"); */

/*
    v = v1, w = omega1
    (v2, omega2 not important (== static environment))

    constraint equations:
        xz = 0
        wx = 0
        wy = 0

    <=> ( 0 0 1 ) (vx)   ( 0 0 0 ) (wx)   ( 0 )
        ( 0 0 0 ) (vy) + ( 1 0 0 ) (wy) = ( 0 )
        ( 0 0 0 ) (vz)   ( 0 1 0 ) (wz)   ( 0 )
        J1/J1l           Omega1/J1a
*/

    // fill in linear and angular coeff. for left hand side:

    VoXYZ (&info->J1l[r0], =, 0, 0, 1);
    VoXYZ (&info->J1l[r1], =, 0, 0, 0);
    VoXYZ (&info->J1l[r2], =, 0, 0, 0);

    VoXYZ (&info->J1a[r0], =, 0, 0, 0);
    VoXYZ (&info->J1a[r1], =, 1, 0, 0);
    VoXYZ (&info->J1a[r2], =, 0, 1, 0);

    // error correction (against drift):

    // a) linear vz, so that z (== pos[2]) == 0
    info->c[0] = eps * -joint->node[0].body->posr.pos[2];

# if 0
    // b) angular correction? -> left to application !!!
    dReal       *body_z_axis = &joint->node[0].body->R[8];
    info->c[1] = eps * +atan2 (body_z_axis[1], body_z_axis[2]); // wx error
    info->c[2] = eps * -atan2 (body_z_axis[0], body_z_axis[2]); // wy error
# endif

    // if the slider is powered, or has joint limits, add in the extra row:

    if (joint->row_motor_x > 0)
        joint->motor_x.addLimot (
            joint, info, joint->row_motor_x, Midentity[0], 0);

    if (joint->row_motor_y > 0)
        joint->motor_y.addLimot (
            joint, info, joint->row_motor_y, Midentity[1], 0);

    if (joint->row_motor_angle > 0)
        joint->motor_angle.addLimot (
            joint, info, joint->row_motor_angle, Midentity[2], 1);
}



dxJoint::Vtable __dplane2d_vtable =
{
  sizeof (dxJointPlane2D),
  (dxJoint::init_fn*) plane2dInit,
  (dxJoint::getInfo1_fn*) plane2dGetInfo1,
  (dxJoint::getInfo2_fn*) plane2dGetInfo2,
  dJointTypePlane2D
};


void dJointSetPlane2DXParam (dxJoint *joint,
                      int parameter, dReal value)
{
	dUASSERT (joint, "bad joint argument");
	dUASSERT (joint->vtable == &__dplane2d_vtable, "joint is not a plane2d");
	dxJointPlane2D* joint2d = (dxJointPlane2D*)( joint );
	joint2d->motor_x.set (parameter, value);
}


void dJointSetPlane2DYParam (dxJoint *joint,
                      int parameter, dReal value)
{
	dUASSERT (joint, "bad joint argument");
	dUASSERT (joint->vtable == &__dplane2d_vtable, "joint is not a plane2d");
	dxJointPlane2D* joint2d = (dxJointPlane2D*)( joint );
	joint2d->motor_y.set (parameter, value);
}



void dJointSetPlane2DAngleParam (dxJoint *joint,
                      int parameter, dReal value)
{
	dUASSERT (joint, "bad joint argument");
	dUASSERT (joint->vtable == &__dplane2d_vtable, "joint is not a plane2d");
	dxJointPlane2D* joint2d = (dxJointPlane2D*)( joint );
	joint2d->motor_angle.set (parameter, value);
}