aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9\/OPCODE/OPC_SphereTriOverlap.h
blob: 77e59f371dcd18cc614c5b6142e4c69942063b74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

// This is collision detection. If you do another distance test for collision *response*,
// if might be useful to simply *skip* the test below completely, and report a collision.
// - if sphere-triangle overlap, result is ok
// - if they don't, we'll discard them during collision response with a similar test anyway
// Overall this approach should run faster.

// Original code by David Eberly in Magic.
BOOL SphereCollider::SphereTriOverlap(const Point& vert0, const Point& vert1, const Point& vert2)
{
	// Stats
	mNbVolumePrimTests++;

	// Early exit if one of the vertices is inside the sphere
	Point kDiff = vert2 - mCenter;
	float fC = kDiff.SquareMagnitude();
	if(fC <= mRadius2)	return TRUE;

	kDiff = vert1 - mCenter;
	fC = kDiff.SquareMagnitude();
	if(fC <= mRadius2)	return TRUE;

	kDiff = vert0 - mCenter;
	fC = kDiff.SquareMagnitude();
	if(fC <= mRadius2)	return TRUE;

	// Else do the full distance test
	Point TriEdge0	= vert1 - vert0;
	Point TriEdge1	= vert2 - vert0;

//Point kDiff	= vert0 - mCenter;
	float fA00	= TriEdge0.SquareMagnitude();
	float fA01	= TriEdge0 | TriEdge1;
	float fA11	= TriEdge1.SquareMagnitude();
	float fB0	= kDiff | TriEdge0;
	float fB1	= kDiff | TriEdge1;
//float fC	= kDiff.SquareMagnitude();
	float fDet	= fabsf(fA00*fA11 - fA01*fA01);
	float u		= fA01*fB1-fA11*fB0;
	float v		= fA01*fB0-fA00*fB1;
	float SqrDist;

	if(u + v <= fDet)
	{
		if(u < 0.0f)
		{
			if(v < 0.0f)  // region 4
			{
				if(fB0 < 0.0f)
				{
//					v = 0.0f;
					if(-fB0>=fA00)			{ /*u = 1.0f;*/		SqrDist = fA00+2.0f*fB0+fC;	}
					else					{ u = -fB0/fA00;	SqrDist = fB0*u+fC;			}
				}
				else
				{
//					u = 0.0f;
					if(fB1>=0.0f)			{ /*v = 0.0f;*/		SqrDist = fC;				}
					else if(-fB1>=fA11)		{ /*v = 1.0f;*/		SqrDist = fA11+2.0f*fB1+fC;	}
					else					{ v = -fB1/fA11;	SqrDist = fB1*v+fC;			}
				}
			}
			else  // region 3
			{
//				u = 0.0f;
				if(fB1>=0.0f)				{ /*v = 0.0f;*/		SqrDist = fC;				}
				else if(-fB1>=fA11)			{ /*v = 1.0f;*/		SqrDist = fA11+2.0f*fB1+fC;	}
				else						{ v = -fB1/fA11;	SqrDist = fB1*v+fC;			}
			}
		}
		else if(v < 0.0f)  // region 5
		{
//			v = 0.0f;
			if(fB0>=0.0f)					{ /*u = 0.0f;*/		SqrDist = fC;				}
			else if(-fB0>=fA00)				{ /*u = 1.0f;*/		SqrDist = fA00+2.0f*fB0+fC;	}
			else							{ u = -fB0/fA00;	SqrDist = fB0*u+fC;			}
		}
		else  // region 0
		{
			// minimum at interior point
			if(fDet==0.0f)
			{
//				u = 0.0f;
//				v = 0.0f;
				SqrDist = MAX_FLOAT;
			}
			else
			{
				float fInvDet = 1.0f/fDet;
				u *= fInvDet;
				v *= fInvDet;
				SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
			}
		}
	}
	else
	{
		float fTmp0, fTmp1, fNumer, fDenom;

		if(u < 0.0f)  // region 2
		{
			fTmp0 = fA01 + fB0;
			fTmp1 = fA11 + fB1;
			if(fTmp1 > fTmp0)
			{
				fNumer = fTmp1 - fTmp0;
				fDenom = fA00-2.0f*fA01+fA11;
				if(fNumer >= fDenom)
				{
//					u = 1.0f;
//					v = 0.0f;
					SqrDist = fA00+2.0f*fB0+fC;
				}
				else
				{
					u = fNumer/fDenom;
					v = 1.0f - u;
					SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
				}
			}
			else
			{
//				u = 0.0f;
				if(fTmp1 <= 0.0f)		{ /*v = 1.0f;*/		SqrDist = fA11+2.0f*fB1+fC;	}
				else if(fB1 >= 0.0f)	{ /*v = 0.0f;*/		SqrDist = fC;				}
				else					{ v = -fB1/fA11;	SqrDist = fB1*v+fC;			}
			}
		}
		else if(v < 0.0f)  // region 6
		{
			fTmp0 = fA01 + fB1;
			fTmp1 = fA00 + fB0;
			if(fTmp1 > fTmp0)
			{
				fNumer = fTmp1 - fTmp0;
				fDenom = fA00-2.0f*fA01+fA11;
				if(fNumer >= fDenom)
				{
//					v = 1.0f;
//					u = 0.0f;
					SqrDist = fA11+2.0f*fB1+fC;
				}
				else
				{
					v = fNumer/fDenom;
					u = 1.0f - v;
					SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
				}
			}
			else
			{
//				v = 0.0f;
				if(fTmp1 <= 0.0f)		{ /*u = 1.0f;*/		SqrDist = fA00+2.0f*fB0+fC;	}
				else if(fB0 >= 0.0f)	{ /*u = 0.0f;*/		SqrDist = fC;				}
				else					{ u = -fB0/fA00;	SqrDist = fB0*u+fC;			}
			}
		}
		else  // region 1
		{
			fNumer = fA11 + fB1 - fA01 - fB0;
			if(fNumer <= 0.0f)
			{
//				u = 0.0f;
//				v = 1.0f;
				SqrDist = fA11+2.0f*fB1+fC;
			}
			else
			{
				fDenom = fA00-2.0f*fA01+fA11;
				if(fNumer >= fDenom)
				{
//					u = 1.0f;
//					v = 0.0f;
					SqrDist = fA00+2.0f*fB0+fC;
				}
				else
				{
					u = fNumer/fDenom;
					v = 1.0f - u;
					SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
				}
			}
		}
	}

	return fabsf(SqrDist) < mRadius2;
}