aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9\/OPCODE/Ice/IceMatrix3x3.h
blob: a30680da6ccdb76eb8d110dabb15ff591042055e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Contains code for 3x3 matrices.
 *	\file		IceMatrix3x3.h
 *	\author		Pierre Terdiman
 *	\date		April, 4, 2000
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __ICEMATRIX3X3_H__
#define __ICEMATRIX3X3_H__

	// Forward declarations
	class Quat;

	#define	MATRIX3X3_EPSILON		(1.0e-7f)

	class ICEMATHS_API Matrix3x3
	{
		public:
		//! Empty constructor
		inline_					Matrix3x3()									{}
		//! Constructor from 9 values
		inline_					Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
								{
									m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;
									m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;
									m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;
								}
		//! Copy constructor
		inline_					Matrix3x3(const Matrix3x3& mat)				{ CopyMemory(m, &mat.m, 9*sizeof(float));	}
		//! Destructor
		inline_					~Matrix3x3()								{}

		//! Assign values
		inline_	void			Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
								{
									m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;
									m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;
									m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;
								}

		//! Sets the scale from a Point. The point is put on the diagonal.
		inline_	void			SetScale(const Point& p)					{ m[0][0] = p.x;	m[1][1] = p.y;	m[2][2] = p.z;	}

		//! Sets the scale from floats. Values are put on the diagonal.
		inline_	void			SetScale(float sx, float sy, float sz)		{ m[0][0] = sx;		m[1][1] = sy;	m[2][2] = sz;	}

		//! Scales from a Point. Each row is multiplied by a component.
		inline_	void			Scale(const Point& p)
								{
									m[0][0] *= p.x;	m[0][1] *= p.x;	m[0][2] *= p.x;
									m[1][0] *= p.y;	m[1][1] *= p.y;	m[1][2] *= p.y;
									m[2][0] *= p.z;	m[2][1] *= p.z;	m[2][2] *= p.z;
								}

		//! Scales from floats. Each row is multiplied by a value.
		inline_	void			Scale(float sx, float sy, float sz)
								{
									m[0][0] *= sx;	m[0][1] *= sx;	m[0][2] *= sx;
									m[1][0] *= sy;	m[1][1] *= sy;	m[1][2] *= sy;
									m[2][0] *= sz;	m[2][1] *= sz;	m[2][2] *= sz;
								}

		//! Copy from a Matrix3x3
		inline_	void			Copy(const Matrix3x3& source)				{ CopyMemory(m, source.m, 9*sizeof(float));			}

		// Row-column access
		//! Returns a row.
		inline_	void			GetRow(const udword r, Point& p)	const	{ p.x = m[r][0];	p.y = m[r][1];	p.z = m[r][2];	}
		//! Returns a row.
		inline_	const Point&	GetRow(const udword r)				const	{ return *(const Point*)&m[r][0];	}
		//! Returns a row.
		inline_	Point&			GetRow(const udword r)						{ return *(Point*)&m[r][0];			}
		//! Sets a row.
		inline_	void			SetRow(const udword r, const Point& p)		{ m[r][0] = p.x;	m[r][1] = p.y;	m[r][2] = p.z;	}
		//! Returns a column.
		inline_	void			GetCol(const udword c, Point& p)	const	{ p.x = m[0][c];	p.y = m[1][c];	p.z = m[2][c];	}
		//! Sets a column.
		inline_	void			SetCol(const udword c, const Point& p)		{ m[0][c] = p.x;	m[1][c] = p.y;	m[2][c] = p.z;	}

		//! Computes the trace. The trace is the sum of the 3 diagonal components.
		inline_	float			Trace()					const				{ return m[0][0] + m[1][1] + m[2][2];				}
		//! Clears the matrix.
		inline_	void			Zero()										{ ZeroMemory(&m, sizeof(m));						}
		//! Sets the identity matrix.
		inline_	void			Identity()									{ Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; 		}
		//! Checks for identity
		inline_	bool			IsIdentity()			const
								{
									if(IR(m[0][0])!=IEEE_1_0)	return false;
									if(IR(m[0][1])!=0)			return false;
									if(IR(m[0][2])!=0)			return false;

									if(IR(m[1][0])!=0)			return false;
									if(IR(m[1][1])!=IEEE_1_0)	return false;
									if(IR(m[1][2])!=0)			return false;

									if(IR(m[2][0])!=0)			return false;
									if(IR(m[2][1])!=0)			return false;
									if(IR(m[2][2])!=IEEE_1_0)	return false;

									return true;
								}

		//! Checks matrix validity
		inline_	BOOL			IsValid()				const
								{
									for(udword j=0;j<3;j++)
									{
										for(udword i=0;i<3;i++)
										{
											if(!IsValidFloat(m[j][i]))	return FALSE;
										}
									}
									return TRUE;
								}

		//! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix)
		//!	[  0.0  -a.z   a.y ]
		//!	[  a.z   0.0  -a.x ]
		//!	[ -a.y   a.x   0.0 ]
		//! This is also called a "cross matrix" since for any vectors A and B,
		//! A^B = Skew(A) * B = - B * Skew(A);
		inline_	void			SkewSymmetric(const Point& a)
								{
									m[0][0] = 0.0f;
									m[0][1] = -a.z;
									m[0][2] = a.y;

									m[1][0] = a.z;
									m[1][1] = 0.0f;
									m[1][2] = -a.x;

									m[2][0] = -a.y;
									m[2][1] = a.x;
									m[2][2] = 0.0f;
								}

		//! Negates the matrix
		inline_	void			Neg()
								{
									m[0][0] = -m[0][0];	m[0][1] = -m[0][1];	m[0][2] = -m[0][2];
									m[1][0] = -m[1][0];	m[1][1] = -m[1][1];	m[1][2] = -m[1][2];
									m[2][0] = -m[2][0];	m[2][1] = -m[2][1];	m[2][2] = -m[2][2];
								}

		//! Neg from another matrix
		inline_	void			Neg(const Matrix3x3& mat)
								{
									m[0][0] = -mat.m[0][0];	m[0][1] = -mat.m[0][1];	m[0][2] = -mat.m[0][2];
									m[1][0] = -mat.m[1][0];	m[1][1] = -mat.m[1][1];	m[1][2] = -mat.m[1][2];
									m[2][0] = -mat.m[2][0];	m[2][1] = -mat.m[2][1];	m[2][2] = -mat.m[2][2];
								}

		//! Add another matrix
		inline_	void			Add(const Matrix3x3& mat)
								{
									m[0][0] += mat.m[0][0];	m[0][1] += mat.m[0][1];	m[0][2] += mat.m[0][2];
									m[1][0] += mat.m[1][0];	m[1][1] += mat.m[1][1];	m[1][2] += mat.m[1][2];
									m[2][0] += mat.m[2][0];	m[2][1] += mat.m[2][1];	m[2][2] += mat.m[2][2];
								}

		//! Sub another matrix
		inline_	void			Sub(const Matrix3x3& mat)
								{
									m[0][0] -= mat.m[0][0];	m[0][1]	-= mat.m[0][1];	m[0][2] -= mat.m[0][2];
									m[1][0] -= mat.m[1][0];	m[1][1] -= mat.m[1][1];	m[1][2] -= mat.m[1][2];
									m[2][0] -= mat.m[2][0];	m[2][1] -= mat.m[2][1];	m[2][2] -= mat.m[2][2];
								}
		//! Mac
		inline_	void			Mac(const Matrix3x3& a, const Matrix3x3& b, float s)
								{
									m[0][0] = a.m[0][0] + b.m[0][0] * s;
									m[0][1] = a.m[0][1] + b.m[0][1] * s;
									m[0][2] = a.m[0][2] + b.m[0][2] * s;

									m[1][0] = a.m[1][0] + b.m[1][0] * s;
									m[1][1] = a.m[1][1] + b.m[1][1] * s;
									m[1][2] = a.m[1][2] + b.m[1][2] * s;

									m[2][0] = a.m[2][0] + b.m[2][0] * s;
									m[2][1] = a.m[2][1] + b.m[2][1] * s;
									m[2][2] = a.m[2][2] + b.m[2][2] * s;
								}
		//! Mac
		inline_	void			Mac(const Matrix3x3& a, float s)
								{
									m[0][0] += a.m[0][0] * s;	m[0][1] += a.m[0][1] * s;	m[0][2] += a.m[0][2] * s;
									m[1][0] += a.m[1][0] * s;	m[1][1] += a.m[1][1] * s;	m[1][2] += a.m[1][2] * s;
									m[2][0] += a.m[2][0] * s;	m[2][1] += a.m[2][1] * s;	m[2][2] += a.m[2][2] * s;
								}

		//! this = A * s
		inline_	void			Mult(const Matrix3x3& a, float s)
								{
									m[0][0] = a.m[0][0] * s;	m[0][1] = a.m[0][1] * s;	m[0][2] = a.m[0][2] * s;
									m[1][0] = a.m[1][0] * s;	m[1][1] = a.m[1][1] * s;	m[1][2] = a.m[1][2] * s;
									m[2][0] = a.m[2][0] * s;	m[2][1] = a.m[2][1] * s;	m[2][2] = a.m[2][2] * s;
								}

		inline_	void			Add(const Matrix3x3& a, const Matrix3x3& b)
								{
									m[0][0] = a.m[0][0] + b.m[0][0];	m[0][1] = a.m[0][1] + b.m[0][1];	m[0][2] = a.m[0][2] + b.m[0][2];
									m[1][0] = a.m[1][0] + b.m[1][0];	m[1][1] = a.m[1][1] + b.m[1][1];	m[1][2] = a.m[1][2] + b.m[1][2];
									m[2][0] = a.m[2][0] + b.m[2][0];	m[2][1] = a.m[2][1] + b.m[2][1];	m[2][2] = a.m[2][2] + b.m[2][2];
								}

		inline_	void			Sub(const Matrix3x3& a, const Matrix3x3& b)
								{
									m[0][0] = a.m[0][0] - b.m[0][0];	m[0][1] = a.m[0][1] - b.m[0][1];	m[0][2] = a.m[0][2] - b.m[0][2];
									m[1][0] = a.m[1][0] - b.m[1][0];	m[1][1] = a.m[1][1] - b.m[1][1];	m[1][2] = a.m[1][2] - b.m[1][2];
									m[2][0] = a.m[2][0] - b.m[2][0];	m[2][1] = a.m[2][1] - b.m[2][1];	m[2][2] = a.m[2][2] - b.m[2][2];
								}

		//! this = a * b
		inline_	void			Mult(const Matrix3x3& a, const Matrix3x3& b)
								{
									m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0];
									m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1];
									m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2];
									m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0];
									m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1];
									m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2];
									m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0];
									m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1];
									m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2];
								}

		//! this = transpose(a) * b
		inline_	void			MultAtB(const Matrix3x3& a, const Matrix3x3& b)
								{
									m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0];
									m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1];
									m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2];
									m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0];
									m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1];
									m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2];
									m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0];
									m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1];
									m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2];
								}

		//! this = a * transpose(b)
		inline_	void			MultABt(const Matrix3x3& a, const Matrix3x3& b)
								{
									m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2];
									m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2];
									m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2];
									m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2];
									m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2];
									m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2];
									m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2];
									m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2];
									m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2];
								}

		//! Makes a rotation matrix mapping vector "from" to vector "to".
				Matrix3x3&		FromTo(const Point& from, const Point& to);

		//! Set a rotation matrix around the X axis.
		//!		 1		0		0
		//!	RX = 0		cx		sx
		//!		 0		-sx		cx
				void			RotX(float angle);
		//! Set a rotation matrix around the Y axis.
		//!		 cy		0		-sy
		//!	RY = 0		1		0
		//!		 sy		0		cy
				void			RotY(float angle);
		//! Set a rotation matrix around the Z axis.
		//!		 cz		sz		0
		//!	RZ = -sz	cz		0
		//!		 0		0		1
				void			RotZ(float angle);
		//!			cy		sx.sy		-sy.cx
		//!	RY.RX	0		cx			sx
		//!			sy		-sx.cy		cx.cy
				void			RotYX(float y, float x);

		//! Make a rotation matrix about an arbitrary axis
				Matrix3x3&		Rot(float angle, const Point& axis);

		//! Transpose the matrix.
				void			Transpose()
								{
									IR(m[1][0]) ^= IR(m[0][1]);	IR(m[0][1]) ^= IR(m[1][0]);	IR(m[1][0]) ^= IR(m[0][1]);
									IR(m[2][0]) ^= IR(m[0][2]);	IR(m[0][2]) ^= IR(m[2][0]);	IR(m[2][0]) ^= IR(m[0][2]);
									IR(m[2][1]) ^= IR(m[1][2]);	IR(m[1][2]) ^= IR(m[2][1]);	IR(m[2][1]) ^= IR(m[1][2]);
								}

		//! this = Transpose(a)
				void			Transpose(const Matrix3x3& a)
								{
									m[0][0] = a.m[0][0];	m[0][1] = a.m[1][0];	m[0][2] = a.m[2][0];
									m[1][0] = a.m[0][1];	m[1][1] = a.m[1][1];	m[1][2] = a.m[2][1];
									m[2][0] = a.m[0][2];	m[2][1] = a.m[1][2];	m[2][2] = a.m[2][2];
								}

		//! Compute the determinant of the matrix. We use the rule of Sarrus.
				float			Determinant()					const
								{
									return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1])
										-  (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]);
								}
/*
		//! Compute a cofactor. Used for matrix inversion.
				float			CoFactor(ubyte row, ubyte column)	const
				{
					static sdword gIndex[3+2] = { 0, 1, 2, 0, 1 };
					return	(m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]);
				}
*/
		//! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted.
				Matrix3x3&		Invert()
								{
									float Det = Determinant();	// Must be !=0
									float OneOverDet = 1.0f / Det;

									Matrix3x3 Temp;
									Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet;
									Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet;
									Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet;
									Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet;
									Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet;
									Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet;
									Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet;
									Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet;
									Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet;

									*this = Temp;

									return	*this;
								}

				Matrix3x3&		Normalize();

		//! this = exp(a)
				Matrix3x3&		Exp(const Matrix3x3& a);

void FromQuat(const Quat &q);
void FromQuatL2(const Quat &q, float l2);

		// Arithmetic operators
		//! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3;
		inline_	Matrix3x3		operator+(const Matrix3x3& mat)	const
								{
									return Matrix3x3(
									m[0][0] + mat.m[0][0],	m[0][1] + mat.m[0][1],	m[0][2] + mat.m[0][2],
									m[1][0] + mat.m[1][0],	m[1][1] + mat.m[1][1],	m[1][2] + mat.m[1][2],
									m[2][0] + mat.m[2][0],	m[2][1] + mat.m[2][1],	m[2][2] + mat.m[2][2]);
								}

		//! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3;
		inline_	Matrix3x3		operator-(const Matrix3x3& mat)	const
								{
									return Matrix3x3(
									m[0][0] - mat.m[0][0],	m[0][1] - mat.m[0][1],	m[0][2] - mat.m[0][2],
									m[1][0] - mat.m[1][0],	m[1][1] - mat.m[1][1],	m[1][2] - mat.m[1][2],
									m[2][0] - mat.m[2][0],	m[2][1] - mat.m[2][1],	m[2][2] - mat.m[2][2]);
								}

		//! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3;
		inline_	Matrix3x3		operator*(const Matrix3x3& mat)	const
								{
									return Matrix3x3(
									m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0],
									m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1],
									m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2],

									m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0],
									m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1],
									m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2],

									m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0],
									m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1],
									m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]);
								}

		//! Operator for Point Mul = Matrix3x3 * Point;
		inline_	Point			operator*(const Point& v)		const		{ return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); }

		//! Operator for Matrix3x3 Mul = Matrix3x3 * float;
		inline_	Matrix3x3		operator*(float s)				const
								{
									return Matrix3x3(
									m[0][0]*s,	m[0][1]*s,	m[0][2]*s,
									m[1][0]*s,	m[1][1]*s,	m[1][2]*s,
									m[2][0]*s,	m[2][1]*s,	m[2][2]*s);
								}

		//! Operator for Matrix3x3 Mul = float * Matrix3x3;
		inline_	friend Matrix3x3 operator*(float s, const Matrix3x3& mat)
								{
									return Matrix3x3(
									s*mat.m[0][0],	s*mat.m[0][1],	s*mat.m[0][2],
									s*mat.m[1][0],	s*mat.m[1][1],	s*mat.m[1][2],
									s*mat.m[2][0],	s*mat.m[2][1],	s*mat.m[2][2]);
								}

		//! Operator for Matrix3x3 Div = Matrix3x3 / float;
		inline_	Matrix3x3		operator/(float s)				const
								{
									if (s)	s = 1.0f / s;
									return Matrix3x3(
									m[0][0]*s,	m[0][1]*s,	m[0][2]*s,
									m[1][0]*s,	m[1][1]*s,	m[1][2]*s,
									m[2][0]*s,	m[2][1]*s,	m[2][2]*s);
								}

		//! Operator for Matrix3x3 Div = float / Matrix3x3;
		inline_	friend Matrix3x3 operator/(float s, const Matrix3x3& mat)
								{
									return Matrix3x3(
									s/mat.m[0][0],	s/mat.m[0][1],	s/mat.m[0][2],
									s/mat.m[1][0],	s/mat.m[1][1],	s/mat.m[1][2],
									s/mat.m[2][0],	s/mat.m[2][1],	s/mat.m[2][2]);
								}

		//! Operator for Matrix3x3 += Matrix3x3
		inline_	Matrix3x3&		operator+=(const Matrix3x3& mat)
								{
									m[0][0] += mat.m[0][0];		m[0][1] += mat.m[0][1];		m[0][2] += mat.m[0][2];
									m[1][0] += mat.m[1][0];		m[1][1] += mat.m[1][1];		m[1][2] += mat.m[1][2];
									m[2][0] += mat.m[2][0];		m[2][1] += mat.m[2][1];		m[2][2] += mat.m[2][2];
									return	*this;
								}

		//! Operator for Matrix3x3 -= Matrix3x3
		inline_	Matrix3x3&		operator-=(const Matrix3x3& mat)
								{
									m[0][0] -= mat.m[0][0];		m[0][1] -= mat.m[0][1];		m[0][2] -= mat.m[0][2];
									m[1][0] -= mat.m[1][0];		m[1][1] -= mat.m[1][1];		m[1][2] -= mat.m[1][2];
									m[2][0] -= mat.m[2][0];		m[2][1] -= mat.m[2][1];		m[2][2] -= mat.m[2][2];
									return	*this;
								}

		//! Operator for Matrix3x3 *= Matrix3x3
		inline_	Matrix3x3&		operator*=(const Matrix3x3& mat)
								{
									Point TempRow;

									GetRow(0, TempRow);
									m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
									m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
									m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];

									GetRow(1, TempRow);
									m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
									m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
									m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];

									GetRow(2, TempRow);
									m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
									m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
									m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
									return	*this;
								}

		//! Operator for Matrix3x3 *= float
		inline_	Matrix3x3&		operator*=(float s)
								{
									m[0][0] *= s;	m[0][1] *= s;	m[0][2] *= s;
									m[1][0] *= s;	m[1][1] *= s;	m[1][2] *= s;
									m[2][0] *= s;	m[2][1] *= s;	m[2][2] *= s;
									return	*this;
								}

		//! Operator for Matrix3x3 /= float
		inline_	Matrix3x3&		operator/=(float s)
								{
									if (s)	s = 1.0f / s;
									m[0][0] *= s;	m[0][1] *= s;	m[0][2] *= s;
									m[1][0] *= s;	m[1][1] *= s;	m[1][2] *= s;
									m[2][0] *= s;	m[2][1] *= s;	m[2][2] *= s;
									return	*this;
								}

		// Cast operators
		//! Cast a Matrix3x3 to a Matrix4x4.
								operator Matrix4x4()	const;
		//! Cast a Matrix3x3 to a Quat.
								operator Quat()			const;

		inline_	const Point&	operator[](int row)		const	{ return *(const Point*)&m[row][0];	}
		inline_	Point&			operator[](int row)				{ return *(Point*)&m[row][0];		}

		public:

				float			m[3][3];
	};

#endif // __ICEMATRIX3X3_H__