///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Contains code for 4x4 matrices.
 *	\file		IceMatrix4x4.h
 *	\author		Pierre Terdiman
 *	\date		April, 4, 2000
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __ICEMATRIX4X4_H__
#define __ICEMATRIX4X4_H__

	// Forward declarations
	class PRS;
	class PR;

	#define	MATRIX4X4_EPSILON		(1.0e-7f)

	class ICEMATHS_API Matrix4x4
	{
//				void	LUBackwardSubstitution( sdword *indx, float* b );
//				void	LUDecomposition( sdword* indx, float* d );

		public:
		//! Empty constructor.
		inline_						Matrix4x4()									{}
		//! Constructor from 16 values
		inline_						Matrix4x4(	float m00, float m01, float m02, float m03,
												float m10, float m11, float m12, float m13,
												float m20, float m21, float m22, float m23,
												float m30, float m31, float m32, float m33)
									{
										m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;	m[0][3] = m03;
										m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;	m[1][3] = m13;
										m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;	m[2][3] = m23;
										m[3][0] = m30;	m[3][1] = m31;	m[3][2] = m32;	m[3][3] = m33;
									}
		//! Copy constructor
		inline_						Matrix4x4(const Matrix4x4& mat)				{ CopyMemory(m, &mat.m, 16*sizeof(float));	}
		//! Destructor.
		inline_						~Matrix4x4()								{}

		//! Assign values (rotation only)
		inline_	Matrix4x4&			Set(	float m00, float m01, float m02,
											float m10, float m11, float m12,
											float m20, float m21, float m22)
									{
										m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;
										m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;
										m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;
										return *this;
									}
		//! Assign values
		inline_	Matrix4x4&			Set(	float m00, float m01, float m02, float m03,
											float m10, float m11, float m12, float m13,
											float m20, float m21, float m22, float m23,
											float m30, float m31, float m32, float m33)
									{
										m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;	m[0][3] = m03;
										m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;	m[1][3] = m13;
										m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;	m[2][3] = m23;
										m[3][0] = m30;	m[3][1] = m31;	m[3][2] = m32;	m[3][3] = m33;
										return *this;
									}

		//! Copy from a Matrix4x4
		inline_	void				Copy(const Matrix4x4& source)				{ CopyMemory(m, source.m, 16*sizeof(float));	}

		// Row-column access
		//! Returns a row.
		inline_	void				GetRow(const udword r, HPoint& p)	const	{ p.x=m[r][0];	p.y=m[r][1];	p.z=m[r][2];	p.w=m[r][3];		}
		//! Returns a row.
		inline_	void				GetRow(const udword r, Point& p)	const	{ p.x=m[r][0];	p.y=m[r][1];	p.z=m[r][2];						}
		//! Returns a row.
		inline_	const HPoint&		GetRow(const udword r)				const	{ return *(const HPoint*)&m[r][0];									}
		//! Returns a row.
		inline_	HPoint&				GetRow(const udword r)						{ return *(HPoint*)&m[r][0];										}
		//! Sets a row.
		inline_	void				SetRow(const udword r, const HPoint& p)		{ m[r][0]=p.x;	m[r][1]=p.y;	m[r][2]=p.z;	m[r][3]=p.w;		}
		//! Sets a row.
		inline_	void				SetRow(const udword r, const Point& p)		{ m[r][0]=p.x;	m[r][1]=p.y;	m[r][2]=p.z;	m[r][3]= (r!=3) ? 0.0f : 1.0f;		}
		//! Returns a column.
		inline_	void				GetCol(const udword c, HPoint& p)	const	{ p.x=m[0][c];	p.y=m[1][c];	p.z=m[2][c];	p.w=m[3][c];		}
		//! Returns a column.
		inline_	void				GetCol(const udword c, Point& p)	const	{ p.x=m[0][c];	p.y=m[1][c];	p.z=m[2][c];						}
		//! Sets a column.
		inline_	void				SetCol(const udword c, const HPoint& p)		{ m[0][c]=p.x;	m[1][c]=p.y;	m[2][c]=p.z;	m[3][c]=p.w;		}
		//! Sets a column.
		inline_	void				SetCol(const udword c, const Point& p)		{ m[0][c]=p.x;	m[1][c]=p.y;	m[2][c]=p.z;	m[3][c]= (c!=3) ? 0.0f : 1.0f;	}

		// Translation
		//! Returns the translation part of the matrix.
		inline_	const HPoint&		GetTrans()							const	{ return GetRow(3);								}
		//! Gets the translation part of the matrix
		inline_	void				GetTrans(Point& p)					const	{ p.x=m[3][0];	p.y=m[3][1];	p.z=m[3][2];	}
		//! Sets the translation part of the matrix, from a Point.
		inline_	void				SetTrans(const Point& p)					{ m[3][0]=p.x;	m[3][1]=p.y;	m[3][2]=p.z;	}
		//! Sets the translation part of the matrix, from a HPoint.
		inline_	void				SetTrans(const HPoint& p)					{ m[3][0]=p.x;	m[3][1]=p.y;	m[3][2]=p.z;	m[3][3]=p.w;	}
		//! Sets the translation part of the matrix, from floats.
		inline_	void				SetTrans(float tx, float ty, float tz)		{ m[3][0]=tx;	m[3][1]=ty;		m[3][2]=tz;		}

		// Scale
		//! Sets the scale from a Point. The point is put on the diagonal.
		inline_	void				SetScale(const Point& p)					{ m[0][0]=p.x;	m[1][1]=p.y;	m[2][2]=p.z;	}
		//! Sets the scale from floats. Values are put on the diagonal.
		inline_	void				SetScale(float sx, float sy, float sz)		{ m[0][0]=sx;	m[1][1]=sy;		m[2][2]=sz;		}
		//! Scales from a Point. Each row is multiplied by a component.
				void				Scale(const Point& p)
									{
										m[0][0] *= p.x;	m[1][0] *= p.y;	m[2][0] *= p.z;
										m[0][1] *= p.x;	m[1][1] *= p.y;	m[2][1] *= p.z;
										m[0][2] *= p.x;	m[1][2] *= p.y;	m[2][2] *= p.z;
									}
		//! Scales from floats. Each row is multiplied by a value.
				void				Scale(float sx, float sy, float sz)
									{
										m[0][0] *= sx;	m[1][0] *= sy;	m[2][0] *= sz;
										m[0][1] *= sx;	m[1][1] *= sy;	m[2][1] *= sz;
										m[0][2] *= sx;	m[1][2] *= sy;	m[2][2] *= sz;
									}
/*
		//! Returns a row.
		inline_	HPoint		GetRow(const udword row)	const			{ return mRow[row];														}
		//! Sets a row.
		inline_	Matrix4x4&	SetRow(const udword row, const HPoint& p)	{ mRow[row] = p;	return *this;										}
		//! Sets a row.
						Matrix4x4&	SetRow(const udword row, const Point& p)
						{
							m[row][0] = p.x;
							m[row][1] = p.y;
							m[row][2] = p.z;
							m[row][3] = (row != 3) ? 0.0f : 1.0f;
							return	*this;
						}
		//! Returns a column.
						HPoint		GetCol(const udword col)		const
						{
							HPoint	Res;
							Res.x = m[0][col];
							Res.y = m[1][col];
							Res.z = m[2][col];
							Res.w = m[3][col];
							return	Res;
						}
		//! Sets a column.
						Matrix4x4&	SetCol(const udword col, const HPoint& p)
						{
							m[0][col] = p.x;
							m[1][col] = p.y;
							m[2][col] = p.z;
							m[3][col] = p.w;
							return	*this;
						}
		//! Sets a column.
						Matrix4x4&	SetCol(const udword col, const Point& p)
						{
							m[0][col] = p.x;
							m[1][col] = p.y;
							m[2][col] = p.z;
							m[3][col] = (col != 3) ? 0.0f : 1.0f;
							return	*this;
						}
*/
		//! Computes the trace. The trace is the sum of the 4 diagonal components.
		inline_	float				Trace()			const			{ return m[0][0] + m[1][1] + m[2][2] + m[3][3];			}
		//! Computes the trace of the upper 3x3 matrix.
		inline_	float				Trace3x3()		const			{ return m[0][0] + m[1][1] + m[2][2];					}
		//! Clears the matrix.
		inline_	void				Zero()							{ ZeroMemory(&m,  sizeof(m));							}
		//! Sets the identity matrix.
		inline_	void				Identity()						{ Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;	}
		//! Checks for identity
		inline_	bool				IsIdentity()	const
									{
										if(IR(m[0][0])!=IEEE_1_0)	return false;
										if(IR(m[0][1])!=0)			return false;
										if(IR(m[0][2])!=0)			return false;
										if(IR(m[0][3])!=0)			return false;

										if(IR(m[1][0])!=0)			return false;
										if(IR(m[1][1])!=IEEE_1_0)	return false;
										if(IR(m[1][2])!=0)			return false;
										if(IR(m[1][3])!=0)			return false;

										if(IR(m[2][0])!=0)			return false;
										if(IR(m[2][1])!=0)			return false;
										if(IR(m[2][2])!=IEEE_1_0)	return false;
										if(IR(m[2][3])!=0)			return false;

										if(IR(m[3][0])!=0)			return false;
										if(IR(m[3][1])!=0)			return false;
										if(IR(m[3][2])!=0)			return false;
										if(IR(m[3][3])!=IEEE_1_0)	return false;
										return true;
									}

		//! Checks matrix validity
		inline_	BOOL				IsValid()		const
									{
										for(udword j=0;j<4;j++)
										{
											for(udword i=0;i<4;i++)
											{
												if(!IsValidFloat(m[j][i]))	return FALSE;
											}
										}
										return TRUE;
									}

		//! Sets a rotation matrix around the X axis.
				void				RotX(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin;	m[1][2] = Sin;	}
		//! Sets a rotation matrix around the Y axis.
				void				RotY(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin;	m[0][2] = -Sin;	}
		//! Sets a rotation matrix around the Z axis.
				void				RotZ(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin;	m[0][1] = Sin;	}

		//! Makes a rotation matrix about an arbitrary axis
				Matrix4x4&			Rot(float angle, Point& p1, Point& p2);

		//! Transposes the matrix.
				void				Transpose()
									{
										IR(m[1][0]) ^= IR(m[0][1]);		IR(m[0][1]) ^= IR(m[1][0]);		IR(m[1][0]) ^= IR(m[0][1]);
										IR(m[2][0]) ^= IR(m[0][2]);		IR(m[0][2]) ^= IR(m[2][0]);		IR(m[2][0]) ^= IR(m[0][2]);
										IR(m[3][0]) ^= IR(m[0][3]);		IR(m[0][3]) ^= IR(m[3][0]);		IR(m[3][0]) ^= IR(m[0][3]);
										IR(m[1][2]) ^= IR(m[2][1]);		IR(m[2][1]) ^= IR(m[1][2]);		IR(m[1][2]) ^= IR(m[2][1]);
										IR(m[1][3]) ^= IR(m[3][1]);		IR(m[3][1]) ^= IR(m[1][3]);		IR(m[1][3]) ^= IR(m[3][1]);
										IR(m[2][3]) ^= IR(m[3][2]);		IR(m[3][2]) ^= IR(m[2][3]);		IR(m[2][3]) ^= IR(m[3][2]);
									}

		//! Computes a cofactor. Used for matrix inversion.
				float				CoFactor(udword row, udword col)	const;
		//! Computes the determinant of the matrix.
				float				Determinant()	const;
		//! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
				Matrix4x4&			Invert();
//				Matrix&	ComputeAxisMatrix(Point& axis, float angle);

		// Cast operators
		//! Casts a Matrix4x4 to a Matrix3x3.
		inline_	operator			Matrix3x3()	const
									{
										return Matrix3x3(
										m[0][0],	m[0][1],	m[0][2],
										m[1][0],	m[1][1],	m[1][2],
										m[2][0],	m[2][1],	m[2][2]);
									}
		//! Casts a Matrix4x4 to a Quat.
				operator			Quat()	const;
		//! Casts a Matrix4x4 to a PR.
				operator			PR()	const;

		// Arithmetic operators
		//! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
		inline_	Matrix4x4			operator+(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3], 
										m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3], 
										m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3], 
										m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
		inline_	Matrix4x4			operator-(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3], 
										m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3], 
										m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3], 
										m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
		inline_	Matrix4x4			operator*(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
										m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
										m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
										m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],

										m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
										m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
										m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
										m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],

										m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
										m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
										m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
										m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],

										m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
										m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
										m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
										m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
									}

		//! Operator for HPoint Mul = Matrix4x4 * HPoint;
		inline_	HPoint				operator*(const HPoint& v)		const	{ return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }

		//! Operator for Point Mul = Matrix4x4 * Point;
		inline_	Point				operator*(const Point& v)		const
									{
										return Point(	m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
														m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
														m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3]	);
									}

		//! Operator for Matrix4x4 Scale = Matrix4x4 * float;
		inline_	Matrix4x4			operator*(float s)				const
									{
										return Matrix4x4(
										m[0][0]*s,	m[0][1]*s,	m[0][2]*s,	m[0][3]*s,
										m[1][0]*s,	m[1][1]*s,	m[1][2]*s,	m[1][3]*s,
										m[2][0]*s,	m[2][1]*s,	m[2][2]*s,	m[2][3]*s,
										m[3][0]*s,	m[3][1]*s,	m[3][2]*s,	m[3][3]*s);
									}

		//! Operator for Matrix4x4 Scale = float * Matrix4x4;
		inline_	friend Matrix4x4	operator*(float s, const Matrix4x4& mat)
									{
										return Matrix4x4(
										s*mat.m[0][0],	s*mat.m[0][1],	s*mat.m[0][2],	s*mat.m[0][3],
										s*mat.m[1][0],	s*mat.m[1][1],	s*mat.m[1][2],	s*mat.m[1][3],
										s*mat.m[2][0],	s*mat.m[2][1],	s*mat.m[2][2],	s*mat.m[2][3],
										s*mat.m[3][0],	s*mat.m[3][1],	s*mat.m[3][2],	s*mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Div = Matrix4x4 / float;
		inline_	Matrix4x4			operator/(float s)				const
									{
										if(s) s = 1.0f / s;

										return Matrix4x4(
										m[0][0]*s,	m[0][1]*s,	m[0][2]*s,	m[0][3]*s,
										m[1][0]*s,	m[1][1]*s,	m[1][2]*s,	m[1][3]*s,
										m[2][0]*s,	m[2][1]*s,	m[2][2]*s,	m[2][3]*s,
										m[3][0]*s,	m[3][1]*s,	m[3][2]*s,	m[3][3]*s);
									}

		//! Operator for Matrix4x4 Div = float / Matrix4x4;
		inline_	friend Matrix4x4	operator/(float s, const Matrix4x4& mat)
									{
										return Matrix4x4(
										s/mat.m[0][0],	s/mat.m[0][1],	s/mat.m[0][2],	s/mat.m[0][3],
										s/mat.m[1][0],	s/mat.m[1][1],	s/mat.m[1][2],	s/mat.m[1][3],
										s/mat.m[2][0],	s/mat.m[2][1],	s/mat.m[2][2],	s/mat.m[2][3],
										s/mat.m[3][0],	s/mat.m[3][1],	s/mat.m[3][2],	s/mat.m[3][3]);
									}

		//! Operator for Matrix4x4 += Matrix4x4;
		inline_	Matrix4x4&			operator+=(const Matrix4x4& mat)
									{
										m[0][0]+=mat.m[0][0];	m[0][1]+=mat.m[0][1];	m[0][2]+=mat.m[0][2];	m[0][3]+=mat.m[0][3];
										m[1][0]+=mat.m[1][0];	m[1][1]+=mat.m[1][1];	m[1][2]+=mat.m[1][2];	m[1][3]+=mat.m[1][3];
										m[2][0]+=mat.m[2][0];	m[2][1]+=mat.m[2][1];	m[2][2]+=mat.m[2][2];	m[2][3]+=mat.m[2][3];
										m[3][0]+=mat.m[3][0];	m[3][1]+=mat.m[3][1];	m[3][2]+=mat.m[3][2];	m[3][3]+=mat.m[3][3];
										return	*this;
									}

		//! Operator for Matrix4x4 -= Matrix4x4;
		inline_	Matrix4x4&			operator-=(const Matrix4x4& mat)
									{
										m[0][0]-=mat.m[0][0];	m[0][1]-=mat.m[0][1];	m[0][2]-=mat.m[0][2];	m[0][3]-=mat.m[0][3];
										m[1][0]-=mat.m[1][0];	m[1][1]-=mat.m[1][1];	m[1][2]-=mat.m[1][2];	m[1][3]-=mat.m[1][3];
										m[2][0]-=mat.m[2][0];	m[2][1]-=mat.m[2][1];	m[2][2]-=mat.m[2][2];	m[2][3]-=mat.m[2][3];
										m[3][0]-=mat.m[3][0];	m[3][1]-=mat.m[3][1];	m[3][2]-=mat.m[3][2];	m[3][3]-=mat.m[3][3];
										return	*this;
									}

		//! Operator for Matrix4x4 *= Matrix4x4;
				Matrix4x4&			operator*=(const Matrix4x4& mat)
									{
										HPoint TempRow;

										GetRow(0, TempRow);
										m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(1, TempRow);
										m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(2, TempRow);
										m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(3, TempRow);
										m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										return	*this;
									}

		//! Operator for Matrix4x4 *= float;
		inline_	Matrix4x4&		operator*=(float s)
								{
									m[0][0]*=s;	m[0][1]*=s;	m[0][2]*=s;	m[0][3]*=s;
									m[1][0]*=s;	m[1][1]*=s;	m[1][2]*=s;	m[1][3]*=s;
									m[2][0]*=s;	m[2][1]*=s;	m[2][2]*=s;	m[2][3]*=s;
									m[3][0]*=s;	m[3][1]*=s;	m[3][2]*=s;	m[3][3]*=s;
									return	*this;
								}

		//! Operator for Matrix4x4 /= float;
		inline_	Matrix4x4&		operator/=(float s)
								{
									if(s)  s = 1.0f / s;
									m[0][0]*=s;	m[0][1]*=s;	m[0][2]*=s;	m[0][3]*=s;
									m[1][0]*=s;	m[1][1]*=s;	m[1][2]*=s;	m[1][3]*=s;
									m[2][0]*=s;	m[2][1]*=s;	m[2][2]*=s;	m[2][3]*=s;
									m[3][0]*=s;	m[3][1]*=s;	m[3][2]*=s;	m[3][3]*=s;
									return	*this;
								}

		inline_	const HPoint&	operator[](int row)		const	{ return *(const HPoint*)&m[row][0];	}
		inline_	HPoint&			operator[](int row)				{ return *(HPoint*)&m[row][0];			}

		public:

				float			m[4][4];
	};

	//! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
	inline_ void TransformPoint4x3(Point& dest, const Point& source, const Matrix4x4& rot)
	{
		dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
		dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
		dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
	}

	//! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
	inline_ void TransformPoint3x3(Point& dest, const Point& source, const Matrix4x4& rot)
	{
		dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
		dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
		dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
	}

	ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);

#endif // __ICEMATRIX4X4_H__