/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using OpenSim.Region.ScriptEngine.Shared.ScriptBase; using OpenSim.Region.ScriptEngine.XMREngine; using System; using System.Collections.Generic; using System.IO; using System.Reflection; using System.Reflection.Emit; using System.Runtime.Serialization; using System.Text; using System.Threading; using LSL_Float = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLFloat; using LSL_Integer = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLInteger; using LSL_Key = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString; using LSL_List = OpenSim.Region.ScriptEngine.Shared.LSL_Types.list; using LSL_Rotation = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Quaternion; using LSL_String = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString; using LSL_Vector = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Vector3; /** * @brief translate a reduced script token into corresponding CIL code. * The single script token contains a tokenized and textured version of the whole script file. */ namespace OpenSim.Region.ScriptEngine.XMREngine { public interface IScriptCodeGen { ScriptMyILGen ilGen { get; } // the output instruction stream void ErrorMsg (Token token, string message); void PushDefaultValue (TokenType type); void PushXMRInst (); } public class ScriptCodeGen : IScriptCodeGen { private static readonly bool DEBUG_STACKCAPRES = false; private static readonly bool DEBUG_TRYSTMT = false; public static readonly string OBJECT_CODE_MAGIC = "XMRObjectCode"; public static int COMPILED_VERSION_VALUE = 20; // incremented when compiler changes for compatibility testing public static readonly int CALL_FRAME_MEMUSE = 64; public static readonly int STRING_LEN_TO_MEMUSE = 2; public static Type xmrInstSuperType = null; // typeof whatever is actually malloc'd for script instances // - must inherit from XMRInstAbstract /* * Static tables that there only needs to be one copy of for all. */ private static VarDict legalEventHandlers = CreateLegalEventHandlers (); private static CompValu[] zeroCompValus = new CompValu[0]; private static TokenType[] zeroArgs = new TokenType[0]; private static TokenTypeBool tokenTypeBool = new TokenTypeBool (null); private static TokenTypeExc tokenTypeExc = new TokenTypeExc (null); private static TokenTypeFloat tokenTypeFlt = new TokenTypeFloat (null); private static TokenTypeInt tokenTypeInt = new TokenTypeInt (null); private static TokenTypeObject tokenTypeObj = new TokenTypeObject (null); private static TokenTypeRot tokenTypeRot = new TokenTypeRot (null); private static TokenTypeStr tokenTypeStr = new TokenTypeStr (null); private static TokenTypeVec tokenTypeVec = new TokenTypeVec (null); private static Type[] instanceTypeArg = new Type[] { typeof (XMRInstAbstract) }; private static string[] instanceNameArg = new string[] { "$xmrthis" }; private static ConstructorInfo lslFloatConstructorInfo = typeof (LSL_Float).GetConstructor (new Type[] { typeof (double) }); private static ConstructorInfo lslIntegerConstructorInfo = typeof (LSL_Integer).GetConstructor (new Type[] { typeof (int) }); private static ConstructorInfo lslListConstructorInfo = typeof (LSL_List).GetConstructor (new Type[] { typeof (object[]) }); public static ConstructorInfo lslRotationConstructorInfo = typeof (LSL_Rotation).GetConstructor (new Type[] { typeof (double), typeof (double), typeof (double), typeof (double) }); private static ConstructorInfo lslStringConstructorInfo = typeof (LSL_String).GetConstructor (new Type[] { typeof (string) }); public static ConstructorInfo lslVectorConstructorInfo = typeof (LSL_Vector).GetConstructor (new Type[] { typeof (double), typeof (double), typeof (double) }); private static ConstructorInfo scriptBadCallNoExceptionConstructorInfo = typeof (ScriptBadCallNoException).GetConstructor (new Type[] { typeof (int) }); private static ConstructorInfo scriptChangeStateExceptionConstructorInfo = typeof (ScriptChangeStateException).GetConstructor (new Type[] { typeof (int) }); private static ConstructorInfo scriptRestoreCatchExceptionConstructorInfo = typeof (ScriptRestoreCatchException).GetConstructor (new Type[] { typeof (Exception) }); private static ConstructorInfo scriptUndefinedStateExceptionConstructorInfo = typeof (ScriptUndefinedStateException).GetConstructor (new Type[] { typeof (string) }); private static ConstructorInfo sdtClassConstructorInfo = typeof (XMRSDTypeClObj).GetConstructor (new Type[] { typeof (XMRInstAbstract), typeof (int) }); private static ConstructorInfo xmrArrayConstructorInfo = typeof (XMR_Array).GetConstructor (new Type[] { typeof (XMRInstAbstract) }); private static FieldInfo callModeFieldInfo = typeof (XMRInstAbstract).GetField ("callMode"); private static FieldInfo doGblInitFieldInfo = typeof (XMRInstAbstract).GetField ("doGblInit"); private static FieldInfo ehArgsFieldInfo = typeof (XMRInstAbstract).GetField ("ehArgs"); private static FieldInfo rotationXFieldInfo = typeof (LSL_Rotation).GetField ("x"); private static FieldInfo rotationYFieldInfo = typeof (LSL_Rotation).GetField ("y"); private static FieldInfo rotationZFieldInfo = typeof (LSL_Rotation).GetField ("z"); private static FieldInfo rotationSFieldInfo = typeof (LSL_Rotation).GetField ("s"); private static FieldInfo sdtXMRInstFieldInfo = typeof (XMRSDTypeClObj).GetField ("xmrInst"); private static FieldInfo vectorXFieldInfo = typeof (LSL_Vector).GetField ("x"); private static FieldInfo vectorYFieldInfo = typeof (LSL_Vector).GetField ("y"); private static FieldInfo vectorZFieldInfo = typeof (LSL_Vector).GetField ("z"); private static MethodInfo arrayClearMethodInfo = typeof (XMR_Array).GetMethod ("__pub_clear", new Type[] { }); private static MethodInfo arrayCountMethodInfo = typeof (XMR_Array).GetMethod ("__pub_count", new Type[] { }); private static MethodInfo arrayIndexMethodInfo = typeof (XMR_Array).GetMethod ("__pub_index", new Type[] { typeof (int) }); private static MethodInfo arrayValueMethodInfo = typeof (XMR_Array).GetMethod ("__pub_value", new Type[] { typeof (int) }); private static MethodInfo checkRunStackMethInfo = typeof (XMRInstAbstract).GetMethod ("CheckRunStack", new Type[] { }); private static MethodInfo checkRunQuickMethInfo = typeof (XMRInstAbstract).GetMethod ("CheckRunQuick", new Type[] { }); private static MethodInfo ehArgUnwrapFloat = GetStaticMethod (typeof (TypeCast), "EHArgUnwrapFloat", new Type[] { typeof (object) }); private static MethodInfo ehArgUnwrapInteger = GetStaticMethod (typeof (TypeCast), "EHArgUnwrapInteger", new Type[] { typeof (object) }); private static MethodInfo ehArgUnwrapRotation = GetStaticMethod (typeof (TypeCast), "EHArgUnwrapRotation", new Type[] { typeof (object) }); private static MethodInfo ehArgUnwrapString = GetStaticMethod (typeof (TypeCast), "EHArgUnwrapString", new Type[] { typeof (object) }); private static MethodInfo ehArgUnwrapVector = GetStaticMethod (typeof (TypeCast), "EHArgUnwrapVector", new Type[] { typeof (object) }); private static MethodInfo xmrArrPubIndexMethod = typeof (XMR_Array).GetMethod ("__pub_index", new Type[] { typeof (int) }); private static MethodInfo xmrArrPubValueMethod = typeof (XMR_Array).GetMethod ("__pub_value", new Type[] { typeof (int) }); private static MethodInfo captureStackFrameMethodInfo = typeof (XMRInstAbstract).GetMethod ("CaptureStackFrame", new Type[] { typeof (string), typeof (int), typeof (int) }); private static MethodInfo restoreStackFrameMethodInfo = typeof (XMRInstAbstract).GetMethod ("RestoreStackFrame", new Type[] { typeof (string), typeof (int).MakeByRefType () }); private static MethodInfo stringCompareMethodInfo = GetStaticMethod (typeof (String), "Compare", new Type[] { typeof (string), typeof (string), typeof (StringComparison) }); private static MethodInfo stringConcat2MethodInfo = GetStaticMethod (typeof (String), "Concat", new Type[] { typeof (string), typeof (string) }); private static MethodInfo stringConcat3MethodInfo = GetStaticMethod (typeof (String), "Concat", new Type[] { typeof (string), typeof (string), typeof (string) }); private static MethodInfo stringConcat4MethodInfo = GetStaticMethod (typeof (String), "Concat", new Type[] { typeof (string), typeof (string), typeof (string), typeof (string) }); private static MethodInfo lslRotationNegateMethodInfo = GetStaticMethod (typeof (ScriptCodeGen), "LSLRotationNegate", new Type[] { typeof (LSL_Rotation) }); private static MethodInfo lslVectorNegateMethodInfo = GetStaticMethod (typeof (ScriptCodeGen), "LSLVectorNegate", new Type[] { typeof (LSL_Vector) }); private static MethodInfo scriptRestoreCatchExceptionUnwrap = GetStaticMethod (typeof (ScriptRestoreCatchException), "Unwrap", new Type[] { typeof (Exception) }); private static MethodInfo thrownExceptionWrapMethodInfo = GetStaticMethod (typeof (ScriptThrownException), "Wrap", new Type[] { typeof (object) }); private static MethodInfo catchExcToStrMethodInfo = GetStaticMethod (typeof (ScriptCodeGen), "CatchExcToStr", new Type[] { typeof (Exception) }); private static MethodInfo consoleWriteMethodInfo = GetStaticMethod (typeof (ScriptCodeGen), "ConsoleWrite", new Type[] { typeof (object) }); public static void ConsoleWrite (object o) { if (o == null) o = "<>"; Console.Write (o.ToString ()); } public static bool CodeGen (TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash) { /* * Run compiler such that it has a 'this' context for convenience. */ ScriptCodeGen scg = new ScriptCodeGen (tokenScript, objFileWriter, sourceHash); /* * Return pointer to resultant script object code. */ return !scg.youveAnError; } /* * There is one set of these variables for each script being compiled. */ private bool mightGetHere = false; private bool youveAnError = false; private BreakContTarg curBreakTarg = null; private BreakContTarg curContTarg = null; private int lastErrorLine = 0; private int nStates = 0; private string sourceHash; private string lastErrorFile = ""; private string[] stateNames; private XMRInstArSizes glblSizes = new XMRInstArSizes (); private Token errorMessageToken = null; private TokenDeclVar curDeclFunc = null; private TokenStmtBlock curStmtBlock = null; private BinaryWriter objFileWriter = null; private TokenScript tokenScript = null; public int tempCompValuNum = 0; private TokenDeclSDTypeClass currentSDTClass = null; private Dictionary stateIndices = null; // These get cleared at beginning of every function definition private ScriptMyLocal instancePointer; // holds XMRInstanceSuperType pointer private ScriptMyLabel retLabel = null; // where to jump to exit function private ScriptMyLocal retValue = null; private ScriptMyLocal actCallNo = null; // for the active try/catch/finally stack or the big one outside them all private LinkedList actCallLabels = new LinkedList (); // for the active try/catch/finally stack or the big one outside them all private LinkedList allCallLabels = new LinkedList (); // this holds each and every one for all stacks in total public CallLabel openCallLabel = null; // only one call label can be open at a time // - the call label is open from the time of CallPre() until corresponding CallPost() // - so no non-trivial pushes/pops etc allowed between a CallPre() and a CallPost() private ScriptMyILGen _ilGen; public ScriptMyILGen ilGen { get { return _ilGen; } } private ScriptCodeGen (TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash) { this.tokenScript = tokenScript; this.objFileWriter = objFileWriter; this.sourceHash = sourceHash; try { PerformCompilation (); } catch { // if we've an error, just punt on any exception // it's probably just a null reference from something // not being filled in etc. if (!youveAnError) throw; } finally { objFileWriter = null; } } /** * @brief Convert 'tokenScript' to 'objFileWriter' format. * 'tokenScript' is a parsed/reduced abstract syntax tree of the script source file * 'objFileWriter' is a serialized form of the CIL code that we generate */ private void PerformCompilation () { /* * errorMessageToken is used only when the given token doesn't have a * output delegate associated with it such as for backend API functions * that only have one copy for the whole system. It is kept up-to-date * approximately but is rarely needed so going to assume it doesn't have * to be exact. */ errorMessageToken = tokenScript; /* * Set up dictionary to translate state names to their index number. */ stateIndices = new Dictionary (); /* * Assign each state its own unique index. * The default state gets 0. */ nStates = 0; tokenScript.defaultState.body.index = nStates ++; stateIndices.Add ("default", 0); foreach (KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; declState.body.index = nStates ++; stateIndices.Add (declState.name.val, declState.body.index); } /* * Make up an array that translates state indices to state name strings. */ stateNames = new string[nStates]; stateNames[0] = "default"; foreach (KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; stateNames[declState.body.index] = declState.name.val; } /* * Make sure we have delegates for all script-defined functions and methods, * creating anonymous ones if needed. Note that this includes all property * getter and setter methods. */ foreach (TokenDeclVar declFunc in tokenScript.variablesStack) { if (declFunc.retType != null) { declFunc.GetDelType (); } } while (true) { bool itIsAGoodDayToDie = true; try { foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { itIsAGoodDayToDie = false; if (sdType is TokenDeclSDTypeClass) { TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar declFunc in sdtClass.members) { if (declFunc.retType != null) { declFunc.GetDelType (); if (declFunc.funcNameSig.val.StartsWith ("$ctor(")) { // this is for the "$new()" static method that we create below. // See GenerateStmtNewobj() etc. new TokenTypeSDTypeDelegate (declFunc, sdtClass.MakeRefToken (declFunc), declFunc.argDecl.types, tokenScript); } } } } if (sdType is TokenDeclSDTypeInterface) { TokenDeclSDTypeInterface sdtIFace = (TokenDeclSDTypeInterface)sdType; foreach (TokenDeclVar declFunc in sdtIFace.methsNProps) { if (declFunc.retType != null) { declFunc.GetDelType (); } } } itIsAGoodDayToDie = true; } break; } catch (InvalidOperationException) { if (!itIsAGoodDayToDie) throw; // fetching the delegate created an anonymous entry in tokenScript.sdSrcTypesValues // which made the foreach statement puque, so start over... } } /* * No more types can be defined or we won't be able to write them to the object file. */ tokenScript.sdSrcTypesSeal (); /* * Assign all global variables a slot in its corresponding XMRInstance.gbls[] array. * Global variables are simply elements of those arrays at runtime, thus we don't need to create * an unique class for each script, we can just use XMRInstance as is for all. */ foreach (TokenDeclVar declVar in tokenScript.variablesStack) { /* * Omit 'constant' variables as they are coded inline so don't need a slot. */ if (declVar.constant) continue; /* * Do functions later. */ if (declVar.retType != null) continue; /* * Create entry in the value array for the variable or property. */ declVar.location = new CompValuGlobalVar (declVar, glblSizes); } /* * Likewise for any static fields in script-defined classes. * They can be referenced anywhere by ., see * GenerateFromLValSField(). */ foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar declVar in sdtClass.members) { /* * Omit 'constant' variables as they are coded inline so don't need a slot. */ if (declVar.constant) continue; /* * Do methods later. */ if (declVar.retType != null) continue; /* * Ignore non-static fields for now. * They get assigned below. */ if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0) continue; /* * Create entry in the value array for the static field or static property. */ declVar.location = new CompValuGlobalVar (declVar, glblSizes); } } /* * Assign slots for all interface method prototypes. * These indices are used to index the array of delegates that holds a class' implementation of an * interface. * Properties do not get a slot because they aren't called as such. But their corresponding * $get() and $set() methods are in the table and they each get a slot. */ foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeInterface)) continue; TokenDeclSDTypeInterface sdtIFace = (TokenDeclSDTypeInterface)sdType; int vti = 0; foreach (TokenDeclVar im in sdtIFace.methsNProps) { if ((im.getProp == null) && (im.setProp == null)) { im.vTableIndex = vti ++; } } } /* * Assign slots for all instance fields and virtual methods of script-defined classes. */ int maxExtends = tokenScript.sdSrcTypesCount; bool didOne; do { didOne = false; foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; if (sdtClass.slotsAssigned) continue; /* * If this class extends another, the extended class has to already * be set up, because our slots add on to the end of the extended class. */ TokenDeclSDTypeClass extends = sdtClass.extends; if (extends != null) { if (!extends.slotsAssigned) continue; sdtClass.instSizes = extends.instSizes; sdtClass.numVirtFuncs = extends.numVirtFuncs; sdtClass.numInterfaces = extends.numInterfaces; int n = maxExtends; for (TokenDeclSDTypeClass ex = extends; ex != null; ex = ex.extends) { if (-- n < 0) break; } if (n < 0) { ErrorMsg (sdtClass, "loop in extended classes"); sdtClass.slotsAssigned = true; continue; } } /* * Extended class's slots all assigned, assign our instance fields * slots in the XMRSDTypeClObj arrays. */ foreach (TokenDeclVar declVar in sdtClass.members) { if (declVar.retType != null) continue; if (declVar.constant) continue; if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) continue; if ((declVar.getProp == null) && (declVar.setProp == null)) { declVar.type.AssignVarSlot (declVar, sdtClass.instSizes); } } /* * ... and assign virtual method vtable slots. * * - : error if any overridden method, doesn't need a slot * abstract : error if any overridden method, alloc new slot but leave it empty * new : ignore any overridden method, doesn't need a slot * new abstract : ignore any overridden method, alloc new slot but leave it empty * override : must have overridden abstract/virtual, use old slot * override abstract : must have overridden abstract, use old slot but it is still empty * static : error if any overridden method, doesn't need a slot * static new : ignore any overridden method, doesn't need a slot * virtual : error if any overridden method, alloc new slot and fill it in * virtual new : ignore any overridden method, alloc new slot and fill it in */ foreach (TokenDeclVar declFunc in sdtClass.members) { if (declFunc.retType == null) continue; curDeclFunc = declFunc; /* * See if there is a method in an extended class that this method overshadows. * If so, check for various conflicts. * In any case, SDT_NEW on our method means to ignore any overshadowed method. */ string declLongName = sdtClass.longName.val + "." + declFunc.funcNameSig.val; uint declFlags = declFunc.sdtFlags; TokenDeclVar overridden = null; if ((declFlags & ScriptReduce.SDT_NEW) == 0) { for (TokenDeclSDTypeClass sdtd = extends; sdtd != null; sdtd = sdtd.extends) { overridden = FindExactWithRet (sdtd.members, declFunc.name, declFunc.retType, declFunc.argDecl.types); if (overridden != null) break; } } if (overridden != null) do { string overLongName = overridden.sdtClass.longName.val; uint overFlags = overridden.sdtFlags; /* * See if overridden method allows itself to be overridden. */ if ((overFlags & ScriptReduce.SDT_ABSTRACT) != 0) { if ((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE)) == 0) { ErrorMsg (declFunc, declLongName + " overshadows abstract " + overLongName + " but is not marked abstract, new or override"); break; } } else if ((overFlags & ScriptReduce.SDT_FINAL) != 0) { ErrorMsg (declFunc, declLongName + " overshadows final " + overLongName + " but is not marked new"); } else if ((overFlags & (ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) != 0) { if ((declFlags & (ScriptReduce.SDT_NEW | ScriptReduce.SDT_OVERRIDE)) == 0) { ErrorMsg (declFunc, declLongName + " overshadows virtual " + overLongName + " but is not marked new or override"); break; } } else { ErrorMsg (declFunc, declLongName + " overshadows non-virtual " + overLongName + " but is not marked new"); break; } /* * See if our method is capable of overriding the other method. */ if ((declFlags & ScriptReduce.SDT_ABSTRACT) != 0) { if ((overFlags & ScriptReduce.SDT_ABSTRACT) == 0) { ErrorMsg (declFunc, declLongName + " abstract overshadows non-abstract " + overLongName + " but is not marked new"); break; } } else if ((declFlags & ScriptReduce.SDT_OVERRIDE) != 0) { if ((overFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) == 0) { ErrorMsg (declFunc, declLongName + " override overshadows non-abstract/non-virtual " + overLongName); break; } } else { ErrorMsg (declFunc, declLongName + " overshadows " + overLongName + " but is not marked new"); break; } } while (false); /* * Now we can assign it a vtable slot if it needs one (ie, it is virtual). */ declFunc.vTableIndex = -1; if (overridden != null) { declFunc.vTableIndex = overridden.vTableIndex; } else if ((declFlags & ScriptReduce.SDT_OVERRIDE) != 0) { ErrorMsg (declFunc, declLongName + " marked override but nothing matching found that it overrides"); } if ((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_VIRTUAL)) != 0) { declFunc.vTableIndex = sdtClass.numVirtFuncs ++; } } curDeclFunc = null; /* * ... and assign implemented interface slots. * Note that our implementations of a given interface is completely independent of any * rootward class's implementation of that same interface. */ int nIFaces = sdtClass.numInterfaces + sdtClass.implements.Count; sdtClass.iFaces = new TokenDeclSDTypeInterface[nIFaces]; sdtClass.iImplFunc = new TokenDeclVar[nIFaces][]; for (int i = 0; i < sdtClass.numInterfaces; i ++) { sdtClass.iFaces[i] = extends.iFaces[i]; sdtClass.iImplFunc[i] = extends.iImplFunc[i]; } foreach (TokenDeclSDTypeInterface intf in sdtClass.implements) { int i = sdtClass.numInterfaces ++; sdtClass.iFaces[i] = intf; sdtClass.intfIndices.Add (intf.longName.val, i); int nMeths = 0; foreach (TokenDeclVar m in intf.methsNProps) { if ((m.getProp == null) && (m.setProp == null)) nMeths ++; } sdtClass.iImplFunc[i] = new TokenDeclVar[nMeths]; } foreach (TokenDeclVar classMeth in sdtClass.members) { if (classMeth.retType == null) continue; curDeclFunc = classMeth; for (TokenIntfImpl intfImpl = classMeth.implements; intfImpl != null; intfImpl = (TokenIntfImpl)intfImpl.nextToken) { /* * One of the class methods implements an interface method. * Try to find the interface method that is implemented and verify its signature. */ TokenDeclSDTypeInterface intfType = intfImpl.intfType.decl; TokenDeclVar intfMeth = FindExactWithRet (intfType.methsNProps, intfImpl.methName, classMeth.retType, classMeth.argDecl.types); if (intfMeth == null) { ErrorMsg (intfImpl, "interface does not define method " + intfImpl.methName.val + classMeth.argDecl.GetArgSig ()); continue; } /* * See if this class was declared to implement that interface. */ bool found = false; foreach (TokenDeclSDTypeInterface intf in sdtClass.implements) { if (intf == intfType) { found = true; break; } } if (!found) { ErrorMsg (intfImpl, "class not declared to implement " + intfType.longName.val); continue; } /* * Get index in iFaces[] and iImplFunc[] arrays. * Start scanning from the end in case one of our rootward classes also implements the interface. * We should always be successful because we know by now that this class implements the interface. */ int i; for (i = sdtClass.numInterfaces; -- i >= 0;) { if (sdtClass.iFaces[i] == intfType) break; } /* * Now remember which of the class methods implements that interface method. */ int j = intfMeth.vTableIndex; if (sdtClass.iImplFunc[i][j] != null) { ErrorMsg (intfImpl, "also implemented by " + sdtClass.iImplFunc[i][j].funcNameSig.val); continue; } sdtClass.iImplFunc[i][j] = classMeth; } } curDeclFunc = null; /* * Now make sure this class implements all methods for all declared interfaces. */ for (int i = sdtClass.numInterfaces - sdtClass.implements.Count; i < sdtClass.numInterfaces; i ++) { TokenDeclVar[] implementations = sdtClass.iImplFunc[i]; for (int j = implementations.Length; -- j >= 0;) { if (implementations[j] == null) { TokenDeclSDTypeInterface intf = sdtClass.iFaces[i]; TokenDeclVar meth = null; foreach (TokenDeclVar im in intf.methsNProps) { if (im.vTableIndex == j) { meth = im; break; } } ErrorMsg (sdtClass, "does not implement " + intf.longName.val + "." + meth.funcNameSig.val); } } } /* * All slots for this class have been assigned. */ sdtClass.slotsAssigned = true; didOne = true; } } while (didOne); /* * Compute final values for all variables/fields declared as 'constant'. * Note that there may be forward references. */ do { didOne = false; foreach (TokenDeclVar tdv in tokenScript.variablesStack) { if (tdv.constant && !(tdv.init is TokenRValConst)) { tdv.init = tdv.init.TryComputeConstant (LookupInitConstants, ref didOne); } } foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; currentSDTClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar tdv in currentSDTClass.members) { if (tdv.constant && !(tdv.init is TokenRValConst)) { tdv.init = tdv.init.TryComputeConstant (LookupInitConstants, ref didOne); } } } currentSDTClass = null; } while (didOne); /* * Now we should be able to assign all those constants their type and location. */ foreach (TokenDeclVar tdv in tokenScript.variablesStack) { if (tdv.constant) { if (tdv.init is TokenRValConst) { TokenRValConst rvc = (TokenRValConst)tdv.init; tdv.type = rvc.tokType; tdv.location = rvc.GetCompValu (); } else { ErrorMsg (tdv, "value is not constant"); } } } foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; currentSDTClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar tdv in currentSDTClass.members) { if (tdv.constant) { if (tdv.init is TokenRValConst) { TokenRValConst rvc = (TokenRValConst)tdv.init; tdv.type = rvc.tokType; tdv.location = rvc.GetCompValu (); } else { ErrorMsg (tdv, "value is not constant"); } } } } currentSDTClass = null; /* * For all classes that define all the methods needed for the class, ie, they aren't abstract, * define a static class.$new() method with same args as the $ctor(s). This will allow the * class to be instantiated via the new operator. */ foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; /* * See if the class as it stands would be able to fill every slot of its vtable. */ bool[] filled = new bool[sdtClass.numVirtFuncs]; int numFilled = 0; for (TokenDeclSDTypeClass sdtc = sdtClass; sdtc != null; sdtc = sdtc.extends) { foreach (TokenDeclVar tdf in sdtc.members) { if ((tdf.retType != null) && (tdf.vTableIndex >= 0) && ((tdf.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0)) { if (!filled[tdf.vTableIndex]) { filled[tdf.vTableIndex] = true; numFilled ++; } } } } /* * If so, define a static class.$new() method for every constructor defined for the class. * Give it the same access (private/protected/public) as the script declared for the constructor. * Note that the reducer made sure there is at least a default constructor for every class. */ if (numFilled >= sdtClass.numVirtFuncs) { List newobjDeclFuncs = new List (); foreach (TokenDeclVar ctorDeclFunc in sdtClass.members) { if ((ctorDeclFunc.funcNameSig != null) && ctorDeclFunc.funcNameSig.val.StartsWith ("$ctor(")) { TokenDeclVar newobjDeclFunc = DefineNewobjFunc (ctorDeclFunc); newobjDeclFuncs.Add (newobjDeclFunc); } } foreach (TokenDeclVar newobjDeclFunc in newobjDeclFuncs) { sdtClass.members.AddEntry (newobjDeclFunc); } } } /* * Write fixed portion of object file. */ objFileWriter.Write (OBJECT_CODE_MAGIC.ToCharArray ()); objFileWriter.Write (COMPILED_VERSION_VALUE); objFileWriter.Write (sourceHash); objFileWriter.Write (tokenScript.expiryDays); glblSizes.WriteToFile (objFileWriter); objFileWriter.Write (nStates); for (int i = 0; i < nStates; i ++) { objFileWriter.Write (stateNames[i]); } /* * For debugging, we also write out global variable array slot assignments. */ foreach (TokenDeclVar declVar in tokenScript.variablesStack) { if (declVar.retType == null) { WriteOutGblAssignment ("", declVar); } } foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar declVar in sdtClass.members) { if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { WriteOutGblAssignment (sdtClass.longName.val + ".", declVar); } } } objFileWriter.Write (""); /* * Write out script-defined types. */ foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { objFileWriter.Write (sdType.longName.val); sdType.WriteToFile (objFileWriter); } objFileWriter.Write (""); /* * Output function headers then bodies. * Do all headers first in case bodies do forward references. * Do both global functions, script-defined class static methods and * script-defined instance methods, as we handle the differences * during compilation of the functions/methods themselves. */ for (int pass = 0; pass < 2; pass ++) { foreach (TokenDeclVar declFunc in tokenScript.variablesStack) { if (declFunc.retType != null) { if (pass == 0) GenerateMethodHeader (declFunc); else GenerateMethodBody (declFunc); } } foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (sdType is TokenDeclSDTypeClass) { TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach (TokenDeclVar declFunc in sdtClass.members) { if ((declFunc.retType != null) && ((declFunc.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0)) { if (pass == 0) GenerateMethodHeader (declFunc); else GenerateMethodBody (declFunc); } } } } } /* * Output default state event handler functions. * Each event handler is a private static method named 'default '. * Splice in a default state_entry() handler if none defined so we can init global vars. */ TokenDeclVar defaultStateEntry = null; for (defaultStateEntry = tokenScript.defaultState.body.eventFuncs; defaultStateEntry != null; defaultStateEntry = (TokenDeclVar)defaultStateEntry.nextToken) { if (defaultStateEntry.funcNameSig.val == "state_entry()") break; } if (defaultStateEntry == null) { defaultStateEntry = new TokenDeclVar (tokenScript.defaultState.body, null, tokenScript); defaultStateEntry.name = new TokenName (tokenScript.defaultState.body, "state_entry"); defaultStateEntry.retType = new TokenTypeVoid (tokenScript.defaultState.body); defaultStateEntry.argDecl = new TokenArgDecl (tokenScript.defaultState.body); defaultStateEntry.body = new TokenStmtBlock (tokenScript.defaultState.body); defaultStateEntry.body.function = defaultStateEntry; defaultStateEntry.nextToken = tokenScript.defaultState.body.eventFuncs; tokenScript.defaultState.body.eventFuncs = defaultStateEntry; } GenerateStateEventHandlers ("default", tokenScript.defaultState.body); /* * Output script-defined state event handler methods. * Each event handler is a private static method named */ foreach (KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; GenerateStateEventHandlers (declState.name.val, declState.body); } ScriptObjWriter.TheEnd (objFileWriter); } /** * @brief Write out what slot was assigned for a global or sdtclass static variable. * Constants, functions, instance fields, methods, properties do not have slots in the global variables arrays. */ private void WriteOutGblAssignment (string pfx, TokenDeclVar declVar) { if (!declVar.constant && (declVar.retType == null) && (declVar.getProp == null) && (declVar.setProp == null)) { objFileWriter.Write (pfx + declVar.name.val); // string objFileWriter.Write (declVar.vTableArray.Name); // string objFileWriter.Write (declVar.vTableIndex); // int } } /** * @brief generate event handler code * Writes out a function definition for each state handler * named * * However, each has just 'XMRInstance __sw' as its single argument * and each of its user-visible argments is extracted from __sw.ehArgs[]. * * So we end up generating something like this: * * private static void (XMRInstance __sw) * { * = ()__sw.ehArgs[0]; * = ()__sw.ehArgs[1]; * * ... script code ... * } * * The continuations code assumes there will be no references to ehArgs[] * after the first call to CheckRun() as CheckRun() makes no attempt to * serialize the ehArgs[] array, as doing so would be redundant. Any values * from ehArgs[] that are being used will be in local stack variables and * thus preserved that way. */ private void GenerateStateEventHandlers (string statename, TokenStateBody body) { Dictionary statehandlers = new Dictionary (); for (Token t = body.eventFuncs; t != null; t = t.nextToken) { TokenDeclVar tdv = (TokenDeclVar)t; string eventname = tdv.GetSimpleName (); if (statehandlers.ContainsKey (eventname)) { ErrorMsg (tdv, "event handler " + eventname + " already defined for state " + statename); } else { statehandlers.Add (eventname, tdv); GenerateEventHandler (statename, tdv); } } } private void GenerateEventHandler (string statename, TokenDeclVar declFunc) { string eventname = declFunc.GetSimpleName (); TokenArgDecl argDecl = declFunc.argDecl; /* * Make sure event handler name is valid and that number and type of arguments is correct. * Apparently some scripts exist with fewer than correct number of args in their declaration * so allow for that. It is ok because the handlers are called with the arguments in an * object[] array, and we just won't access the missing argments in the vector. But the * specified types must match one of the prototypes in legalEventHandlers. */ TokenDeclVar protoDeclFunc = legalEventHandlers.FindExact (eventname, argDecl.types); if (protoDeclFunc == null) { ErrorMsg (declFunc, "unknown event handler " + eventname + argDecl.GetArgSig ()); return; } /* * Output function header. * They just have the XMRInstAbstract pointer as the one argument. */ string functionName = statename + " " + eventname; _ilGen = new ScriptObjWriter (tokenScript, functionName, typeof (void), instanceTypeArg, instanceNameArg, objFileWriter); StartFunctionBody (declFunc); /* * Create a temp to hold XMRInstanceSuperType version of arg 0. */ instancePointer = ilGen.DeclareLocal (xmrInstSuperType, "__xmrinst"); ilGen.Emit (declFunc, OpCodes.Ldarg_0); ilGen.Emit (declFunc, OpCodes.Castclass, xmrInstSuperType); ilGen.Emit (declFunc, OpCodes.Stloc, instancePointer); /* * Output args as variable definitions and initialize each from __sw.ehArgs[]. * If the script writer goofed, the typecast will complain. */ int nArgs = argDecl.vars.Length; for (int i = 0; i < nArgs; i ++) { /* * Say that the argument variable is going to be located in a local var. */ TokenDeclVar argVar = argDecl.vars[i]; TokenType argTokType = argVar.type; CompValuLocalVar local = new CompValuLocalVar (argTokType, argVar.name.val, this); argVar.location = local; /* * Copy from the ehArgs[i] element to the temp var. * Cast as needed, there is a lot of craziness like OpenMetaverse.Quaternion. */ local.PopPre (this, argVar.name); PushXMRInst (); // instance ilGen.Emit (declFunc, OpCodes.Ldfld, ehArgsFieldInfo); // instance.ehArgs (array of objects) ilGen.Emit (declFunc, OpCodes.Ldc_I4, i); // array index = i ilGen.Emit (declFunc, OpCodes.Ldelem, typeof (object)); // select the argument we want TokenType stkTokType = tokenTypeObj; // stack has a type 'object' on it now Type argSysType = argTokType.ToSysType (); // this is the type the script expects if (argSysType == typeof (double)) { // LSL_Float/double -> double ilGen.Emit (declFunc, OpCodes.Call, ehArgUnwrapFloat); stkTokType = tokenTypeFlt; // stack has a type 'double' on it now } if (argSysType == typeof (int)) { // LSL_Integer/int -> int ilGen.Emit (declFunc, OpCodes.Call, ehArgUnwrapInteger); stkTokType = tokenTypeInt; // stack has a type 'int' on it now } if (argSysType == typeof (LSL_List)) { // LSL_List -> LSL_List TypeCast.CastTopOfStack (this, argVar.name, stkTokType, argTokType, true); stkTokType = argTokType; // stack has a type 'LSL_List' on it now } if (argSysType == typeof (LSL_Rotation)) { // OpenMetaverse.Quaternion/LSL_Rotation -> LSL_Rotation ilGen.Emit (declFunc, OpCodes.Call, ehArgUnwrapRotation); stkTokType = tokenTypeRot; // stack has a type 'LSL_Rotation' on it now } if (argSysType == typeof (string)) { // LSL_Key/LSL_String/string -> string ilGen.Emit (declFunc, OpCodes.Call, ehArgUnwrapString); stkTokType = tokenTypeStr; // stack has a type 'string' on it now } if (argSysType == typeof (LSL_Vector)) { // OpenMetaverse.Vector3/LSL_Vector -> LSL_Vector ilGen.Emit (declFunc, OpCodes.Call, ehArgUnwrapVector); stkTokType = tokenTypeVec; // stack has a type 'LSL_Vector' on it now } local.PopPost (this, argVar.name, stkTokType); // pop stack type into argtype } /* * Output code for the statements and clean up. */ GenerateFuncBody (); } /** * @brief generate header for an arbitrary script-defined global function. * @param declFunc = function being defined */ private void GenerateMethodHeader (TokenDeclVar declFunc) { curDeclFunc = declFunc; /* * Make up array of all argument types as seen by the code generator. * We splice in XMRInstanceSuperType or XMRSDTypeClObj for the first * arg as the function itself is static, followed by script-visible * arg types. */ TokenArgDecl argDecl = declFunc.argDecl; int nArgs = argDecl.vars.Length; Type[] argTypes = new Type[nArgs+1]; string[] argNames = new string[nArgs+1]; if (IsSDTInstMethod ()) { argTypes[0] = typeof (XMRSDTypeClObj); argNames[0] = "$sdtthis"; } else { argTypes[0] = xmrInstSuperType; argNames[0] = "$xmrthis"; } for (int i = 0; i < nArgs; i ++) { argTypes[i+1] = argDecl.vars[i].type.ToSysType (); argNames[i+1] = argDecl.vars[i].name.val; } /* * Set up entrypoint. */ string objCodeName = declFunc.GetObjCodeName (); declFunc.ilGen = new ScriptObjWriter (tokenScript, objCodeName, declFunc.retType.ToSysType (), argTypes, argNames, objFileWriter); /* * This says how to generate a call to the function and to get a delegate. */ declFunc.location = new CompValuGlobalMeth (declFunc); curDeclFunc = null; } /** * @brief generate code for an arbitrary script-defined function. * @param name = name of the function * @param argDecl = argument declarations * @param body = function's code body */ private void GenerateMethodBody (TokenDeclVar declFunc) { /* * Set up code generator for the function's contents. */ _ilGen = declFunc.ilGen; StartFunctionBody (declFunc); /* * Create a temp to hold XMRInstanceSuperType version of arg 0. * For most functions, arg 0 is already XMRInstanceSuperType. * But for script-defined class instance methods, arg 0 holds * the XMRSDTypeClObj pointer and so we read the XMRInstAbstract * pointer from its XMRSDTypeClObj.xmrInst field then cast it to * XMRInstanceSuperType. */ if (IsSDTInstMethod ()) { instancePointer = ilGen.DeclareLocal (xmrInstSuperType, "__xmrinst"); ilGen.Emit (declFunc, OpCodes.Ldarg_0); ilGen.Emit (declFunc, OpCodes.Ldfld, sdtXMRInstFieldInfo); ilGen.Emit (declFunc, OpCodes.Castclass, xmrInstSuperType); ilGen.Emit (declFunc, OpCodes.Stloc, instancePointer); } /* * Define location of all script-level arguments so script body can access them. * The argument indices need to have +1 added to them because XMRInstance or * XMRSDTypeClObj is spliced in at arg 0. */ TokenArgDecl argDecl = declFunc.argDecl; int nArgs = argDecl.vars.Length; for (int i = 0; i < nArgs; i ++) { TokenDeclVar argVar = argDecl.vars[i]; argVar.location = new CompValuArg (argVar.type, i + 1); } /* * Output code for the statements and clean up. */ GenerateFuncBody (); } private void StartFunctionBody (TokenDeclVar declFunc) { /* * Start current function being processed. * Set 'mightGetHere' as the code at the top is always executed. */ instancePointer = null; mightGetHere = true; curBreakTarg = null; curContTarg = null; curDeclFunc = declFunc; /* * Start generating code. */ ((ScriptObjWriter)ilGen).BegMethod (); } /** * @brief Define function for a script-defined type's .$new() method. * See GenerateStmtNewobj() for more info. */ private TokenDeclVar DefineNewobjFunc (TokenDeclVar ctorDeclFunc) { /* * Set up 'static classname $new(params-same-as-ctor) { }'. */ TokenDeclVar newobjDeclFunc = new TokenDeclVar (ctorDeclFunc, null, tokenScript); newobjDeclFunc.name = new TokenName (newobjDeclFunc, "$new"); newobjDeclFunc.retType = ctorDeclFunc.sdtClass.MakeRefToken (newobjDeclFunc); newobjDeclFunc.argDecl = ctorDeclFunc.argDecl; newobjDeclFunc.sdtClass = ctorDeclFunc.sdtClass; newobjDeclFunc.sdtFlags = ScriptReduce.SDT_STATIC | ctorDeclFunc.sdtFlags; /* * Declare local variable named '$objptr' in a frame just under * what the '$new(...)' function's arguments are declared in. */ TokenDeclVar objptrVar = new TokenDeclVar (newobjDeclFunc, newobjDeclFunc, tokenScript); objptrVar.type = newobjDeclFunc.retType; objptrVar.name = new TokenName (newobjDeclFunc, "$objptr"); VarDict newFrame = new VarDict (false); newFrame.outerVarDict = ctorDeclFunc.argDecl.varDict; newFrame.AddEntry (objptrVar); /* * Set up '$objptr.$ctor' */ TokenLValName objptrLValName = new TokenLValName (objptrVar.name, newFrame); // ref a var by giving its name TokenLValIField objptrDotCtor = new TokenLValIField (newobjDeclFunc); // an instance member reference objptrDotCtor.baseRVal = objptrLValName; // '$objptr' objptrDotCtor.fieldName = ctorDeclFunc.name; // '.' '$ctor' /* * Set up '$objptr.$ctor(arglist)' call for use in the '$new(...)' body. * Copy the arglist from the constructor declaration so triviality * processing will pick the correct overloaded constructor. */ TokenRValCall callCtorRVal = new TokenRValCall (newobjDeclFunc); // doing a call of some sort callCtorRVal.meth = objptrDotCtor; // calling $objptr.$ctor() TokenDeclVar[] argList = newobjDeclFunc.argDecl.vars; // get args $new() was declared with callCtorRVal.nArgs = argList.Length; // ...that is nArgs we are passing to $objptr.$ctor() for (int i = argList.Length; -- i >= 0;) { TokenDeclVar arg = argList[i]; // find out about one of the args TokenLValName argLValName = new TokenLValName (arg.name, ctorDeclFunc.argDecl.varDict); // pass arg of that name to $objptr.$ctor() argLValName.nextToken = callCtorRVal.args; // link to list of args passed to $objptr.$ctor() callCtorRVal.args = argLValName; } /* * Set up a funky call to the constructor for the code body. * This will let code generator know there is some craziness. * See GenerateStmtNewobj(). * * This is in essence: * { * classname $objptr = newobj (classname); * $objptr.$ctor (...); * return $objptr; * } */ TokenStmtNewobj newobjStmtBody = new TokenStmtNewobj (ctorDeclFunc); newobjStmtBody.objptrVar = objptrVar; newobjStmtBody.rValCall = callCtorRVal; TokenStmtBlock newobjBody = new TokenStmtBlock (ctorDeclFunc); newobjBody.statements = newobjStmtBody; /* * Link that code as the body of the function. */ newobjDeclFunc.body = newobjBody; /* * Say the function calls '$objptr.$ctor(arglist)' so we will inherit ctor's triviality. */ newobjDeclFunc.unknownTrivialityCalls.AddLast (callCtorRVal); return newobjDeclFunc; } private class TokenStmtNewobj : TokenStmt { public TokenDeclVar objptrVar; public TokenRValCall rValCall; public TokenStmtNewobj (Token original) : base (original) { } } /** * @brief Output function body (either event handler or script-defined method). */ private void GenerateFuncBody () { /* * We want to know if the function's code is trivial, ie, * if it doesn't have anything that might be an infinite * loop and that is doesn't call anything that might have * an infinite loop. If it is, we don't need any CheckRun() * stuff or any of the frame save/restore stuff. */ bool isTrivial = curDeclFunc.IsFuncTrivial (this); /* * Clear list of all call labels. * A call label is inserted just before every call that can possibly * call CheckRun(), including any direct calls to CheckRun(). * Then, when restoring stack, we can just switch to this label to * resume at the correct spot. */ actCallLabels.Clear (); allCallLabels.Clear (); openCallLabel = null; /* * Alloc stack space for local vars. */ AllocLocalVarStackSpace (); /* * Any return statements inside function body jump to this label * after putting return value in __retval. */ retLabel = ilGen.DefineLabel ("__retlbl"); retValue = null; if (!(curDeclFunc.retType is TokenTypeVoid)) { retValue = ilGen.DeclareLocal (curDeclFunc.retType.ToSysType (), "__retval"); } /* * Output: * int __mainCallNo = -1; * try { * if (instance.callMode != CallMode_NORMAL) goto __cmRestore; */ actCallNo = null; ScriptMyLabel cmRestore = null; if (!isTrivial) { actCallNo = ilGen.DeclareLocal (typeof (int), "__mainCallNo"); SetCallNo (curDeclFunc, actCallNo, -1); cmRestore = ilGen.DefineLabel ("__cmRestore"); ilGen.BeginExceptionBlock (); PushXMRInst (); ilGen.Emit (curDeclFunc, OpCodes.Ldfld, ScriptCodeGen.callModeFieldInfo); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_NORMAL); ilGen.Emit (curDeclFunc, OpCodes.Bne_Un, cmRestore); } /* * Splice in the code optimizer for the body of the function. */ ScriptCollector collector = new ScriptCollector ((ScriptObjWriter)ilGen); _ilGen = collector; /* * If this is the default state_entry() handler, output code to set all global * variables to their initial values. Note that every script must have a * default state_entry() handler, we provide one if the script doesn't explicitly * define one. */ string methname = ilGen.methName; if (methname == "default state_entry") { // if (!doGblInit) goto skipGblInit; ScriptMyLabel skipGblInitLabel = ilGen.DefineLabel ("__skipGblInit"); PushXMRInst (); // instance ilGen.Emit (curDeclFunc, OpCodes.Ldfld, doGblInitFieldInfo); // instance.doGblInit ilGen.Emit (curDeclFunc, OpCodes.Brfalse, skipGblInitLabel); // $globalvarinit(); TokenDeclVar gviFunc = tokenScript.globalVarInit; if (gviFunc.body.statements != null) { gviFunc.location.CallPre (this, gviFunc); gviFunc.location.CallPost (this, gviFunc); } // various $staticfieldinit(); foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if (sdType is TokenDeclSDTypeClass) { TokenDeclVar sfiFunc = ((TokenDeclSDTypeClass)sdType).staticFieldInit; if ((sfiFunc != null) && (sfiFunc.body.statements != null)) { sfiFunc.location.CallPre (this, sfiFunc); sfiFunc.location.CallPost (this, sfiFunc); } } } // doGblInit = 0; PushXMRInst (); // instance ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4_0); ilGen.Emit (curDeclFunc, OpCodes.Stfld, doGblInitFieldInfo); // instance.doGblInit //skipGblInit: ilGen.MarkLabel (skipGblInitLabel); } /* * If this is a script-defined type constructor, call the base constructor and call * this class's $instfieldinit() method to initialize instance fields. */ if ((curDeclFunc.sdtClass != null) && curDeclFunc.funcNameSig.val.StartsWith ("$ctor(")) { if (curDeclFunc.baseCtorCall != null) { GenerateFromRValCall (curDeclFunc.baseCtorCall); } TokenDeclVar ifiFunc = ((TokenDeclSDTypeClass)curDeclFunc.sdtClass).instFieldInit; if (ifiFunc.body.statements != null) { CompValu thisCompValu = new CompValuArg (ifiFunc.sdtClass.MakeRefToken (ifiFunc), 0); CompValu ifiFuncLocn = new CompValuInstMember (ifiFunc, thisCompValu, true); ifiFuncLocn.CallPre (this, ifiFunc); ifiFuncLocn.CallPost (this, ifiFunc); } } /* * See if time to suspend in case they are doing a loop with recursion. */ if (!isTrivial) EmitCallCheckRun (curDeclFunc, true); /* * Output code body. */ GenerateStmtBlock (curDeclFunc.body); /* * If code falls through to this point, means they are missing * a return statement. And that is legal only if the function * returns 'void'. */ if (mightGetHere) { if (!(curDeclFunc.retType is TokenTypeVoid)) { ErrorMsg (curDeclFunc.body, "missing final return statement"); } ilGen.Emit (curDeclFunc, OpCodes.Leave, retLabel); } /* * End of the code to be optimized. * Do optimizations then write it all out to object file. * After this, all code gets written directly to object file. * Optimization must be completed before we scan the allCallLabels * list below to look for active locals and temps. */ collector.Optimize (); _ilGen = collector.WriteOutAll (); collector = null; /* * Output code to restore stack frame from stream. * It jumps back to the call labels within the function body. */ List activeTemps = null; if (!isTrivial) { /* * Build list of locals and temps active at all the call labels. */ activeTemps = new List (); foreach (CallLabel cl in allCallLabels) { foreach (ScriptMyLocal lcl in cl.callLabel.whereAmI.localsReadBeforeWritten) { if (!activeTemps.Contains (lcl)) { activeTemps.Add (lcl); } } } /* * Output code to restore the args, locals and temps then jump to * the call label that we were interrupted at. */ ilGen.MarkLabel (cmRestore); GenerateFrameRestoreCode (activeTemps); } /* * Output epilog that saves stack frame state if CallMode_SAVE. * * finally { * if (instance.callMode != CallMode_SAVE) goto __endFin; * GenerateFrameCaptureCode(); * __endFin: * } */ ScriptMyLabel endFin = null; if (!isTrivial) { ilGen.BeginFinallyBlock (); endFin = ilGen.DefineLabel ("__endFin"); PushXMRInst (); ilGen.Emit (curDeclFunc, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit (curDeclFunc, OpCodes.Bne_Un, endFin); GenerateFrameCaptureCode (activeTemps); ilGen.MarkLabel (endFin); ilGen.Emit (curDeclFunc, OpCodes.Endfinally); ilGen.EndExceptionBlock (); } /* * Output the 'real' return opcode. */ ilGen.MarkLabel (retLabel); if (!(curDeclFunc.retType is TokenTypeVoid)) { ilGen.Emit (curDeclFunc, OpCodes.Ldloc, retValue); } ilGen.Emit (curDeclFunc, OpCodes.Ret); retLabel = null; retValue = null; /* * No more instructions for this method. */ ((ScriptObjWriter)ilGen).EndMethod (); _ilGen = null; /* * Not generating function code any more. */ curBreakTarg = null; curContTarg = null; curDeclFunc = null; } /** * @brief Allocate stack space for all local variables, regardless of * which { } statement block they are actually defined in. */ private void AllocLocalVarStackSpace () { foreach (TokenDeclVar localVar in curDeclFunc.localVars) { /* * Skip all 'constant' vars as they were handled by the reducer. */ if (localVar.constant) continue; /* * Get a stack location for the local variable. */ localVar.location = new CompValuLocalVar (localVar.type, localVar.name.val, this); } } /** * @brief Generate code to write all arguments and locals to the capture stack frame. * This includes temp variables. * We only need to save what is active at the point of callLabels through because * those are the only points we will jump to on restore. This saves us from saving * all the little temp vars we create. * @param activeTemps = list of locals and temps that we care about, ie, which * ones get restored by GenerateFrameRestoreCode(). */ private void GenerateFrameCaptureCode (List activeTemps) { /* * Compute total number of slots we need to save stuff. * Assume we need to save all call arguments. */ int nSaves = curDeclFunc.argDecl.vars.Length + activeTemps.Count; /* * Output code to allocate a stack frame object with an object array. * This also pushes the stack frame object on the instance.stackFrames list. * It returns a pointer to the object array it allocated. */ PushXMRInst (); ilGen.Emit (curDeclFunc, OpCodes.Ldstr, ilGen.methName); GetCallNo (curDeclFunc, actCallNo); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, nSaves); ilGen.Emit (curDeclFunc, OpCodes.Call, captureStackFrameMethodInfo); if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, ilGen.methName + "*: capture mainCallNo="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Ldloc, actCallNo); ilGen.Emit (curDeclFunc, OpCodes.Box, typeof (int)); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } /* * Copy arg values to object array, boxing as needed. */ int i = 0; foreach (TokenDeclVar argVar in curDeclFunc.argDecl.varDict) { ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, i); argVar.location.PushVal (this, argVar.name, tokenTypeObj); if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n arg:" + argVar.name.val + "="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } ilGen.Emit (curDeclFunc, OpCodes.Stelem_Ref); i ++; } /* * Copy local and temp values to object array, boxing as needed. */ foreach (ScriptMyLocal lcl in activeTemps) { ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, i ++); ilGen.Emit (curDeclFunc, OpCodes.Ldloc, lcl); Type t = lcl.type; if (t == typeof (HeapTrackerList)) { t = HeapTrackerList.GenPush (curDeclFunc, ilGen); } if (t == typeof (HeapTrackerObject)) { t = HeapTrackerObject.GenPush (curDeclFunc, ilGen); } if (t == typeof(HeapTrackerString)) { t = HeapTrackerString.GenPush (curDeclFunc, ilGen); } if (t.IsValueType) { ilGen.Emit (curDeclFunc, OpCodes.Box, t); } if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n lcl:" + lcl.name + "="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } ilGen.Emit (curDeclFunc, OpCodes.Stelem_Ref); } if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n"); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } ilGen.Emit (curDeclFunc, OpCodes.Pop); } /** * @brief Generate code to restore all arguments and locals from the restore stack frame. * This includes temp variables. */ private void GenerateFrameRestoreCode (List activeTemps) { ScriptMyLocal objArray = ilGen.DeclareLocal (typeof (object[]), "__restObjArray"); /* * Output code to pop stack frame from instance.stackFrames. * It returns a pointer to the object array that contains values to be restored. */ PushXMRInst (); ilGen.Emit (curDeclFunc, OpCodes.Ldstr, ilGen.methName); ilGen.Emit (curDeclFunc, OpCodes.Ldloca, actCallNo); // __mainCallNo ilGen.Emit (curDeclFunc, OpCodes.Call, restoreStackFrameMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Stloc, objArray); if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, ilGen.methName + "*: restore mainCallNo="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Ldloc, actCallNo); ilGen.Emit (curDeclFunc, OpCodes.Box, typeof (int)); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } /* * Restore argument values from object array, unboxing as needed. * Although the caller has restored them to what it called us with, it's possible that this * function has modified them since, so we need to do our own restore. */ int i = 0; foreach (TokenDeclVar argVar in curDeclFunc.argDecl.varDict) { CompValu argLoc = argVar.location; argLoc.PopPre (this, argVar.name); ilGen.Emit (curDeclFunc, OpCodes.Ldloc, objArray); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, i); ilGen.Emit (curDeclFunc, OpCodes.Ldelem_Ref); if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n arg:" + argVar.name.val + "="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } TypeCast.CastTopOfStack (this, argVar.name, tokenTypeObj, argLoc.type, true); argLoc.PopPost (this, argVar.name); i ++; } /* * Restore local and temp values from object array, unboxing as needed. */ foreach (ScriptMyLocal lcl in activeTemps) { Type t = lcl.type; Type u = t; if (t == typeof (HeapTrackerList)) u = typeof (LSL_List); if (t == typeof (HeapTrackerObject)) u = typeof (object); if (t == typeof (HeapTrackerString)) u = typeof (string); if (u != t) { ilGen.Emit (curDeclFunc, OpCodes.Ldloc, lcl); } ilGen.Emit (curDeclFunc, OpCodes.Ldloc, objArray); ilGen.Emit (curDeclFunc, OpCodes.Ldc_I4, i ++); ilGen.Emit (curDeclFunc, OpCodes.Ldelem_Ref); if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n lcl:" + lcl.name + "="); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (curDeclFunc, OpCodes.Dup); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } if (u.IsValueType) { ilGen.Emit (curDeclFunc, OpCodes.Unbox_Any, u); } else if (u != typeof (object)) { ilGen.Emit (curDeclFunc, OpCodes.Castclass, u); } if (u != t) { if (t == typeof (HeapTrackerList)) HeapTrackerList.GenPop (curDeclFunc, ilGen); if (t == typeof (HeapTrackerObject)) HeapTrackerObject.GenPop (curDeclFunc, ilGen); if (t == typeof (HeapTrackerString)) HeapTrackerString.GenPop (curDeclFunc, ilGen); } else { ilGen.Emit (curDeclFunc, OpCodes.Stloc, lcl); } } if (DEBUG_STACKCAPRES) { ilGen.Emit (curDeclFunc, OpCodes.Ldstr, "\n"); ilGen.Emit (curDeclFunc, OpCodes.Call, consoleWriteMethodInfo); } OutputCallNoSwitchStmt (); } /** * @brief Output a switch statement with a case for each possible * value of whatever callNo is currently active, either * __mainCallNo or one of the try/catch/finally's callNos. * * switch (callNo) { * case 0: goto __call_0; * case 1: goto __call_1; * ... * } * throw new ScriptBadCallNoException (callNo); */ private void OutputCallNoSwitchStmt () { ScriptMyLabel[] callLabels = new ScriptMyLabel[actCallLabels.Count]; foreach (CallLabel cl in actCallLabels) { callLabels[cl.index] = cl.callLabel; } GetCallNo (curDeclFunc, actCallNo); ilGen.Emit (curDeclFunc, OpCodes.Switch, callLabels); GetCallNo (curDeclFunc, actCallNo); ilGen.Emit (curDeclFunc, OpCodes.Newobj, scriptBadCallNoExceptionConstructorInfo); ilGen.Emit (curDeclFunc, OpCodes.Throw); } /** * @brief There is one of these per call that can possibly call CheckRun(), * including direct calls to CheckRun(). * They mark points that the stack capture/restore code will save & restore to. * All object-code level local vars active at the call label's point will * be saved & restored. * * callNo = 5; * __call_5: * push call arguments from temps * call SomethingThatCallsCheckRun() * * If SomethingThatCallsCheckRun() actually calls CheckRun(), our restore code * will restore our args, locals & temps, then jump to __call_5, which will then * call SomethingThatCallsCheckRun() again, which will restore its stuff likewise. * When eventually the actual CheckRun() call is restored, it will turn off restore * mode (by changing callMode from CallMode_RESTORE to CallMode_NORMAL) and return, * allowing the code to run normally from that point. */ public class CallLabel { public int index; // sequential integer, starting at 0, within actCallLabels // - used for the switch statement public ScriptMyLabel callLabel; // the actual label token public CallLabel (ScriptCodeGen scg, Token errorAt) { if (scg.openCallLabel != null) throw new Exception ("call label already open"); if (!scg.curDeclFunc.IsFuncTrivial (scg)) { this.index = scg.actCallLabels.Count; string name = "__call_" + index + "_" + scg.allCallLabels.Count; /* * Make sure eval stack is empty because the frame capture/restore * code expects such (restore switch stmt has an empty stack). */ int depth = ((ScriptCollector)scg.ilGen).stackDepth.Count; if (depth > 0) { // maybe need to call Trivialize() throw new Exception ("call label stack depth " + depth + " at " + errorAt.SrcLoc); } /* * Eval stack is empty so the restore code can handle it. */ this.index = scg.actCallLabels.Count; scg.actCallLabels.AddLast (this); scg.allCallLabels.AddLast (this); this.callLabel = scg.ilGen.DefineLabel (name); scg.SetCallNo (errorAt, scg.actCallNo, this.index); scg.ilGen.MarkLabel (this.callLabel); } scg.openCallLabel = this; } }; /** * @brief generate code for an arbitrary statement. */ private void GenerateStmt (TokenStmt stmt) { errorMessageToken = stmt; if (stmt is TokenDeclVar) { GenerateDeclVar ((TokenDeclVar)stmt); return; } if (stmt is TokenStmtBlock) { GenerateStmtBlock ((TokenStmtBlock)stmt); return; } if (stmt is TokenStmtBreak) { GenerateStmtBreak ((TokenStmtBreak)stmt); return; } if (stmt is TokenStmtCont) { GenerateStmtCont ((TokenStmtCont)stmt); return; } if (stmt is TokenStmtDo) { GenerateStmtDo ((TokenStmtDo)stmt); return; } if (stmt is TokenStmtFor) { GenerateStmtFor ((TokenStmtFor)stmt); return; } if (stmt is TokenStmtForEach) { GenerateStmtForEach ((TokenStmtForEach)stmt); return; } if (stmt is TokenStmtIf) { GenerateStmtIf ((TokenStmtIf)stmt); return; } if (stmt is TokenStmtJump) { GenerateStmtJump ((TokenStmtJump)stmt); return; } if (stmt is TokenStmtLabel) { GenerateStmtLabel ((TokenStmtLabel)stmt); return; } if (stmt is TokenStmtNewobj) { GenerateStmtNewobj ((TokenStmtNewobj)stmt); return; } if (stmt is TokenStmtNull) { return; } if (stmt is TokenStmtRet) { GenerateStmtRet ((TokenStmtRet)stmt); return; } if (stmt is TokenStmtRVal) { GenerateStmtRVal ((TokenStmtRVal)stmt); return; } if (stmt is TokenStmtState) { GenerateStmtState ((TokenStmtState)stmt); return; } if (stmt is TokenStmtSwitch) { GenerateStmtSwitch ((TokenStmtSwitch)stmt); return; } if (stmt is TokenStmtThrow) { GenerateStmtThrow ((TokenStmtThrow)stmt); return; } if (stmt is TokenStmtTry) { GenerateStmtTry ((TokenStmtTry)stmt); return; } if (stmt is TokenStmtVarIniDef) { GenerateStmtVarIniDef ((TokenStmtVarIniDef)stmt); return; } if (stmt is TokenStmtWhile) { GenerateStmtWhile ((TokenStmtWhile)stmt); return; } throw new Exception ("unknown TokenStmt type " + stmt.GetType ().ToString ()); } /** * @brief generate statement block (ie, with braces) */ private void GenerateStmtBlock (TokenStmtBlock stmtBlock) { if (!mightGetHere) return; /* * Push new current statement block pointer for anyone who cares. */ TokenStmtBlock oldStmtBlock = curStmtBlock; curStmtBlock = stmtBlock; /* * Output the statements that make up the block. */ for (Token t = stmtBlock.statements; t != null; t = t.nextToken) { GenerateStmt ((TokenStmt)t); } /* * Pop the current statement block. */ curStmtBlock = oldStmtBlock; } /** * @brief output code for a 'break' statement */ private void GenerateStmtBreak (TokenStmtBreak breakStmt) { if (!mightGetHere) return; /* * Make sure we are in a breakable situation. */ if (curBreakTarg == null) { ErrorMsg (breakStmt, "not in a breakable situation"); return; } /* * Tell anyone who cares that the break target was actually used. */ curBreakTarg.used = true; /* * Output the instructions. */ EmitJumpCode (curBreakTarg.label, curBreakTarg.block, breakStmt); } /** * @brief output code for a 'continue' statement */ private void GenerateStmtCont (TokenStmtCont contStmt) { if (!mightGetHere) return; /* * Make sure we are in a contable situation. */ if (curContTarg == null) { ErrorMsg (contStmt, "not in a continueable situation"); return; } /* * Tell anyone who cares that the continue target was actually used. */ curContTarg.used = true; /* * Output the instructions. */ EmitJumpCode (curContTarg.label, curContTarg.block, contStmt); } /** * @brief output code for a 'do' statement */ private void GenerateStmtDo (TokenStmtDo doStmt) { if (!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel ("doloop_" + doStmt.Unique); curBreakTarg = new BreakContTarg (this, "dobreak_" + doStmt.Unique); curContTarg = new BreakContTarg (this, "docont_" + doStmt.Unique); ilGen.MarkLabel (loopLabel); GenerateStmt (doStmt.bodyStmt); if (curContTarg.used) { ilGen.MarkLabel (curContTarg.label); mightGetHere = true; } if (mightGetHere) { EmitCallCheckRun (doStmt, false); CompValu testRVal = GenerateFromRVal (doStmt.testRVal); if (IsConstBoolExprTrue (testRVal)) { /* * Unconditional looping, unconditional branch and * say we never fall through to next statement. */ ilGen.Emit (doStmt, OpCodes.Br, loopLabel); mightGetHere = false; } else { /* * Conditional looping, test and brach back to top of loop. */ testRVal.PushVal (this, doStmt.testRVal, tokenTypeBool); ilGen.Emit (doStmt, OpCodes.Brtrue, loopLabel); } } /* * If 'break' statement was used, output target label. * And assume that since a 'break' statement was used, it's possible for the code to get here. */ if (curBreakTarg.used) { ilGen.MarkLabel (curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief output code for a 'for' statement */ private void GenerateStmtFor (TokenStmtFor forStmt) { if (!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel ("forloop_" + forStmt.Unique); curBreakTarg = new BreakContTarg (this, "forbreak_" + forStmt.Unique); curContTarg = new BreakContTarg (this, "forcont_" + forStmt.Unique); if (forStmt.initStmt != null) { GenerateStmt (forStmt.initStmt); } ilGen.MarkLabel (loopLabel); /* * See if we have a test expression that is other than a constant TRUE. * If so, test it and conditionally branch to end if false. */ if (forStmt.testRVal != null) { CompValu testRVal = GenerateFromRVal (forStmt.testRVal); if (!IsConstBoolExprTrue (testRVal)) { testRVal.PushVal (this, forStmt.testRVal, tokenTypeBool); ilGen.Emit (forStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } } /* * Output loop body. */ GenerateStmt (forStmt.bodyStmt); /* * Here's where a 'continue' statement jumps to. */ if (curContTarg.used) { ilGen.MarkLabel (curContTarg.label); mightGetHere = true; } if (mightGetHere) { /* * After checking for excessive CPU time, output increment statement, if any. */ EmitCallCheckRun (forStmt, false); if (forStmt.incrRVal != null) { GenerateFromRVal (forStmt.incrRVal); } /* * Unconditional branch back to beginning of loop. */ ilGen.Emit (forStmt, OpCodes.Br, loopLabel); } /* * If test needs label, output label for it to jump to. * Otherwise, clear mightGetHere as we know loop never * falls out the bottom. */ mightGetHere = curBreakTarg.used; if (mightGetHere) { ilGen.MarkLabel (curBreakTarg.label); } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } private void GenerateStmtForEach (TokenStmtForEach forEachStmt) { if (!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; CompValu keyLVal = null; CompValu valLVal = null; CompValu arrayRVal = GenerateFromRVal (forEachStmt.arrayRVal); if (forEachStmt.keyLVal != null) { keyLVal = GenerateFromLVal (forEachStmt.keyLVal); if (!(keyLVal.type is TokenTypeObject)) { ErrorMsg (forEachStmt.arrayRVal, "must be object"); } } if (forEachStmt.valLVal != null) { valLVal = GenerateFromLVal (forEachStmt.valLVal); if (!(valLVal.type is TokenTypeObject)) { ErrorMsg (forEachStmt.arrayRVal, "must be object"); } } if (!(arrayRVal.type is TokenTypeArray)) { ErrorMsg (forEachStmt.arrayRVal, "must be an array"); } curBreakTarg = new BreakContTarg (this, "foreachbreak_" + forEachStmt.Unique); curContTarg = new BreakContTarg (this, "foreachcont_" + forEachStmt.Unique); CompValuTemp indexVar = new CompValuTemp (new TokenTypeInt (forEachStmt), this); ScriptMyLabel loopLabel = ilGen.DefineLabel ("foreachloop_" + forEachStmt.Unique); // indexVar = 0 ilGen.Emit (forEachStmt, OpCodes.Ldc_I4_0); indexVar.Pop (this, forEachStmt); ilGen.MarkLabel (loopLabel); // key = array.__pub_index (indexVar); // if (key == null) goto curBreakTarg; if (keyLVal != null) { keyLVal.PopPre (this, forEachStmt.keyLVal); arrayRVal.PushVal (this, forEachStmt.arrayRVal); indexVar.PushVal (this, forEachStmt); ilGen.Emit (forEachStmt, OpCodes.Call, xmrArrPubIndexMethod); keyLVal.PopPost (this, forEachStmt.keyLVal); keyLVal.PushVal (this, forEachStmt.keyLVal); ilGen.Emit (forEachStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } // val = array._pub_value (indexVar); // if (val == null) goto curBreakTarg; if (valLVal != null) { valLVal.PopPre (this, forEachStmt.valLVal); arrayRVal.PushVal (this, forEachStmt.arrayRVal); indexVar.PushVal (this, forEachStmt); ilGen.Emit (forEachStmt, OpCodes.Call, xmrArrPubValueMethod); valLVal.PopPost (this, forEachStmt.valLVal); if (keyLVal == null) { valLVal.PushVal (this, forEachStmt.valLVal); ilGen.Emit (forEachStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } } // indexVar ++; indexVar.PushVal (this, forEachStmt); ilGen.Emit (forEachStmt, OpCodes.Ldc_I4_1); ilGen.Emit (forEachStmt, OpCodes.Add); indexVar.Pop (this, forEachStmt); // body statement GenerateStmt (forEachStmt.bodyStmt); // continue label if (curContTarg.used) { ilGen.MarkLabel (curContTarg.label); mightGetHere = true; } // call CheckRun() if (mightGetHere) { EmitCallCheckRun (forEachStmt, false); ilGen.Emit (forEachStmt, OpCodes.Br, loopLabel); } // break label ilGen.MarkLabel (curBreakTarg.label); mightGetHere = true; curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief output code for an 'if' statement * Braces are necessary because what may be one statement for trueStmt or elseStmt in * the script may translate to more than one statement in the resultant C# code. */ private void GenerateStmtIf (TokenStmtIf ifStmt) { if (!mightGetHere) return; bool constVal; /* * Test condition and see if constant test expression. */ CompValu testRVal = GenerateFromRVal (ifStmt.testRVal); if (IsConstBoolExpr (testRVal, out constVal)) { /* * Constant, output just either the true or else part. */ if (constVal) { GenerateStmt (ifStmt.trueStmt); } else if (ifStmt.elseStmt != null) { GenerateStmt (ifStmt.elseStmt); } } else if (ifStmt.elseStmt == null) { /* * This is an 'if' statement without an 'else' clause. */ testRVal.PushVal (this, ifStmt.testRVal, tokenTypeBool); ScriptMyLabel doneLabel = ilGen.DefineLabel ("ifdone_" + ifStmt.Unique); ilGen.Emit (ifStmt, OpCodes.Brfalse, doneLabel); // brfalse doneLabel GenerateStmt (ifStmt.trueStmt); // generate true body code ilGen.MarkLabel (doneLabel); mightGetHere = true; // there's always a possibility of getting here } else { /* * This is an 'if' statement with an 'else' clause. */ testRVal.PushVal (this, ifStmt.testRVal, tokenTypeBool); ScriptMyLabel elseLabel = ilGen.DefineLabel ("ifelse_" + ifStmt.Unique); ilGen.Emit (ifStmt, OpCodes.Brfalse, elseLabel); // brfalse elseLabel GenerateStmt (ifStmt.trueStmt); // generate true body code bool trueMightGetHere = mightGetHere; // save whether or not true falls through ScriptMyLabel doneLabel = ilGen.DefineLabel ("ifdone_" + ifStmt.Unique); ilGen.Emit (ifStmt, OpCodes.Br, doneLabel); // branch to done ilGen.MarkLabel (elseLabel); // beginning of else code mightGetHere = true; // the top of the else might be executed GenerateStmt (ifStmt.elseStmt); // output else code ilGen.MarkLabel (doneLabel); // where end of true clause code branches to mightGetHere |= trueMightGetHere; // gets this far if either true or else falls through } } /** * @brief output code for a 'jump' statement */ private void GenerateStmtJump (TokenStmtJump jumpStmt) { if (!mightGetHere) return; /* * Make sure the target label is defined somewhere in the function. */ TokenStmtLabel stmtLabel; if (!curDeclFunc.labels.TryGetValue (jumpStmt.label.val, out stmtLabel)) { ErrorMsg (jumpStmt, "undefined label " + jumpStmt.label.val); return; } if (!stmtLabel.labelTagged) { stmtLabel.labelStruct = ilGen.DefineLabel ("jump_" + stmtLabel.name.val); stmtLabel.labelTagged = true; } /* * Emit instructions to do the jump. */ EmitJumpCode (stmtLabel.labelStruct, stmtLabel.block, jumpStmt); } /** * @brief Emit code to jump to a label * @param target = label being jumped to * @param targetsBlock = { ... } the label is defined in */ private void EmitJumpCode (ScriptMyLabel target, TokenStmtBlock targetsBlock, Token errorAt) { /* * Jumps never fall through. */ mightGetHere = false; /* * Find which block the target label is in. Must be in this or an outer block, * no laterals allowed. And if we exit a try/catch block, use Leave instead of Br. * * jump lateral; * { * @lateral; * } */ bool useLeave = false; TokenStmtBlock stmtBlock; Stack finallyBlocksCalled = new Stack (); for (stmtBlock = curStmtBlock; stmtBlock != targetsBlock; stmtBlock = stmtBlock.outerStmtBlock) { if (stmtBlock == null) { ErrorMsg (errorAt, "no lateral jumps allowed"); return; } if (stmtBlock.isFinally) { ErrorMsg (errorAt, "cannot jump out of finally"); return; } if (stmtBlock.isTry || stmtBlock.isCatch) useLeave = true; if ((stmtBlock.tryStmt != null) && (stmtBlock.tryStmt.finallyStmt != null)) { finallyBlocksCalled.Push (stmtBlock.tryStmt); } } /* * If popping through more than one finally block, we have to break it down for the stack * capture and restore code, one finally block at a time. * * try { * try { * try { * jump exit; * } finally { * llOwnerSay ("exiting inner"); * } * } finally { * llOwnerSay ("exiting middle"); * } * } finally { * llOwnerSay ("exiting outer"); * } * @exit; * * try { * try { * try { * jump intr2_exit; <<< gets its own tryNo call label so inner try knows where to restore to * } finally { * llOwnerSay ("exiting inner"); * } * jump outtry2; * @intr2_exit; jump intr1_exit; <<< gets its own tryNo call label so middle try knows where to restore to * @outtry2; * } finally { * llOwnerSay ("exiting middle"); * } * jump outtry1; * @intr1_exit: jump exit; <<< gets its own tryNo call label so outer try knows where to restore to * @outtry1; * } finally { * llOwnerSay ("exiting outer"); * } * @exit; */ int level = 0; while (finallyBlocksCalled.Count > 1) { TokenStmtTry finallyBlock = finallyBlocksCalled.Pop (); string intername = "intr" + (++ level) + "_" + target.name; IntermediateLeave iLeave; if (!finallyBlock.iLeaves.TryGetValue (intername, out iLeave)) { iLeave = new IntermediateLeave (); iLeave.jumpIntoLabel = ilGen.DefineLabel (intername); iLeave.jumpAwayLabel = target; finallyBlock.iLeaves.Add (intername, iLeave); } target = iLeave.jumpIntoLabel; } /* * Finally output the branch/leave opcode. * If using Leave, prefix with a call label in case the corresponding finally block * calls CheckRun() and that CheckRun() captures the stack, it will have a point to * restore to that will properly jump back into the finally block. */ if (useLeave) { new CallLabel (this, errorAt); ilGen.Emit (errorAt, OpCodes.Leave, target); openCallLabel = null; } else { ilGen.Emit (errorAt, OpCodes.Br, target); } } /** * @brief output code for a jump target label statement. * If there are any backward jumps to the label, do a CheckRun() also. */ private void GenerateStmtLabel (TokenStmtLabel labelStmt) { if (!labelStmt.labelTagged) { labelStmt.labelStruct = ilGen.DefineLabel ("jump_" + labelStmt.name.val); labelStmt.labelTagged = true; } ilGen.MarkLabel (labelStmt.labelStruct); if (labelStmt.hasBkwdRefs) { EmitCallCheckRun (labelStmt, false); } /* * We are going to say that the label falls through. * It would be nice if we could analyze all referencing * goto's to see if all of them are not used but we are * going to assume that if the script writer put a label * somewhere, it is probably going to be used. */ mightGetHere = true; } /** * @brief Generate code for a script-defined type's .$new() method. * It is used to malloc the object and initialize it. * It is defined as a script-defined type static method, so the object level * method gets the XMRInstance pointer passed as arg 0, and the method is * supposed to return the allocated and constructed XMRSDTypeClObj * object pointer. */ private void GenerateStmtNewobj (TokenStmtNewobj newobjStmt) { /* * First off, malloc a new empty XMRSDTypeClObj object * then call the XMRSDTypeClObj()-level constructor. * Store the result in local var $objptr. */ newobjStmt.objptrVar.location.PopPre (this, newobjStmt); ilGen.Emit (newobjStmt, OpCodes.Ldarg_0); ilGen.Emit (newobjStmt, OpCodes.Ldc_I4, curDeclFunc.sdtClass.sdTypeIndex); ilGen.Emit (newobjStmt, OpCodes.Newobj, sdtClassConstructorInfo); newobjStmt.objptrVar.location.PopPost (this, newobjStmt); /* * Now call the script-level constructor. * Pass the object pointer in $objptr as it's 'this' argument. * The rest of the args are the script-visible args and are just copied from $new() call. */ GenerateFromRValCall (newobjStmt.rValCall); /* * Put object pointer in retval so it gets returned to caller. */ newobjStmt.objptrVar.location.PushVal (this, newobjStmt); ilGen.Emit (newobjStmt, OpCodes.Stloc, retValue); /* * Exit the function like a return statement. * And thus we don't fall through. */ ilGen.Emit (newobjStmt, OpCodes.Leave, retLabel); mightGetHere = false; } /** * @brief output code for a return statement. * @param retStmt = return statement token, including return value if any */ private void GenerateStmtRet (TokenStmtRet retStmt) { if (!mightGetHere) return; for (TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock) { if (stmtBlock.isFinally) { ErrorMsg (retStmt, "cannot return out of finally"); return; } } if (curDeclFunc.retType is TokenTypeVoid) { if (retStmt.rVal != null) { ErrorMsg (retStmt, "function returns void, no value allowed"); return; } } else { if (retStmt.rVal == null) { ErrorMsg (retStmt, "function requires return value type " + curDeclFunc.retType.ToString ()); return; } CompValu rVal = GenerateFromRVal (retStmt.rVal); rVal.PushVal (this, retStmt.rVal, curDeclFunc.retType); ilGen.Emit (retStmt, OpCodes.Stloc, retValue); } /* * Use a OpCodes.Leave instruction to break out of any try { } blocks. * All Leave's inside script-defined try { } need call labels (see GenerateStmtTry()). */ bool brokeOutOfTry = false; for (TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock) { if (stmtBlock.isTry) { brokeOutOfTry = true; break; } } if (brokeOutOfTry) new CallLabel (this, retStmt); ilGen.Emit (retStmt, OpCodes.Leave, retLabel); if (brokeOutOfTry) openCallLabel = null; /* * 'return' statements never fall through. */ mightGetHere = false; } /** * @brief the statement is just an expression, most likely an assignment or a ++ or -- thing. */ private void GenerateStmtRVal (TokenStmtRVal rValStmt) { if (!mightGetHere) return; GenerateFromRVal (rValStmt.rVal); } /** * @brief generate code for a 'state' statement that transitions state. * It sets the new state by throwing a ScriptChangeStateException. */ private void GenerateStmtState (TokenStmtState stateStmt) { if (!mightGetHere) return; int index = 0; // 'default' state /* * Set new state value by throwing an exception. * These exceptions aren't catchable by script-level try { } catch { }. */ if ((stateStmt.state != null) && !stateIndices.TryGetValue (stateStmt.state.val, out index)) { // The moron XEngine compiles scripts that reference undefined states. // So rather than produce a compile-time error, we'll throw an exception at runtime. // ErrorMsg (stateStmt, "undefined state " + stateStmt.state.val); // throw new UndefinedStateException (stateStmt.state.val); ilGen.Emit (stateStmt, OpCodes.Ldstr, stateStmt.state.val); ilGen.Emit (stateStmt, OpCodes.Newobj, scriptUndefinedStateExceptionConstructorInfo); } else { ilGen.Emit (stateStmt, OpCodes.Ldc_I4, index); // new state's index ilGen.Emit (stateStmt, OpCodes.Newobj, scriptChangeStateExceptionConstructorInfo); } ilGen.Emit (stateStmt, OpCodes.Throw); /* * 'state' statements never fall through. */ mightGetHere = false; } /** * @brief output code for a 'switch' statement */ private void GenerateStmtSwitch (TokenStmtSwitch switchStmt) { if (!mightGetHere) return; /* * Output code to calculate index. */ CompValu testRVal = GenerateFromRVal (switchStmt.testRVal); /* * Generate code based on string or integer index. */ if ((testRVal.type is TokenTypeKey) || (testRVal.type is TokenTypeStr)) { GenerateStmtSwitchStr (testRVal, switchStmt); } else { GenerateStmtSwitchInt (testRVal, switchStmt); } } private void GenerateStmtSwitchInt (CompValu testRVal, TokenStmtSwitch switchStmt) { testRVal.PushVal (this, switchStmt.testRVal, tokenTypeInt); BreakContTarg oldBreakTarg = curBreakTarg; ScriptMyLabel defaultLabel = null; TokenSwitchCase sortedCases = null; TokenSwitchCase defaultCase = null; curBreakTarg = new BreakContTarg (this, "switchbreak_" + switchStmt.Unique); /* * Build list of cases sorted by ascending values. * There should not be any overlapping of values. */ for (TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { thisCase.label = ilGen.DefineLabel ("case_" + thisCase.Unique); /* * The default case if any, goes in its own separate slot. */ if (thisCase.rVal1 == null) { if (defaultCase != null) { ErrorMsg (thisCase, "only one default case allowed"); ErrorMsg (defaultCase, "...prior default case"); return; } defaultCase = thisCase; defaultLabel = thisCase.label; continue; } /* * Evaluate case operands, they must be compile-time integer constants. */ CompValu rVal = GenerateFromRVal (thisCase.rVal1); if (!IsConstIntExpr (rVal, out thisCase.val1)) { ErrorMsg (thisCase.rVal1, "must be compile-time char or integer constant"); return; } thisCase.val2 = thisCase.val1; if (thisCase.rVal2 != null) { rVal = GenerateFromRVal (thisCase.rVal2); if (!IsConstIntExpr (rVal, out thisCase.val2)) { ErrorMsg (thisCase.rVal2, "must be compile-time char or integer constant"); return; } } if (thisCase.val2 < thisCase.val1) { ErrorMsg (thisCase.rVal2, "must be .ge. first value for the case"); return; } /* * Insert into list, sorted by value. * Note that both limits are inclusive. */ TokenSwitchCase lastCase = null; TokenSwitchCase nextCase; for (nextCase = sortedCases; nextCase != null; nextCase = nextCase.nextSortedCase) { if (nextCase.val1 > thisCase.val2) break; if (nextCase.val2 >= thisCase.val1) { ErrorMsg (thisCase, "value used by previous case"); ErrorMsg (nextCase, "...previous case"); return; } lastCase = nextCase; } thisCase.nextSortedCase = nextCase; if (lastCase == null) { sortedCases = thisCase; } else { lastCase.nextSortedCase = thisCase; } } if (defaultLabel == null) { defaultLabel = ilGen.DefineLabel ("default_" + switchStmt.Unique); } /* * Output code to jump to the case statement's labels based on integer index on stack. * Note that each case still has the integer index on stack when jumped to. */ int offset = 0; for (TokenSwitchCase thisCase = sortedCases; thisCase != null;) { /* * Scan through list of cases to find the maximum number of cases who's numvalues-to-case ratio * is from 0.5 to 2.0. If such a group is found, use a CIL switch for them. If not, just use a * compare-and-branch for the current case. */ int numCases = 0; int numFound = 0; int lowValue = thisCase.val1; int numValues = 0; for (TokenSwitchCase scanCase = thisCase; scanCase != null; scanCase = scanCase.nextSortedCase) { int nVals = scanCase.val2 - thisCase.val1 + 1; double ratio = (double)nVals / (double)(++ numCases); if ((ratio >= 0.5) && (ratio <= 2.0)) { numFound = numCases; numValues = nVals; } } if (numFound > 1) { /* * There is a group of case's, starting with thisCase, that fall within our criteria, ie, * that have a nice density of meaningful jumps. * * So first generate an array of jumps to the default label (explicit or implicit). */ ScriptMyLabel[] labels = new ScriptMyLabel[numValues]; for (int i = 0; i < numValues; i ++) { labels[i] = defaultLabel; } /* * Next, for each case in that group, fill in the corresponding array entries to jump to * that case's label. */ do { for (int i = thisCase.val1; i <= thisCase.val2; i ++) { labels[i-lowValue] = thisCase.label; } thisCase = thisCase.nextSortedCase; } while (-- numFound > 0); /* * Subtract the low value and do the computed jump. * The OpCodes.Switch falls through if out of range (unsigned compare). */ if (offset != lowValue) { ilGen.Emit (switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit (switchStmt, OpCodes.Sub); offset = lowValue; } ilGen.Emit (switchStmt, OpCodes.Dup); ilGen.Emit (switchStmt, OpCodes.Switch, labels); } else { /* * It's not economical to do with a computed jump, so output a subtract/compare/branch * for thisCase. */ if (lowValue == thisCase.val2) { ilGen.Emit (switchStmt, OpCodes.Dup); ilGen.Emit (switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit (switchStmt, OpCodes.Beq, thisCase.label); } else { if (offset != lowValue) { ilGen.Emit (switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit (switchStmt, OpCodes.Sub); offset = lowValue; } ilGen.Emit (switchStmt, OpCodes.Dup); ilGen.Emit (switchStmt, OpCodes.Ldc_I4, thisCase.val2 - offset); ilGen.Emit (switchStmt, OpCodes.Ble_Un, thisCase.label); } thisCase = thisCase.nextSortedCase; } } ilGen.Emit (switchStmt, OpCodes.Br, defaultLabel); /* * Output code for the cases themselves, in the order given by the programmer, * so they fall through as programmer wants. This includes the default case, if any. * * Each label is jumped to with the index still on the stack. So pop it off in case * the case body does a goto outside the switch or a return. If the case body might * fall through to the next case or the bottom of the switch, push a zero so the stack * matches in all cases. */ for (TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { ilGen.MarkLabel (thisCase.label); // the branch comes here ilGen.Emit (thisCase, OpCodes.Pop); // pop the integer index off stack mightGetHere = true; // it's possible to get here for (TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken)) { GenerateStmt (stmt); // output the case/explicit default body } if (mightGetHere) { ilGen.Emit (thisCase, OpCodes.Ldc_I4_0); // in case we fall through, push a dummy integer index } } /* * If no explicit default case, output the default label here. */ if (defaultCase == null) { ilGen.MarkLabel (defaultLabel); mightGetHere = true; } /* * If the last case of the switch falls through out the bottom, * we have to pop the index still on the stack. */ if (mightGetHere) { ilGen.Emit (switchStmt, OpCodes.Pop); } /* * Output the 'break' statement target label. * Note that the integer index is not on the stack at this point. */ if (curBreakTarg.used) { ilGen.MarkLabel (curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; } private void GenerateStmtSwitchStr (CompValu testRVal, TokenStmtSwitch switchStmt) { BreakContTarg oldBreakTarg = curBreakTarg; ScriptMyLabel defaultLabel = null; TokenSwitchCase caseTreeTop = null; TokenSwitchCase defaultCase = null; curBreakTarg = new BreakContTarg (this, "switchbreak_" + switchStmt.Unique); /* * Make sure value is in a temp so we don't compute it more than once. */ if (!(testRVal is CompValuTemp)) { CompValuTemp temp = new CompValuTemp (testRVal.type, this); testRVal.PushVal (this, switchStmt); temp.Pop (this, switchStmt); testRVal = temp; } /* * Build tree of cases. * There should not be any overlapping of values. */ for (TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { thisCase.label = ilGen.DefineLabel ("case"); /* * The default case if any, goes in its own separate slot. */ if (thisCase.rVal1 == null) { if (defaultCase != null) { ErrorMsg (thisCase, "only one default case allowed"); ErrorMsg (defaultCase, "...prior default case"); return; } defaultCase = thisCase; defaultLabel = thisCase.label; continue; } /* * Evaluate case operands, they must be compile-time string constants. */ CompValu rVal = GenerateFromRVal (thisCase.rVal1); if (!IsConstStrExpr (rVal, out thisCase.str1)) { ErrorMsg (thisCase.rVal1, "must be compile-time string constant"); continue; } thisCase.str2 = thisCase.str1; if (thisCase.rVal2 != null) { rVal = GenerateFromRVal (thisCase.rVal2); if (!IsConstStrExpr (rVal, out thisCase.str2)) { ErrorMsg (thisCase.rVal2, "must be compile-time string constant"); continue; } } if (String.Compare (thisCase.str2, thisCase.str1, StringComparison.Ordinal) < 0) { ErrorMsg (thisCase.rVal2, "must be .ge. first value for the case"); continue; } /* * Insert into list, sorted by value. * Note that both limits are inclusive. */ caseTreeTop = InsertCaseInTree (caseTreeTop, thisCase); } /* * Balance tree so we end up generating code that does O(log2 n) comparisons. */ caseTreeTop = BalanceTree (caseTreeTop); /* * Output compare and branch instructions in a tree-like fashion so we do O(log2 n) comparisons. */ if (defaultLabel == null) { defaultLabel = ilGen.DefineLabel ("default"); } OutputStrCase (testRVal, caseTreeTop, defaultLabel); /* * Output code for the cases themselves, in the order given by the programmer, * so they fall through as programmer wants. This includes the default case, if any. */ for (TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { ilGen.MarkLabel (thisCase.label); // the branch comes here mightGetHere = true; // it's possible to get here for (TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken)) { GenerateStmt (stmt); // output the case/explicit default body } } /* * If no explicit default case, output the default label here. */ if (defaultCase == null) { ilGen.MarkLabel (defaultLabel); mightGetHere = true; } /* * Output the 'break' statement target label. */ if (curBreakTarg.used) { ilGen.MarkLabel (curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; } /** * @brief Insert a case in a tree of cases * @param r = root of existing cases to insert into * @param n = new case being inserted * @returns new root with new case inserted */ private TokenSwitchCase InsertCaseInTree (TokenSwitchCase r, TokenSwitchCase n) { if (r == null) return n; TokenSwitchCase t = r; while (true) { if (String.Compare (n.str2, t.str1, StringComparison.Ordinal) < 0) { if (t.lowerCase == null) { t.lowerCase = n; break; } t = t.lowerCase; continue; } if (String.Compare (n.str1, t.str2, StringComparison.Ordinal) > 0) { if (t.higherCase == null) { t.higherCase = n; break; } t = t.higherCase; continue; } ErrorMsg (n, "duplicate case"); ErrorMsg (r, "...duplicate of"); break; } return r; } /** * @brief Balance a tree so left & right halves contain same number within +-1 * @param r = root of tree to balance * @returns new root */ private static TokenSwitchCase BalanceTree (TokenSwitchCase r) { if (r == null) return r; int lc = CountTree (r.lowerCase); int hc = CountTree (r.higherCase); TokenSwitchCase n, x; /* * If lower side is heavy, move highest nodes from lower side to * higher side until balanced. */ while (lc > hc + 1) { x = ExtractHighest (r.lowerCase, out n); n.lowerCase = x; n.higherCase = r; r.lowerCase = null; r = n; lc --; hc ++; } /* * If higher side is heavy, move lowest nodes from higher side to * lower side until balanced. */ while (hc > lc + 1) { x = ExtractLowest (r.higherCase, out n); n.higherCase = x; n.lowerCase = r; r.higherCase = null; r = n; lc ++; hc --; } /* * Now balance each side because they can be lopsided individually. */ r.lowerCase = BalanceTree (r.lowerCase); r.higherCase = BalanceTree (r.higherCase); return r; } /** * @brief Get number of nodes in a tree * @param n = root of tree to count * @returns number of nodes including root */ private static int CountTree (TokenSwitchCase n) { if (n == null) return 0; return 1 + CountTree (n.lowerCase) + CountTree (n.higherCase); } // Extract highest node from a tree // @param r = root of tree to extract highest from // @returns new root after node has been extracted // n = node that was extracted from tree private static TokenSwitchCase ExtractHighest (TokenSwitchCase r, out TokenSwitchCase n) { if (r.higherCase == null) { n = r; return r.lowerCase; } r.higherCase = ExtractHighest (r.higherCase, out n); return r; } // Extract lowest node from a tree // @param r = root of tree to extract lowest from // @returns new root after node has been extracted // n = node that was extracted from tree private static TokenSwitchCase ExtractLowest (TokenSwitchCase r, out TokenSwitchCase n) { if (r.lowerCase == null) { n = r; return r.higherCase; } r.lowerCase = ExtractLowest (r.lowerCase, out n); return r; } /** * Output code for string-style case of a switch/case to jump to the script code associated with the case. * @param testRVal = value being switched on * @param thisCase = case that the code is being output for * @param defaultLabel = where the default clause is (or past all cases if none) * Note: * Outputs code for this case and the lowerCase and higherCases if any. * If no lowerCase or higherCase, outputs a br to defaultLabel so this code never falls through. */ private void OutputStrCase (CompValu testRVal, TokenSwitchCase thisCase, ScriptMyLabel defaultLabel) { /* * If nothing lower on tree and there is a single case value, * just do one compare for equality. */ if ((thisCase.lowerCase == null) && (thisCase.higherCase == null) && (thisCase.str1 == thisCase.str2)) { testRVal.PushVal (this, thisCase, tokenTypeStr); ilGen.Emit (thisCase, OpCodes.Ldstr, thisCase.str1); ilGen.Emit (thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit (thisCase, OpCodes.Call, stringCompareMethodInfo); ilGen.Emit (thisCase, OpCodes.Brfalse, thisCase.label); ilGen.Emit (thisCase, OpCodes.Br, defaultLabel); return; } /* * Determine where to jump if switch value is lower than lower case value. */ ScriptMyLabel lowerLabel = defaultLabel; if (thisCase.lowerCase != null) { lowerLabel = ilGen.DefineLabel ("lower"); } /* * If single case value, put comparison result in this temp. */ CompValuTemp cmpv1 = null; if (thisCase.str1 == thisCase.str2) { cmpv1 = new CompValuTemp (tokenTypeInt, this); } /* * If switch value .lt. lower case value, jump to lower label. * Maybe save comparison result in a temp. */ testRVal.PushVal (this, thisCase, tokenTypeStr); ilGen.Emit (thisCase, OpCodes.Ldstr, thisCase.str1); ilGen.Emit (thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit (thisCase, OpCodes.Call, stringCompareMethodInfo); if (cmpv1 != null) { ilGen.Emit (thisCase, OpCodes.Dup); cmpv1.Pop (this, thisCase); } ilGen.Emit (thisCase, OpCodes.Ldc_I4_0); ilGen.Emit (thisCase, OpCodes.Blt, lowerLabel); /* * If switch value .le. higher case value, jump to case code. * Maybe get comparison from the temp. */ if (cmpv1 == null) { testRVal.PushVal (this, thisCase, tokenTypeStr); ilGen.Emit (thisCase, OpCodes.Ldstr, thisCase.str2); ilGen.Emit (thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit (thisCase, OpCodes.Call, stringCompareMethodInfo); } else { cmpv1.PushVal (this, thisCase); } ilGen.Emit (thisCase, OpCodes.Ldc_I4_0); ilGen.Emit (thisCase, OpCodes.Ble, thisCase.label); /* * Output code for higher comparison if any. */ if (thisCase.higherCase == null) { ilGen.Emit (thisCase, OpCodes.Br, defaultLabel); } else { OutputStrCase (testRVal, thisCase.higherCase, defaultLabel); } /* * Output code for lower comparison if any. */ if (thisCase.lowerCase != null) { ilGen.MarkLabel (lowerLabel); OutputStrCase (testRVal, thisCase.lowerCase, defaultLabel); } } /** * @brief output code for a throw statement. * @param throwStmt = throw statement token, including value to be thrown */ private void GenerateStmtThrow (TokenStmtThrow throwStmt) { if (!mightGetHere) return; /* * 'throw' statements never fall through. */ mightGetHere = false; /* * Output code for either a throw or a rethrow. */ if (throwStmt.rVal == null) { for (TokenStmtBlock blk = curStmtBlock; blk != null; blk = blk.outerStmtBlock) { if (curStmtBlock.isCatch) { ilGen.Emit (throwStmt, OpCodes.Rethrow); return; } } ErrorMsg (throwStmt, "rethrow allowed only in catch clause"); } else { CompValu rVal = GenerateFromRVal (throwStmt.rVal); rVal.PushVal (this, throwStmt.rVal, tokenTypeObj); ilGen.Emit (throwStmt, OpCodes.Call, thrownExceptionWrapMethodInfo); ilGen.Emit (throwStmt, OpCodes.Throw); } } /** * @brief output code for a try/catch/finally block */ private void GenerateStmtTry (TokenStmtTry tryStmt) { if (!mightGetHere) return; /* * Reducer should make sure we have exactly one of catch or finally. */ if ((tryStmt.catchStmt == null) && (tryStmt.finallyStmt == null)) { throw new Exception ("must have a catch or a finally on try"); } if ((tryStmt.catchStmt != null) && (tryStmt.finallyStmt != null)) { throw new Exception ("can't have both catch and finally on same try"); } /* * Stack the call labels. * Try blocks have their own series of call labels. */ ScriptMyLocal saveCallNo = actCallNo; LinkedList saveCallLabels = actCallLabels; /* * Generate code for either try { } catch { } or try { } finally { }. */ if (tryStmt.catchStmt != null) GenerateStmtTryCatch (tryStmt); if (tryStmt.finallyStmt != null) GenerateStmtTryFinally (tryStmt); /* * Restore call labels. */ actCallNo = saveCallNo; actCallLabels = saveCallLabels; } /** * @brief output code for a try/catch block * * int __tryCallNo = -1; // call number within try { } subblock * int __catCallNo = -1; // call number within catch { } subblock * Exception __catThrown = null; // caught exception * : // the outside world jumps here to restore us no matter ... * try { // ... where we actually were inside of try/catch * if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore * // execute script-defined code * // ...stack capture WILL run catch { } subblock * leave tryEnd; // exits * tryThrow:: * throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning * tryCallSw: // restoring... * switch (__tryCallNo) back up into // not catching, jump back inside try * } catch (Exception exc) { * exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException * if (exc == null) goto catchRetro; // rethrow if IXMRUncatchable (eg, StackCaptureException) * __catThrown = exc; // save what was thrown so restoring try { } will throw it again * catchVar = exc; // set up script-visible variable * __tryCallNo = tryThrow: * if (__catCallNo >= 0) goto catchCallSw; // if restoring, go check below * // normal, execute script-defined code * leave tryEnd; // all done, exit catch { } * catchRetro: * rethrow; * catchCallSw: * switch (__catCallNo) back up into // restart catch { } code wherever it was * } * tryEnd: */ private void GenerateStmtTryCatch (TokenStmtTry tryStmt) { CompValuTemp tryCallNo = new CompValuTemp (tokenTypeInt, this); CompValuTemp catCallNo = new CompValuTemp (tokenTypeInt, this); CompValuTemp catThrown = new CompValuTemp (tokenTypeExc, this); ScriptMyLabel tryCallSw = ilGen.DefineLabel ("__tryCallSw_" + tryStmt.Unique); ScriptMyLabel catchRetro = ilGen.DefineLabel ("__catchRetro_" + tryStmt.Unique); ScriptMyLabel catchCallSw = ilGen.DefineLabel ("__catchCallSw_" + tryStmt.Unique); ScriptMyLabel tryEnd = ilGen.DefineLabel ("__tryEnd_" + tryStmt.Unique); SetCallNo (tryStmt, tryCallNo, -1); SetCallNo (tryStmt, catCallNo, -1); ilGen.Emit (tryStmt, OpCodes.Ldnull); catThrown.Pop (this, tryStmt); new CallLabel (this, tryStmt); // : ilGen.BeginExceptionBlock (); // try { openCallLabel = null; if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "enter try*: " + tryStmt.line + " callMode="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); PushXMRInst (); ilGen.Emit (tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " tryCallNo="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); tryCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " catThrown.IsNull="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); catThrown.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Ldnull); ilGen.Emit (tryStmt, OpCodes.Ceq); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " catCallNo="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); catCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } GetCallNo (tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw; ilGen.Emit (tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit (tryStmt, OpCodes.Bge, tryCallSw); actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels actCallLabels = new LinkedList (); GenerateStmtBlock (tryStmt.tryStmt); // output the try block statement subblock bool tryBlockFallsOutBottom = mightGetHere; if (tryBlockFallsOutBottom) { new CallLabel (this, tryStmt); // : ilGen.Emit (tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd; openCallLabel = null; } CallLabel tryThrow = new CallLabel (this, tryStmt); // tryThrow:: if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "tryThrow*: " + tryStmt.line + " catThrown="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); catThrown.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } catThrown.PushVal (this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown); ilGen.Emit (tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo); ilGen.Emit (tryStmt, OpCodes.Throw); openCallLabel = null; ilGen.MarkLabel (tryCallSw); // tryCallSw: if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "tryCallSw*: " + tryStmt.line + " tryCallNo="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); tryCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } OutputCallNoSwitchStmt (); // switch (tryCallNo) ... CompValuLocalVar catchVarLocExc = null; CompValuTemp catchVarLocStr = null; if (tryStmt.catchVar.type.ToSysType () == typeof (Exception)) { catchVarLocExc = new CompValuLocalVar (tryStmt.catchVar.type, tryStmt.catchVar.name.val, this); } else if (tryStmt.catchVar.type.ToSysType () == typeof (String)) { catchVarLocStr = new CompValuTemp (tryStmt.catchVar.type, this); } ScriptMyLocal excLocal = ilGen.DeclareLocal (typeof (String), "catchstr_" + tryStmt.Unique); ilGen.BeginCatchBlock (typeof (Exception)); // start of the catch block that can catch any exception if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldstr, "enter catch*: " + tryStmt.line + " callMode="); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); PushXMRInst (); ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldstr, " catCallNo="); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); catCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt.catchStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldstr, " exc="); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Dup); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, consoleWriteMethodInfo); } ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap); // exc = ScriptRestoreCatchException.Unwrap (exc); ilGen.Emit (tryStmt.catchStmt, OpCodes.Dup); // rethrow if IXMRUncatchable (eg, StackCaptureException) ilGen.Emit (tryStmt.catchStmt, OpCodes.Brfalse, catchRetro); if (tryStmt.catchVar.type.ToSysType () == typeof (Exception)) { tryStmt.catchVar.location = catchVarLocExc; ilGen.Emit (tryStmt.catchStmt, OpCodes.Dup); catThrown.Pop (this, tryStmt); // store exception object in catThrown catchVarLocExc.Pop (this, tryStmt.catchVar.name); // also store in script-visible variable } else if (tryStmt.catchVar.type.ToSysType () == typeof (String)) { tryStmt.catchVar.location = catchVarLocStr; ilGen.Emit (tryStmt.catchStmt, OpCodes.Dup); catThrown.Pop (this, tryStmt); // store exception object in catThrown ilGen.Emit (tryStmt.catchStmt, OpCodes.Call, catchExcToStrMethodInfo); ilGen.Emit (tryStmt.catchStmt, OpCodes.Stloc, excLocal); catchVarLocStr.PopPre (this, tryStmt.catchVar.name); ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldloc, excLocal); catchVarLocStr.PopPost (this, tryStmt.catchVar.name, tokenTypeStr); } else { throw new Exception ("bad catch var type " + tryStmt.catchVar.type.ToString ()); } SetCallNo (tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow so it knows to do 'throw catThrown' on restore GetCallNo (tryStmt, catCallNo); // if (__catCallNo >= 0) goto catchCallSw; ilGen.Emit (tryStmt.catchStmt, OpCodes.Ldc_I4_0); ilGen.Emit (tryStmt.catchStmt, OpCodes.Bge, catchCallSw); actCallNo = catCallNo.localBuilder; // set up __catCallNo for call labels actCallLabels.Clear (); mightGetHere = true; // if we can get to the 'try' assume we can get to the 'catch' GenerateStmtBlock (tryStmt.catchStmt); // output catch clause statement subblock if (mightGetHere) { new CallLabel (this, tryStmt.catchStmt); ilGen.Emit (tryStmt.catchStmt, OpCodes.Leave, tryEnd); openCallLabel = null; } ilGen.MarkLabel (catchRetro); // not a script-visible exception, rethrow it ilGen.Emit (tryStmt.catchStmt, OpCodes.Pop); ilGen.Emit (tryStmt.catchStmt, OpCodes.Rethrow); ilGen.MarkLabel (catchCallSw); OutputCallNoSwitchStmt (); // restoring, jump back inside script-defined body ilGen.EndExceptionBlock (); ilGen.MarkLabel (tryEnd); mightGetHere |= tryBlockFallsOutBottom; // also get here if try body falls out bottom } /** * @brief output code for a try/finally block * * This is such a mess because there is hidden state for the finally { } that we have to recreate. * The finally { } can be entered either via an exception being thrown in the try { } or a leave * being executed in the try { } whose target is outside the try { } finally { }. * * For the thrown exception case, we slip in a try { } catch { } wrapper around the original try { } * body. This will sense any thrown exception that would execute the finally { }. Then we have our * try { } throw the exception on restore which gets the finally { } called and on its way again. * * For the leave case, we prefix all leave instructions with a call label and we explicitly chain * all leaves through each try { } that has an associated finally { } that the leave would unwind * through. This gets each try { } to simply jump to the correct leave instruction which immediately * invokes the corresponding finally { } and then chains to the next leave instruction on out until * it gets to its target. * * int __finCallNo = -1; // call number within finally { } subblock * int __tryCallNo = -1; // call number within try { } subblock * Exception __catThrown = null; // caught exception * : // the outside world jumps here to restore us no matter ... * try { // ... where we actually were inside of try/finally * try { * if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore * // execute script-defined code * // ...stack capture WILL run catch/finally { } subblock * leave tryEnd; // executes finally { } subblock and exits * tryThrow:: * throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning * tryCallSw: // restoring... * switch (__tryCallNo) back up into // jump back inside try, ... * // ... maybe to a leave if we were doing finally { } subblock * } catch (Exception exc) { // in case we're getting to finally { } via a thrown exception: * exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException * if (callMode == CallMode_SAVE) goto catchRetro; // don't touch anything if capturing stack * __catThrown = exc; // save exception so try { } can throw it on restore * __tryCallNo = tryThrow:; // tell try { } to throw it on restore * catchRetro: * rethrow; // in any case, go on to finally { } subblock now * } * } finally { * if (callMode == CallMode_SAVE) goto finEnd; // don't touch anything if capturing stack * if (__finCallNo >= 0) goto finCallSw; // maybe go do restore * // normal, execute script-defined code * finEnd: * endfinally // jump to leave/throw target or next outer finally { } * finCallSw: * switch (__finCallNo) back up into // restoring, restart finally { } code wherever it was * } * tryEnd: */ private void GenerateStmtTryFinally (TokenStmtTry tryStmt) { CompValuTemp finCallNo = new CompValuTemp (tokenTypeInt, this); CompValuTemp tryCallNo = new CompValuTemp (tokenTypeInt, this); CompValuTemp catThrown = new CompValuTemp (tokenTypeExc, this); ScriptMyLabel tryCallSw = ilGen.DefineLabel ( "__tryCallSw_" + tryStmt.Unique); ScriptMyLabel catchRetro = ilGen.DefineLabel ( "__catchRetro_" + tryStmt.Unique); ScriptMyLabel finCallSw = ilGen.DefineLabel ( "__finCallSw_" + tryStmt.Unique); BreakContTarg finEnd = new BreakContTarg (this, "__finEnd_" + tryStmt.Unique); ScriptMyLabel tryEnd = ilGen.DefineLabel ( "__tryEnd_" + tryStmt.Unique); SetCallNo (tryStmt, finCallNo, -1); SetCallNo (tryStmt, tryCallNo, -1); ilGen.Emit (tryStmt, OpCodes.Ldnull); catThrown.Pop (this, tryStmt); new CallLabel (this, tryStmt); // : ilGen.BeginExceptionBlock (); // try { ilGen.BeginExceptionBlock (); // try { openCallLabel = null; if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "enter try*: " + tryStmt.line + " callMode="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); PushXMRInst (); ilGen.Emit (tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " tryCallNo="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); tryCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " finCallNo="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); finCallNo.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " catThrown.IsNull="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); catThrown.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Ldnull); ilGen.Emit (tryStmt, OpCodes.Ceq); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } GetCallNo (tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw; ilGen.Emit (tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit (tryStmt, OpCodes.Bge, tryCallSw); actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels actCallLabels = new LinkedList (); GenerateStmtBlock (tryStmt.tryStmt); // output the try block statement subblock if (mightGetHere) { new CallLabel (this, tryStmt); // : ilGen.Emit (tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd; openCallLabel = null; } foreach (IntermediateLeave iLeave in tryStmt.iLeaves.Values) { ilGen.MarkLabel (iLeave.jumpIntoLabel); // intr2_exit: new CallLabel (this, tryStmt); // tryCallNo = n; ilGen.Emit (tryStmt, OpCodes.Leave, iLeave.jumpAwayLabel); // __callNo_n_: leave int1_exit; openCallLabel = null; } CallLabel tryThrow = new CallLabel (this, tryStmt); // tryThrow:: if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "tryThrow*: " + tryStmt.line + " catThrown="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); catThrown.PushVal (this, tryStmt); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } catThrown.PushVal (this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown); ilGen.Emit (tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo); ilGen.Emit (tryStmt, OpCodes.Throw); openCallLabel = null; ilGen.MarkLabel (tryCallSw); // tryCallSw: OutputCallNoSwitchStmt (); // switch (tryCallNo) ... // } ilGen.BeginCatchBlock (typeof (Exception)); // start of the catch block that can catch any exception if (DEBUG_TRYSTMT) { ilGen.Emit (tryStmt, OpCodes.Ldstr, "enter catch*: " + tryStmt.line + " callMode="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); PushXMRInst (); ilGen.Emit (tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt, OpCodes.Box, typeof (int)); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, " exc="); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Dup); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); ilGen.Emit (tryStmt, OpCodes.Ldstr, "\n"); ilGen.Emit (tryStmt, OpCodes.Call, consoleWriteMethodInfo); } ilGen.Emit (tryStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap); // exc = ScriptRestoreCatchException.Unwrap (exc); PushXMRInst (); // if (callMode == CallMode_SAVE) goto catchRetro; ilGen.Emit (tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit (tryStmt, OpCodes.Beq, catchRetro); catThrown.Pop (this, tryStmt); // __catThrown = exc; SetCallNo (tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow:; ilGen.Emit (tryStmt, OpCodes.Rethrow); ilGen.MarkLabel (catchRetro); // catchRetro: ilGen.Emit (tryStmt, OpCodes.Pop); ilGen.Emit (tryStmt, OpCodes.Rethrow); // rethrow; ilGen.EndExceptionBlock (); // } ilGen.BeginFinallyBlock (); // start of the finally block PushXMRInst (); // if (callMode == CallMode_SAVE) goto finEnd; ilGen.Emit (tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit (tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit (tryStmt, OpCodes.Beq, finEnd.label); GetCallNo (tryStmt, finCallNo); // if (__finCallNo >= 0) goto finCallSw; ilGen.Emit (tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit (tryStmt, OpCodes.Bge, finCallSw); actCallNo = finCallNo.localBuilder; // set up __finCallNo for call labels actCallLabels.Clear (); mightGetHere = true; // if we can get to the 'try' assume we can get to the 'finally' GenerateStmtBlock (tryStmt.finallyStmt); // output finally clause statement subblock ilGen.MarkLabel (finEnd.label); // finEnd: ilGen.Emit (tryStmt, OpCodes.Endfinally); // return out to next finally { } or catch { } or leave target ilGen.MarkLabel (finCallSw); // restore mode, switch (finCallNo) ... OutputCallNoSwitchStmt (); ilGen.EndExceptionBlock (); ilGen.MarkLabel (tryEnd); mightGetHere |= finEnd.used; // get here if finally body falls through or has a break statement } /** * @brief Generate code to initialize a variable to its default value. */ private void GenerateStmtVarIniDef (TokenStmtVarIniDef varIniDefStmt) { if (!mightGetHere) return; CompValu left = GenerateFromLVal (varIniDefStmt.var); left.PopPre (this, varIniDefStmt); PushDefaultValue (left.type); left.PopPost (this, varIniDefStmt); } /** * @brief generate code for a 'while' statement including the loop body. */ private void GenerateStmtWhile (TokenStmtWhile whileStmt) { if (!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel ("whileloop_" + whileStmt.Unique); curBreakTarg = new BreakContTarg (this, "whilebreak_" + whileStmt.Unique); curContTarg = new BreakContTarg (this, "whilecont_" + whileStmt.Unique); ilGen.MarkLabel (loopLabel); // loop: CompValu testRVal = GenerateFromRVal (whileStmt.testRVal); // testRVal = while test expression if (!IsConstBoolExprTrue (testRVal)) { testRVal.PushVal (this, whileStmt.testRVal, tokenTypeBool); // if (!testRVal) ilGen.Emit (whileStmt, OpCodes.Brfalse, curBreakTarg.label); // goto break curBreakTarg.used = true; } GenerateStmt (whileStmt.bodyStmt); // while body statement if (curContTarg.used) { ilGen.MarkLabel (curContTarg.label); // cont: mightGetHere = true; } if (mightGetHere) { EmitCallCheckRun (whileStmt, false); // __sw.CheckRun() ilGen.Emit (whileStmt, OpCodes.Br, loopLabel); // goto loop } mightGetHere = curBreakTarg.used; if (mightGetHere) { ilGen.MarkLabel (curBreakTarg.label); // done: } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief process a local variable declaration statement, possibly with initialization expression. * Note that the function header processing allocated stack space (CompValuTemp) for the * variable and now all we do is write its initialization value. */ private void GenerateDeclVar (TokenDeclVar declVar) { /* * Script gave us an initialization value, so just store init value in var like an assignment statement. * If no init given, set it to its default value. */ CompValu local = declVar.location; if (declVar.init != null) { CompValu rVal = GenerateFromRVal (declVar.init, local.GetArgTypes ()); local.PopPre (this, declVar); rVal.PushVal (this, declVar.init, declVar.type); local.PopPost (this, declVar); } else { local.PopPre (this, declVar); PushDefaultValue (declVar.type); local.PopPost (this, declVar); } } /** * @brief Get the type and location of an L-value (eg, variable) * @param lVal = L-value expression to evaluate * @param argsig = null: it's a field/property * else: select overload method that fits these arg types */ private CompValu GenerateFromLVal (TokenLVal lVal) { return GenerateFromLVal (lVal, null); } private CompValu GenerateFromLVal (TokenLVal lVal, TokenType[] argsig) { if (lVal is TokenLValArEle) return GenerateFromLValArEle ((TokenLValArEle)lVal); if (lVal is TokenLValBaseField) return GenerateFromLValBaseField ((TokenLValBaseField)lVal, argsig); if (lVal is TokenLValIField) return GenerateFromLValIField ((TokenLValIField)lVal, argsig); if (lVal is TokenLValName) return GenerateFromLValName ((TokenLValName)lVal, argsig); if (lVal is TokenLValSField) return GenerateFromLValSField ((TokenLValSField)lVal, argsig); throw new Exception ("bad lval class"); } /** * @brief we have an L-value token that is an element within an array. * @returns a CompValu giving the type and location of the element of the array. */ private CompValu GenerateFromLValArEle (TokenLValArEle lVal) { CompValu subCompValu; /* * Compute location of array itself. */ CompValu baseCompValu = GenerateFromRVal (lVal.baseRVal); /* * Maybe it is a fixed array access. */ string basetypestring = baseCompValu.type.ToString (); if (basetypestring.EndsWith ("]")) { TokenRVal subRVal = lVal.subRVal; int nSubs = 1; if (subRVal is TokenRValList) { nSubs = ((TokenRValList)subRVal).nItems; subRVal = ((TokenRValList)subRVal).rVal; } int rank = basetypestring.IndexOf (']') - basetypestring.IndexOf ('['); if (nSubs != rank) { ErrorMsg (lVal.baseRVal, "expect " + rank + " subscript" + ((rank == 1) ? "" : "s") + " but have " + nSubs); } CompValu[] subCompValus = new CompValu[rank]; int i; for (i = 0; (subRVal != null) && (i < rank); i ++) { subCompValus[i] = GenerateFromRVal (subRVal); subRVal = (TokenRVal)subRVal.nextToken; } while (i < rank) subCompValus[i++] = new CompValuInteger (new TokenTypeInt (lVal.subRVal), 0); return new CompValuFixArEl (this, baseCompValu, subCompValus); } /* * Maybe it is accessing the $idxprop property of a script-defined class. */ if (baseCompValu.type is TokenTypeSDTypeClass) { TokenName name = new TokenName (lVal, "$idxprop"); TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)baseCompValu.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenDeclVar idxProp = FindThisMember (sdtDecl, name, null); if (idxProp == null) { ErrorMsg (lVal, "no index property in class " + sdtDecl.longName.val); return new CompValuVoid (lVal); } if ((idxProp.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { ErrorMsg (lVal, "non-static reference to static member " + idxProp.name.val); return new CompValuVoid (idxProp); } CheckAccess (idxProp, name); TokenType[] argTypes = IdxPropArgTypes (idxProp); CompValu[] compValus = IdxPropCompValus (lVal, argTypes.Length); return new CompValuIdxProp (idxProp, baseCompValu, argTypes, compValus); } /* * Maybe they are accessing $idxprop property of a script-defined interface. */ if (baseCompValu.type is TokenTypeSDTypeInterface) { TokenName name = new TokenName (lVal, "$idxprop"); TokenTypeSDTypeInterface sdtType = (TokenTypeSDTypeInterface)baseCompValu.type; TokenDeclVar idxProp = FindInterfaceMember (sdtType, name, null, ref baseCompValu); if (idxProp == null) { ErrorMsg (lVal, "no index property defined for interface " + sdtType.decl.longName.val); return baseCompValu; } TokenType[] argTypes = IdxPropArgTypes (idxProp); CompValu[] compValus = IdxPropCompValus (lVal, argTypes.Length); return new CompValuIdxProp (idxProp, baseCompValu, argTypes, compValus); } /* * Maybe it is extracting a character from a string. */ if ((baseCompValu.type is TokenTypeKey) || (baseCompValu.type is TokenTypeStr)) { subCompValu = GenerateFromRVal (lVal.subRVal); return new CompValuStrChr (new TokenTypeChar (lVal), baseCompValu, subCompValu); } /* * Maybe it is extracting an element from a list. */ if (baseCompValu.type is TokenTypeList) { subCompValu = GenerateFromRVal (lVal.subRVal); return new CompValuListEl (new TokenTypeObject (lVal), baseCompValu, subCompValu); } /* * Access should be to XMR_Array otherwise. */ if (!(baseCompValu.type is TokenTypeArray)) { ErrorMsg (lVal, "taking subscript of non-array"); return baseCompValu; } subCompValu = GenerateFromRVal (lVal.subRVal); return new CompValuArEle (new TokenTypeObject (lVal), baseCompValu, subCompValu); } /** * @brief Get number and type of arguments required by an index property. */ private static TokenType[] IdxPropArgTypes (TokenDeclVar idxProp) { TokenType[] argTypes; if (idxProp.getProp != null) { int nArgs = idxProp.getProp.argDecl.varDict.Count; argTypes = new TokenType[nArgs]; foreach (TokenDeclVar var in idxProp.getProp.argDecl.varDict) { argTypes[var.vTableIndex] = var.type; } } else { int nArgs = idxProp.setProp.argDecl.varDict.Count - 1; argTypes = new TokenType[nArgs]; foreach (TokenDeclVar var in idxProp.setProp.argDecl.varDict) { if (var.vTableIndex < nArgs) { argTypes[var.vTableIndex] = var.type; } } } return argTypes; } /** * @brief Get number and computed value of index property arguments. * @param lVal = list of arguments * @param nArgs = number of arguments required * @returns null: argument count mismatch * else: array of index property argument values */ private CompValu[] IdxPropCompValus (TokenLValArEle lVal, int nArgs) { TokenRVal subRVal = lVal.subRVal; int nSubs = 1; if (subRVal is TokenRValList) { nSubs = ((TokenRValList)subRVal).nItems; subRVal = ((TokenRValList)subRVal).rVal; } if (nSubs != nArgs) { ErrorMsg (lVal, "index property requires " + nArgs + " subscript(s)"); return null; } CompValu[] subCompValus = new CompValu[nArgs]; for (int i = 0; i < nArgs; i ++) { subCompValus[i] = GenerateFromRVal (subRVal); subRVal = (TokenRVal)subRVal.nextToken; } return subCompValus; } /** * @brief using 'base' within a script-defined instance method to refer to an instance field/method * of the class being extended. */ private CompValu GenerateFromLValBaseField (TokenLValBaseField baseField, TokenType[] argsig) { string fieldName = baseField.fieldName.val; TokenDeclSDType sdtDecl = curDeclFunc.sdtClass; if ((sdtDecl == null) || ((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) != 0)) { ErrorMsg (baseField, "cannot use 'base' outside instance method body"); return new CompValuVoid (baseField); } if (!IsSDTInstMethod ()) { ErrorMsg (baseField, "cannot access instance member of base class from static method"); return new CompValuVoid (baseField); } TokenDeclVar declVar = FindThisMember (sdtDecl.extends, baseField.fieldName, argsig); if (declVar != null) { CheckAccess (declVar, baseField.fieldName); TokenType baseType = declVar.sdtClass.MakeRefToken (baseField); CompValu basePtr = new CompValuArg (baseType, 0); return AccessInstanceMember (declVar, basePtr, baseField, true); } ErrorMsg (baseField, "no member " + fieldName + ArgSigString (argsig) + " rootward of " + sdtDecl.longName.val); return new CompValuVoid (baseField); } /** * @brief We have an L-value token that is an instance field/method within a struct. * @returns a CompValu giving the type and location of the field/method in the struct. */ private CompValu GenerateFromLValIField (TokenLValIField lVal, TokenType[] argsig) { CompValu baseRVal = GenerateFromRVal (lVal.baseRVal); string fieldName = lVal.fieldName.val + ArgSigString (argsig); /* * Maybe they are accessing an instance field, method or property of a script-defined class. */ if (baseRVal.type is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)baseRVal.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenDeclVar declVar = FindThisMember (sdtDecl, lVal.fieldName, argsig); if (declVar != null) { CheckAccess (declVar, lVal.fieldName); return AccessInstanceMember (declVar, baseRVal, lVal, false); } ErrorMsg (lVal.fieldName, "no member " + fieldName + " in class " + sdtDecl.longName.val); return new CompValuVoid (lVal.fieldName); } /* * Maybe they are accessing a method or property of a script-defined interface. */ if (baseRVal.type is TokenTypeSDTypeInterface) { TokenTypeSDTypeInterface sdtType = (TokenTypeSDTypeInterface)baseRVal.type; TokenDeclVar declVar = FindInterfaceMember (sdtType, lVal.fieldName, argsig, ref baseRVal); if (declVar != null) { return new CompValuIntfMember (declVar, baseRVal); } ErrorMsg (lVal.fieldName, "no member " + fieldName + " in interface " + sdtType.decl.longName.val); return new CompValuVoid (lVal.fieldName); } /* * Since we only have a few built-in types with fields, just pound them out. */ if (baseRVal.type is TokenTypeArray) { // no arguments, no parentheses, just the field name, returning integer // but internally, it is a call to a method() if (fieldName == "count") { return new CompValuIntInstROProp (tokenTypeInt, baseRVal, arrayCountMethodInfo); } // no arguments but with the parentheses, returning void if (fieldName == "clear()") { return new CompValuIntInstMeth (XMR_Array.clearDelegate, baseRVal, arrayClearMethodInfo); } // single integer argument, returning an object if (fieldName == "index(integer)") { return new CompValuIntInstMeth (XMR_Array.indexDelegate, baseRVal, arrayIndexMethodInfo); } if (fieldName == "value(integer)") { return new CompValuIntInstMeth (XMR_Array.valueDelegate, baseRVal, arrayValueMethodInfo); } } if (baseRVal.type is TokenTypeRot) { FieldInfo fi = null; if (fieldName == "x") fi = rotationXFieldInfo; if (fieldName == "y") fi = rotationYFieldInfo; if (fieldName == "z") fi = rotationZFieldInfo; if (fieldName == "s") fi = rotationSFieldInfo; if (fi != null) { return new CompValuField (new TokenTypeFloat (lVal), baseRVal, fi); } } if (baseRVal.type is TokenTypeVec) { FieldInfo fi = null; if (fieldName == "x") fi = vectorXFieldInfo; if (fieldName == "y") fi = vectorYFieldInfo; if (fieldName == "z") fi = vectorZFieldInfo; if (fi != null) { return new CompValuField (new TokenTypeFloat (lVal), baseRVal, fi); } } ErrorMsg (lVal, "type " + baseRVal.type.ToString () + " does not define member " + fieldName); return baseRVal; } /** * @brief We have an L-value token that is a function, method or variable name. * @param lVal = name we are looking for * @param argsig = null: just look for name as a variable * else: look for name as a function/method being called with the given argument types * eg, "(string,integer,list)" * @returns a CompValu giving the type and location of the function, method or variable. */ private CompValu GenerateFromLValName (TokenLValName lVal, TokenType[] argsig) { /* * Look in variable stack then look for built-in constants and functions. */ TokenDeclVar var = FindNamedVar (lVal, argsig); if (var == null) { ErrorMsg (lVal, "undefined constant/function/variable " + lVal.name.val + ArgSigString (argsig)); return new CompValuVoid (lVal); } /* * Maybe it has an implied 'this.' on the front. */ if ((var.sdtClass != null) && ((var.sdtFlags & ScriptReduce.SDT_STATIC) == 0)) { if (!IsSDTInstMethod ()) { ErrorMsg (lVal, "cannot access instance member of class from static method"); return new CompValuVoid (lVal); } /* * Don't allow something such as: * * class A { * integer I; * class B { * Print () * { * llOwnerSay ("I=" + (string)I); <- access to I not allowed inside class B. * explicit reference required as we don't * have a valid reference to class A. * } * } * } * * But do allow something such as: * * class A { * integer I; * } * class B : A { * Print () * { * llOwnerSay ("I=" + (string)I); * } * } */ for (TokenDeclSDType c = curDeclFunc.sdtClass; c != var.sdtClass; c = c.extends) { if (c == null) { // our arg0 points to an instance of curDeclFunc.sdtClass, not var.sdtClass ErrorMsg (lVal, "cannot access instance member of outer class with implied 'this'"); break; } } CompValu thisCompValu = new CompValuArg (var.sdtClass.MakeRefToken (lVal), 0); return AccessInstanceMember (var, thisCompValu, lVal, false); } /* * It's a local variable, static field, global, constant, etc. */ return var.location; } /** * @brief Access a script-defined type's instance member * @param declVar = which member (field,method,property) to access * @param basePtr = points to particular object instance * @param ignoreVirt = true: access declVar's method directly; else: maybe use vTable * @returns where the field/method/property is located */ private CompValu AccessInstanceMember (TokenDeclVar declVar, CompValu basePtr, Token errorAt, bool ignoreVirt) { if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { ErrorMsg (errorAt, "non-static reference to static member " + declVar.name.val); return new CompValuVoid (declVar); } return new CompValuInstMember (declVar, basePtr, ignoreVirt); } /** * @brief we have an L-value token that is a static member within a struct. * @returns a CompValu giving the type and location of the member in the struct. */ private CompValu GenerateFromLValSField (TokenLValSField lVal, TokenType[] argsig) { TokenType stType = lVal.baseType; string fieldName = lVal.fieldName.val + ArgSigString (argsig); /* * Maybe they are accessing a static member of a script-defined class. */ if (stType is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)stType; TokenDeclVar declVar = FindThisMember (sdtType.decl, lVal.fieldName, argsig); if (declVar != null) { CheckAccess (declVar, lVal.fieldName); if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0) { ErrorMsg (lVal.fieldName, "static reference to non-static member " + fieldName); return new CompValuVoid (lVal.fieldName); } return declVar.location; } } ErrorMsg (lVal.fieldName, "no member " + fieldName + " in " + stType.ToString ()); return new CompValuVoid (lVal.fieldName); } /** * @brief generate code from an RVal expression and return its type and where the result is stored. * For anything that has side-effects, statements are generated that perform the computation then * the result it put in a temp var and the temp var name is returned. * For anything without side-effects, they are returned as an equivalent sequence of Emits. * @param rVal = rVal token to be evaluated * @param argsig = null: not being used in an function/method context * else: string giving argument types, eg, "(string,integer,list,vector)" * that can be used to select among overloaded methods * @returns resultant type and location */ private CompValu GenerateFromRVal (TokenRVal rVal) { return GenerateFromRVal (rVal, null); } private CompValu GenerateFromRVal (TokenRVal rVal, TokenType[] argsig) { errorMessageToken = rVal; /* * Maybe the expression can be converted to a constant. */ bool didOne; do { didOne = false; rVal = rVal.TryComputeConstant (LookupBodyConstants, ref didOne); } while (didOne); /* * Generate code for the computation and return resulting type and location. */ CompValu cVal = null; if (rVal is TokenRValAsnPost) cVal = GenerateFromRValAsnPost ((TokenRValAsnPost)rVal); if (rVal is TokenRValAsnPre) cVal = GenerateFromRValAsnPre ((TokenRValAsnPre)rVal); if (rVal is TokenRValCall) cVal = GenerateFromRValCall ((TokenRValCall)rVal); if (rVal is TokenRValCast) cVal = GenerateFromRValCast ((TokenRValCast)rVal); if (rVal is TokenRValCondExpr) cVal = GenerateFromRValCondExpr ((TokenRValCondExpr)rVal); if (rVal is TokenRValConst) cVal = GenerateFromRValConst ((TokenRValConst)rVal); if (rVal is TokenRValInitDef) cVal = GenerateFromRValInitDef ((TokenRValInitDef)rVal); if (rVal is TokenRValIsType) cVal = GenerateFromRValIsType ((TokenRValIsType)rVal); if (rVal is TokenRValList) cVal = GenerateFromRValList ((TokenRValList)rVal); if (rVal is TokenRValNewArIni) cVal = GenerateFromRValNewArIni ((TokenRValNewArIni)rVal); if (rVal is TokenRValOpBin) cVal = GenerateFromRValOpBin ((TokenRValOpBin)rVal); if (rVal is TokenRValOpUn) cVal = GenerateFromRValOpUn ((TokenRValOpUn)rVal); if (rVal is TokenRValParen) cVal = GenerateFromRValParen ((TokenRValParen)rVal); if (rVal is TokenRValRot) cVal = GenerateFromRValRot ((TokenRValRot)rVal); if (rVal is TokenRValThis) cVal = GenerateFromRValThis ((TokenRValThis)rVal); if (rVal is TokenRValUndef) cVal = GenerateFromRValUndef ((TokenRValUndef)rVal); if (rVal is TokenRValVec) cVal = GenerateFromRValVec ((TokenRValVec)rVal); if (rVal is TokenLVal) cVal = GenerateFromLVal ((TokenLVal)rVal, argsig); if (cVal == null) throw new Exception ("bad rval class " + rVal.GetType ().ToString ()); /* * Sanity check. */ if (!youveAnError) { if (cVal.type == null) throw new Exception ("cVal has no type " + cVal.GetType ()); string cValType = cVal.type.ToString (); string rValType = rVal.GetRValType (this, argsig).ToString (); if (cValType == "bool") cValType = "integer"; if (rValType == "bool") rValType = "integer"; if (cValType != rValType) { throw new Exception ("cVal.type " + cValType + " != rVal.type " + rValType + " (" + rVal.GetType ().Name + " " + rVal.SrcLoc + ")"); } } return cVal; } /** * @brief compute the result of a binary operator (eg, add, subtract, multiply, lessthan) * @param token = binary operator token, includes the left and right operands * @returns where the resultant R-value is as something that doesn't have side effects */ private CompValu GenerateFromRValOpBin (TokenRValOpBin token) { CompValu left, right; string opcodeIndex = token.opcode.ToString (); /* * Comma operators are special, as they say to compute the left-hand value and * discard it, then compute the right-hand argument and that is the result. */ if (opcodeIndex == ",") { /* * Compute left-hand operand but throw away result. */ GenerateFromRVal (token.rValLeft); /* * Compute right-hand operand and that is the value of the expression. */ return GenerateFromRVal (token.rValRight); } /* * Simple overwriting assignments are their own special case, * as we want to cast the R-value to the type of the L-value. * And in the case of delegates, we want to use the arg signature * of the delegate to select which overloaded method to use. */ if (opcodeIndex == "=") { if (!(token.rValLeft is TokenLVal)) { ErrorMsg (token, "invalid L-value for ="); return GenerateFromRVal (token.rValLeft); } left = GenerateFromLVal ((TokenLVal)token.rValLeft); right = Trivialize (GenerateFromRVal (token.rValRight, left.GetArgTypes ()), token.rValRight); left.PopPre (this, token.rValLeft); right.PushVal (this, token.rValRight, left.type); // push (left.type)right left.PopPost (this, token.rValLeft); // pop to left return left; } /* * There are String.Concat() methods available for 2, 3 and 4 operands. * So see if we have a string concat op and optimize if so. */ if ((opcodeIndex == "+") || ((opcodeIndex == "+=") && (token.rValLeft is TokenLVal) && (token.rValLeft.GetRValType (this, null) is TokenTypeStr))) { /* * We are adding something. Maybe it's a bunch of strings together. */ List scorvs = new List (); if (StringConcatOperands (token.rValLeft, token.rValRight, scorvs, token.opcode)) { /* * Evaluate all the operands, right-to-left on purpose per LSL scripting. */ int i; int n = scorvs.Count; CompValu[] scocvs = new CompValu[n]; for (i = n; -- i >= 0;) { scocvs[i] = GenerateFromRVal (scorvs[i]); if (i > 0) scocvs[i] = Trivialize (scocvs[i], scorvs[i]); } /* * Figure out where to put the result. * A temp if '+', or back in original L-value if '+='. */ CompValu retcv; if (opcodeIndex == "+") { retcv = new CompValuTemp (new TokenTypeStr (token.opcode), this); } else { retcv = GenerateFromLVal ((TokenLVal)token.rValLeft); } retcv.PopPre (this, token); /* * Call the String.Concat() methods, passing operands in left-to-right order. * Force a cast to string (retcv.type) for each operand. */ ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); while (i + 3 < n) { ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ilGen.Emit (scorvs[i], OpCodes.Call, stringConcat4MethodInfo); } if (i + 2 < n) { ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ilGen.Emit (scorvs[i], OpCodes.Call, stringConcat3MethodInfo); } if (i + 1 < n) { ++ i; scocvs[i].PushVal (this, scorvs[i], retcv.type); ilGen.Emit (scorvs[i], OpCodes.Call, stringConcat2MethodInfo); } /* * Put the result where we want it and return where we put it. */ retcv.PopPost (this, token); return retcv; } } /* * If "&&&", it is a short-circuiting AND. * Compute left-hand operand and if true, compute right-hand operand. */ if (opcodeIndex == "&&&") { bool leftVal, rightVal; left = GenerateFromRVal (token.rValLeft); if (!IsConstBoolExpr (left, out leftVal)) { ScriptMyLabel falseLabel = ilGen.DefineLabel ("ssandfalse"); left.PushVal (this, tokenTypeBool); ilGen.Emit (token, OpCodes.Brfalse, falseLabel); right = GenerateFromRVal (token.rValRight); if (!IsConstBoolExpr (right, out rightVal)) { right.PushVal (this, tokenTypeBool); goto donessand; } if (!rightVal) { ilGen.MarkLabel (falseLabel); return new CompValuInteger (new TokenTypeInt (token.rValLeft), 0); } ilGen.Emit (token, OpCodes.Ldc_I4_1); donessand: ScriptMyLabel doneLabel = ilGen.DefineLabel ("ssanddone"); ilGen.Emit (token, OpCodes.Br, doneLabel); ilGen.MarkLabel (falseLabel); ilGen.Emit (token, OpCodes.Ldc_I4_0); ilGen.MarkLabel (doneLabel); CompValuTemp retRVal = new CompValuTemp (new TokenTypeInt (token), this); retRVal.Pop (this, token); return retRVal; } if (!leftVal) { return new CompValuInteger (new TokenTypeInt (token.rValLeft), 0); } right = GenerateFromRVal (token.rValRight); if (!IsConstBoolExpr (right, out rightVal)) { right.PushVal (this, tokenTypeBool); CompValuTemp retRVal = new CompValuTemp (new TokenTypeInt (token), this); retRVal.Pop (this, token); return retRVal; } return new CompValuInteger (new TokenTypeInt (token), rightVal ? 1 : 0); } /* * If "|||", it is a short-circuiting OR. * Compute left-hand operand and if false, compute right-hand operand. */ if (opcodeIndex == "|||") { bool leftVal, rightVal; left = GenerateFromRVal (token.rValLeft); if (!IsConstBoolExpr (left, out leftVal)) { ScriptMyLabel trueLabel = ilGen.DefineLabel ("ssortrue"); left.PushVal (this, tokenTypeBool); ilGen.Emit (token, OpCodes.Brtrue, trueLabel); right = GenerateFromRVal (token.rValRight); if (!IsConstBoolExpr (right, out rightVal)) { right.PushVal (this, tokenTypeBool); goto donessor; } if (rightVal) { ilGen.MarkLabel (trueLabel); return new CompValuInteger (new TokenTypeInt (token.rValLeft), 1); } ilGen.Emit (token, OpCodes.Ldc_I4_0); donessor: ScriptMyLabel doneLabel = ilGen.DefineLabel ("ssanddone"); ilGen.Emit (token, OpCodes.Br, doneLabel); ilGen.MarkLabel (trueLabel); ilGen.Emit (token, OpCodes.Ldc_I4_1); ilGen.MarkLabel (doneLabel); CompValuTemp retRVal = new CompValuTemp (new TokenTypeInt (token), this); retRVal.Pop (this, token); return retRVal; } if (leftVal) { return new CompValuInteger (new TokenTypeInt (token.rValLeft), 1); } right = GenerateFromRVal (token.rValRight); if (!IsConstBoolExpr (right, out rightVal)) { right.PushVal (this, tokenTypeBool); CompValuTemp retRVal = new CompValuTemp (new TokenTypeInt (token), this); retRVal.Pop (this, token); return retRVal; } return new CompValuInteger (new TokenTypeInt (token), rightVal ? 1 : 0); } /* * Computation of some sort, compute right-hand operand value then left-hand value * because LSL is supposed to be right-to-left evaluation. */ right = Trivialize (GenerateFromRVal (token.rValRight), token.rValRight); /* * If left is a script-defined class and there is a method with the operator's name, * convert this to a call to that method with the right value as its single parameter. * Except don't if the right value is 'undef' so they can always compare to undef. */ TokenType leftType = token.rValLeft.GetRValType (this, null); if ((leftType is TokenTypeSDTypeClass) && !(right.type is TokenTypeUndef)) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)leftType; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenType[] argsig = new TokenType[] { right.type }; TokenName funcName = new TokenName (token.opcode, "$op" + opcodeIndex); TokenDeclVar declFunc = FindThisMember (sdtDecl, funcName, argsig); if (declFunc != null) { CheckAccess (declFunc, funcName); left = GenerateFromRVal (token.rValLeft); CompValu method = AccessInstanceMember (declFunc, left, token, false); CompValu[] argRVals = new CompValu[] { right }; return GenerateACall (method, argRVals, token); } } /* * Formulate key string for binOpStrings = (lefttype)(operator)(righttype) */ string leftIndex = leftType.ToString (); string rightIndex = right.type.ToString (); string key = leftIndex + opcodeIndex + rightIndex; /* * If that key exists in table, then the operation is defined between those types * ... and it produces an R-value of type as given in the table. */ BinOpStr binOpStr; if (BinOpStr.defined.TryGetValue (key, out binOpStr)) { /* * If table contained an explicit assignment type like +=, output the statement without * casting the L-value, then return the L-value as the resultant value. * * Make sure we don't include comparisons (such as ==, >=, etc). * Nothing like +=, -=, %=, etc, generate a boolean, only the comparisons. */ if ((binOpStr.outtype != typeof (bool)) && opcodeIndex.EndsWith ("=") && (opcodeIndex != "!=")) { if (!(token.rValLeft is TokenLVal)) { ErrorMsg (token.rValLeft, "invalid L-value"); return GenerateFromRVal (token.rValLeft); } left = GenerateFromLVal ((TokenLVal)token.rValLeft); binOpStr.emitBO (this, token, left, right, left); return left; } /* * It's of the form left binop right. * Compute left, perform operation then put result in a temp. */ left = GenerateFromRVal (token.rValLeft); CompValu retRVal = new CompValuTemp (TokenType.FromSysType (token.opcode, binOpStr.outtype), this); binOpStr.emitBO (this, token, left, right, retRVal); return retRVal; } /* * Nothing in the table, check for comparing object pointers because of the myriad of types possible. * This will compare list pointers, null pointers, script-defined type pointers, array pointers, etc. * It will show equal iff the memory addresses are equal and that is good enough. */ if (!leftType.ToSysType().IsValueType && !right.type.ToSysType().IsValueType && ((opcodeIndex == "==") || (opcodeIndex == "!="))) { CompValuTemp retRVal = new CompValuTemp (new TokenTypeInt (token), this); left = GenerateFromRVal (token.rValLeft); left.PushVal (this, token.rValLeft); right.PushVal (this, token.rValRight); ilGen.Emit (token, OpCodes.Ceq); if (opcodeIndex == "!=") { ilGen.Emit (token, OpCodes.Ldc_I4_1); ilGen.Emit (token, OpCodes.Xor); } retRVal.Pop (this, token); return retRVal; } /* * If the opcode ends with "=", it may be something like "+=". * So look up the key as if we didn't have the "=" to tell us if the operation is legal. * Also, the binary operation's output type must be the same as the L-value type. * Likewise, integer += float not allowed because result is float, but float += integer is ok. */ if (opcodeIndex.EndsWith ("=")) { key = leftIndex + opcodeIndex.Substring (0, opcodeIndex.Length - 1) + rightIndex; if (BinOpStr.defined.TryGetValue (key, out binOpStr)) { if (!(token.rValLeft is TokenLVal)) { ErrorMsg (token, "invalid L-value for ="); return GenerateFromRVal (token.rValLeft); } if (!binOpStr.rmwOK) { ErrorMsg (token, "= not allowed: " + leftIndex + " " + opcodeIndex + " " + rightIndex); return new CompValuVoid (token); } /* * Now we know for something like %= that left%right is legal for the types given. */ left = GenerateFromLVal ((TokenLVal)token.rValLeft); if (binOpStr.outtype == leftType.ToSysType ()) { binOpStr.emitBO (this, token, left, right, left); } else { CompValu temp = new CompValuTemp (TokenType.FromSysType (token, binOpStr.outtype), this); binOpStr.emitBO (this, token, left, right, temp); left.PopPre (this, token); temp.PushVal (this, token, leftType); left.PopPost (this, token); } return left; } } /* * Can't find it, oh well. */ ErrorMsg (token, "op not defined: " + leftIndex + " " + opcodeIndex + " " + rightIndex); return new CompValuVoid (token); } /** * @brief Queue the given operands to the end of the scos list. * If it can be broken down into more string concat operands, do so. * Otherwise, just push it as one operand. * @param leftRVal = left-hand operand of a '+' operation * @param rightRVal = right-hand operand of a '+' operation * @param scos = left-to-right list of operands for the string concat so far * @param addop = the add operator token (either '+' or '+=') * @returns false: neither operand is a string, nothing added to scos * true: scos = updated with leftRVal then rightRVal added onto the end, possibly broken down further */ private bool StringConcatOperands (TokenRVal leftRVal, TokenRVal rightRVal, List scos, TokenKw addop) { /* * If neither operand is a string (eg, float+integer), then the result isn't going to be a string. */ TokenType leftType = leftRVal.GetRValType (this, null); TokenType rightType = rightRVal.GetRValType (this, null); if (!(leftType is TokenTypeStr) && !(rightType is TokenTypeStr)) return false; /* * Also, list+string => list so reject that too. * Also, string+list => list so reject that too. */ if (leftType is TokenTypeList) return false; if (rightType is TokenTypeList) return false; /* * Append values to the end of the list in left-to-right order. * If value is formed from a something+something => string, * push them as separate values, otherwise push as one value. */ StringConcatOperand (leftType, leftRVal, scos); StringConcatOperand (rightType, rightRVal, scos); /* * Maybe constant strings can be concatted. */ try { int len; while (((len = scos.Count) >= 2) && ((leftRVal = scos[len-2]) is TokenRValConst) && ((rightRVal = scos[len-1]) is TokenRValConst)) { object sum = addop.binOpConst (((TokenRValConst)leftRVal).val, ((TokenRValConst)rightRVal).val); scos[len-2] = new TokenRValConst (addop, sum); scos.RemoveAt (len - 1); } } catch { } /* * We pushed some string stuff. */ return true; } /** * @brief Queue the given operand to the end of the scos list. * If it can be broken down into more string concat operands, do so. * Otherwise, just push it as one operand. * @param type = rVal's resultant type * @param rVal = operand to examine * @param scos = left-to-right list of operands for the string concat so far * @returns with scos = updated with rVal added onto the end, possibly broken down further */ private void StringConcatOperand (TokenType type, TokenRVal rVal, List scos) { bool didOne; do { didOne = false; rVal = rVal.TryComputeConstant (LookupBodyConstants, ref didOne); } while (didOne); if (!(type is TokenTypeStr)) goto pushasis; if (!(rVal is TokenRValOpBin)) goto pushasis; TokenRValOpBin rValOpBin = (TokenRValOpBin)rVal; if (!(rValOpBin.opcode is TokenKwAdd)) goto pushasis; if (StringConcatOperands (rValOpBin.rValLeft, rValOpBin.rValRight, scos, rValOpBin.opcode)) return; pushasis: scos.Add (rVal); } /** * @brief compute the result of an unary operator * @param token = unary operator token, includes the operand * @returns where the resultant R-value is */ private CompValu GenerateFromRValOpUn (TokenRValOpUn token) { CompValu inRVal = GenerateFromRVal (token.rVal); /* * Script-defined types can define their own methods to handle unary operators. */ if (inRVal.type is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)inRVal.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenName funcName = new TokenName (token.opcode, "$op" + token.opcode.ToString ()); TokenDeclVar declFunc = FindThisMember (sdtDecl, funcName, zeroArgs); if (declFunc != null) { CheckAccess (declFunc, funcName); CompValu method = AccessInstanceMember (declFunc, inRVal, token, false); return GenerateACall (method, zeroCompValus, token); } } /* * Otherwise use the default. */ return UnOpGenerate (inRVal, token.opcode); } /** * @brief postfix operator -- this returns the type and location of the resultant value */ private CompValu GenerateFromRValAsnPost (TokenRValAsnPost asnPost) { CompValu lVal = GenerateFromLVal (asnPost.lVal); /* * Make up a temp to save original value in. */ CompValuTemp result = new CompValuTemp (lVal.type, this); /* * Prepare to pop incremented value back into variable being incremented. */ lVal.PopPre (this, asnPost.lVal); /* * Copy original value to temp and leave value on stack. */ lVal.PushVal (this, asnPost.lVal); ilGen.Emit (asnPost.lVal, OpCodes.Dup); result.Pop (this, asnPost.lVal); /* * Perform the ++/--. */ if ((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt)) { ilGen.Emit (asnPost, OpCodes.Ldc_I4_1); } else if (lVal.type is TokenTypeFloat) { ilGen.Emit (asnPost, OpCodes.Ldc_R4, 1.0f); } else { lVal.PopPost (this, asnPost.lVal); ErrorMsg (asnPost, "invalid type for " + asnPost.postfix.ToString ()); return lVal; } switch (asnPost.postfix.ToString ()) { case "++": { ilGen.Emit (asnPost, OpCodes.Add); break; } case "--": { ilGen.Emit (asnPost, OpCodes.Sub); break; } default: throw new Exception ("unknown asnPost op"); } /* * Store new value in original variable. */ lVal.PopPost (this, asnPost.lVal); return result; } /** * @brief prefix operator -- this returns the type and location of the resultant value */ private CompValu GenerateFromRValAsnPre (TokenRValAsnPre asnPre) { CompValu lVal = GenerateFromLVal (asnPre.lVal); /* * Make up a temp to put result in. */ CompValuTemp result = new CompValuTemp (lVal.type, this); /* * Prepare to pop incremented value back into variable being incremented. */ lVal.PopPre (this, asnPre.lVal); /* * Push original value. */ lVal.PushVal (this, asnPre.lVal); /* * Perform the ++/--. */ if ((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt)) { ilGen.Emit (asnPre, OpCodes.Ldc_I4_1); } else if (lVal.type is TokenTypeFloat) { ilGen.Emit (asnPre, OpCodes.Ldc_R4, 1.0f); } else { lVal.PopPost (this, asnPre.lVal); ErrorMsg (asnPre, "invalid type for " + asnPre.prefix.ToString ()); return lVal; } switch (asnPre.prefix.ToString ()) { case "++": { ilGen.Emit (asnPre, OpCodes.Add); break; } case "--": { ilGen.Emit (asnPre, OpCodes.Sub); break; } default: throw new Exception ("unknown asnPre op"); } /* * Store new value in temp variable, keeping new value on stack. */ ilGen.Emit (asnPre.lVal, OpCodes.Dup); result.Pop (this, asnPre.lVal); /* * Store new value in original variable. */ lVal.PopPost (this, asnPre.lVal); return result; } /** * @brief Generate code that calls a function or object's method. * @returns where the call's return value is stored (a TokenTypeVoid if void) */ private CompValu GenerateFromRValCall (TokenRValCall call) { CompValu method; CompValu[] argRVals; int i, nargs; TokenRVal arg; TokenType[] argTypes; /* * Compute the values of all the function's call arguments. * Save where the computation results are in the argRVals[] array. * Might as well build the argument signature from the argument types, too. */ nargs = call.nArgs; argRVals = new CompValu[nargs]; argTypes = new TokenType[nargs]; if (nargs > 0) { i = 0; for (arg = call.args; arg != null; arg = (TokenRVal)arg.nextToken) { argRVals[i] = GenerateFromRVal (arg); argTypes[i] = argRVals[i].type; i ++; } } /* * Get function/method's entrypoint that matches the call argument types. */ method = GenerateFromRVal (call.meth, argTypes); if (method == null) return null; return GenerateACall (method, argRVals, call); } /** * @brief Generate call to a function/method. * @param method = function/method being called * @param argVRVals = its call parameters (zero length if none) * @param call = where in source code call is being made from (for error messages) * @returns type and location of return value (CompValuVoid if none) */ private CompValu GenerateACall (CompValu method, CompValu[] argRVals, Token call) { CompValuTemp result; int i, nArgs; TokenType retType; TokenType[] argTypes; /* * Must be some kind of callable. */ retType = method.GetRetType (); // TokenTypeVoid if void; null means a variable if (retType == null) { ErrorMsg (call, "must be a delegate, function or method"); return new CompValuVoid (call); } /* * Get a location for return value. */ if (retType is TokenTypeVoid) { result = new CompValuVoid (call); } else { result = new CompValuTemp (retType, this); } /* * Make sure all arguments are trivial, ie, don't involve their own call labels. * For any that aren't, output code to calculate the arg and put in a temporary. */ nArgs = argRVals.Length; for (i = 0; i < nArgs; i ++) { if (!argRVals[i].IsReadTrivial (this, call)) { argRVals[i] = Trivialize (argRVals[i], call); } } /* * Inline functions know how to generate their own call. */ if (method is CompValuInline) { CompValuInline inline = (CompValuInline)method; inline.declInline.CodeGen (this, call, result, argRVals); return result; } /* * Push whatever the function/method needs as a this argument, if anything. */ method.CallPre (this, call); /* * Push the script-visible args, left-to-right. */ argTypes = method.GetArgTypes (); for (i = 0; i < nArgs; i ++) { if (argTypes == null) { argRVals[i].PushVal (this, call); } else { argRVals[i].PushVal (this, call, argTypes[i]); } } /* * Now output call instruction. */ method.CallPost (this, call); /* * Deal with the return value (if any), by putting it in 'result'. */ result.Pop (this, call, retType); return result; } /** * @brief This is needed to avoid nesting call labels around non-trivial properties. * It should be used for the second (and later) operands. * Note that a 'call' is considered an operator, so all arguments of a call * should be trivialized, but the method itself does not need to be. */ public CompValu Trivialize (CompValu operand, Token errorAt) { if (operand.IsReadTrivial (this, errorAt)) return operand; CompValuTemp temp = new CompValuTemp (operand.type, this); operand.PushVal (this, errorAt); temp.Pop (this, errorAt); return temp; } /** * @brief Generate code that casts a value to a particular type. * @returns where the result of the conversion is stored. */ private CompValu GenerateFromRValCast (TokenRValCast cast) { /* * If casting to a delegate type, use the argment signature * of the delegate to help select the function/method, eg, * '(delegate string(integer))ToString' * will select 'string ToString(integer x)' * instaead of 'string ToString(float x)' or anything else */ TokenType[] argsig = null; TokenType outType = cast.castTo; if (outType is TokenTypeSDTypeDelegate) { argsig = ((TokenTypeSDTypeDelegate)outType).decl.GetArgTypes (); } /* * Generate the value that is being cast. * If the value is already the requested type, just use it as is. */ CompValu inRVal = GenerateFromRVal (cast.rVal, argsig); if (inRVal.type == outType) return inRVal; /* * Different type, generate casting code, putting the result in a temp of the output type. */ CompValu outRVal = new CompValuTemp (outType, this); outRVal.PopPre (this, cast); inRVal.PushVal (this, cast, outType, true); outRVal.PopPost (this, cast); return outRVal; } /** * @brief Compute conditional expression value. * @returns type and location of computed value. */ private CompValu GenerateFromRValCondExpr (TokenRValCondExpr rValCondExpr) { bool condVal; CompValu condValu = GenerateFromRVal (rValCondExpr.condExpr); if (IsConstBoolExpr (condValu, out condVal)) { return GenerateFromRVal (condVal ? rValCondExpr.trueExpr : rValCondExpr.falseExpr); } ScriptMyLabel falseLabel = ilGen.DefineLabel ("condexfalse"); ScriptMyLabel doneLabel = ilGen.DefineLabel ("condexdone"); condValu.PushVal (this, rValCondExpr.condExpr, tokenTypeBool); ilGen.Emit (rValCondExpr, OpCodes.Brfalse, falseLabel); CompValu trueValu = GenerateFromRVal (rValCondExpr.trueExpr); trueValu.PushVal (this, rValCondExpr.trueExpr); ilGen.Emit (rValCondExpr, OpCodes.Br, doneLabel); ilGen.MarkLabel (falseLabel); CompValu falseValu = GenerateFromRVal (rValCondExpr.falseExpr); falseValu.PushVal (this, rValCondExpr.falseExpr); if (trueValu.type.GetType () != falseValu.type.GetType ()) { ErrorMsg (rValCondExpr, "? operands " + trueValu.type.ToString () + " : " + falseValu.type.ToString () + " must be of same type"); } ilGen.MarkLabel (doneLabel); CompValuTemp retRVal = new CompValuTemp (trueValu.type, this); retRVal.Pop (this, rValCondExpr); return retRVal; } /** * @brief Constant in the script somewhere * @returns where the constants value is stored */ private CompValu GenerateFromRValConst (TokenRValConst rValConst) { switch (rValConst.type) { case TokenRValConstType.CHAR: { return new CompValuChar (new TokenTypeChar (rValConst), (char)(rValConst.val)); } case TokenRValConstType.FLOAT: { return new CompValuFloat (new TokenTypeFloat (rValConst), (double)(rValConst.val)); } case TokenRValConstType.INT: { return new CompValuInteger (new TokenTypeInt (rValConst), (int)(rValConst.val)); } case TokenRValConstType.KEY: { return new CompValuString (new TokenTypeKey (rValConst), (string)(rValConst.val)); } case TokenRValConstType.STRING: { return new CompValuString (new TokenTypeStr (rValConst), (string)(rValConst.val)); } } throw new Exception ("unknown constant type " + rValConst.val.GetType ()); } /** * @brief generate a new list object * @param rValList = an rVal to create it from */ private CompValu GenerateFromRValList (TokenRValList rValList) { /* * Compute all element values and remember where we put them. * Do it right-to-left as customary for LSL scripts. */ int i = 0; TokenRVal lastRVal = null; for (TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken) { i ++; val.prevToken = lastRVal; lastRVal = val; } CompValu[] vals = new CompValu[i]; for (TokenRVal val = lastRVal; val != null; val = (TokenRVal)val.prevToken) { vals[--i] = GenerateFromRVal (val); } /* * This is the temp that will hold the created list. */ CompValuTemp newList = new CompValuTemp (new TokenTypeList (rValList.rVal), this); /* * Create a temp object[] array to hold all the initial values. */ ilGen.Emit (rValList, OpCodes.Ldc_I4, rValList.nItems); ilGen.Emit (rValList, OpCodes.Newarr, typeof (object)); /* * Populate the array. */ i = 0; for (TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken) { /* * Get pointer to temp array object. */ ilGen.Emit (rValList, OpCodes.Dup); /* * Get index in that array. */ ilGen.Emit (rValList, OpCodes.Ldc_I4, i); /* * Store initialization value in array location. * However, floats and ints need to be converted to LSL_Float and LSL_Integer, * or things like llSetPayPrice() will puque when they try to cast the elements * to LSL_Float or LSL_Integer. Likewise with string/LSL_String. * * Maybe it's already LSL-boxed so we don't do anything with it except make sure * it is an object, not a struct. */ CompValu eRVal = vals[i++]; eRVal.PushVal (this, val); if (eRVal.type.ToLSLWrapType () == null) { if (eRVal.type is TokenTypeFloat) { ilGen.Emit (val, OpCodes.Newobj, lslFloatConstructorInfo); ilGen.Emit (val, OpCodes.Box, typeof (LSL_Float)); } else if (eRVal.type is TokenTypeInt) { ilGen.Emit (val, OpCodes.Newobj, lslIntegerConstructorInfo); ilGen.Emit (val, OpCodes.Box, typeof (LSL_Integer)); } else if ((eRVal.type is TokenTypeKey) || (eRVal.type is TokenTypeStr)) { ilGen.Emit (val, OpCodes.Newobj, lslStringConstructorInfo); ilGen.Emit (val, OpCodes.Box, typeof (LSL_String)); } else if (eRVal.type.ToSysType ().IsValueType) { ilGen.Emit (val, OpCodes.Box, eRVal.type.ToSysType ()); } } else if (eRVal.type.ToLSLWrapType ().IsValueType) { // Convert the LSL value structs to an object of the LSL-boxed type ilGen.Emit (val, OpCodes.Box, eRVal.type.ToLSLWrapType ()); } ilGen.Emit (val, OpCodes.Stelem, typeof (object)); } /* * Create new list object from temp initial value array (whose ref is still on the stack). */ ilGen.Emit (rValList, OpCodes.Newobj, lslListConstructorInfo); newList.Pop (this, rValList); return newList; } /** * @brief New array allocation with initializer expressions. */ private CompValu GenerateFromRValNewArIni (TokenRValNewArIni rValNewArIni) { return MallocAndInitArray (rValNewArIni.arrayType, rValNewArIni.valueList); } /** * @brief Mallocate and initialize an array from its initialization list. * @param arrayType = type of the array to be allocated and initialized * @param values = initialization value list used to size and initialize the array. * @returns memory location of the resultant initialized array. */ private CompValu MallocAndInitArray (TokenType arrayType, TokenList values) { TokenDeclSDTypeClass arrayDecl = ((TokenTypeSDTypeClass)arrayType).decl; TokenType eleType = arrayDecl.arrayOfType; int rank = arrayDecl.arrayOfRank; // Get size of each of the dimensions by scanning the initialization value list int[] dimSizes = new int[rank]; FillInDimSizes (dimSizes, 0, rank, values); // Figure out where the array's $new() method is TokenType[] newargsig = new TokenType[rank]; for (int k = 0; k < rank; k ++) { newargsig[k] = tokenTypeInt; } TokenDeclVar newMeth = FindThisMember (arrayDecl, new TokenName (null, "$new"), newargsig); // Output a call to malloc the array with all default values // array = ArrayType.$new (dimSizes[0], dimSizes[1], ...) CompValuTemp array = new CompValuTemp (arrayType, this); PushXMRInst (); for (int k = 0; k < rank; k ++) { ilGen.Emit (values, OpCodes.Ldc_I4, dimSizes[k]); } ilGen.Emit (values, OpCodes.Call, newMeth.ilGen); array.Pop (this, arrayType); // Figure out where the array's Set() method is TokenType[] setargsig = new TokenType[rank+1]; for (int k = 0; k < rank; k ++) { setargsig[k] = tokenTypeInt; } setargsig[rank] = eleType; TokenDeclVar setMeth = FindThisMember (arrayDecl, new TokenName (null, "Set"), setargsig); // Fill in the array with the initializer values FillInInitVals (array, setMeth, dimSizes, 0, rank, values, eleType); // The array is our resultant value return array; } /** * @brief Compute an array's dimensions given its initialization value list * @param dimSizes = filled in with array's dimensions * @param dimNo = what dimension the 'values' list applies to * @param rank = total number of dimensions of the array * @param values = list of values to initialize the array's 'dimNo' dimension with * @returns with dimSizes[dimNo..rank-1] filled in */ private static void FillInDimSizes (int[] dimSizes, int dimNo, int rank, TokenList values) { // the size of a dimension is the largest number of initializer elements at this level // for dimNo 0, this is the number of elements in the top-level list if (dimSizes[dimNo] < values.tl.Count) dimSizes[dimNo] = values.tl.Count; // see if there is another dimension to calculate if (++ dimNo < rank) { // its size is the size of the largest initializer list at the next inner level foreach (Token val in values.tl) { if (val is TokenList) { TokenList subvals = (TokenList)val; FillInDimSizes (dimSizes, dimNo, rank, subvals); } } } } /** * @brief Output code to fill in array's initialization values * @param array = array to be filled in * @param setMeth = the array's Set() method * @param subscripts = holds subscripts being built * @param dimNo = which dimension the 'values' are for * @param values = list of initialization values for dimension 'dimNo' * @param rank = number of dimensions of 'array' * @param values = list of values to initialize the array's 'dimNo' dimension with * @param eleType = the element's type * @returns with code emitted to initialize array's [subscripts[0], ..., subscripts[dimNo-1], *, *, ...] * dimNo and up completely filled ---^ */ private void FillInInitVals (CompValu array, TokenDeclVar setMeth, int[] subscripts, int dimNo, int rank, TokenList values, TokenType eleType) { subscripts[dimNo] = 0; foreach (Token val in values.tl) { CompValu initValue = null; /* * If it is a sublist, process it. * If we don't have enough subscripts yet, hopefully that sublist will have enough. * If we already have enough subscripts, then that sublist can be for an element of this supposedly jagged array. */ if (val is TokenList) { TokenList sublist = (TokenList)val; if (dimNo + 1 < rank) { /* * We don't have enough subscripts yet, hopefully the sublist has the rest. */ FillInInitVals (array, setMeth, subscripts, dimNo + 1, rank, sublist, eleType); } else if ((eleType is TokenTypeSDTypeClass) && (((TokenTypeSDTypeClass)eleType).decl.arrayOfType == null)) { /* * If we aren't a jagged array either, we can't do anything with the sublist. */ ErrorMsg (val, "too many brace levels"); } else { /* * We are a jagged array, so malloc a subarray and initialize it with the sublist. * Then we can use that subarray to fill this array's element. */ initValue = MallocAndInitArray (eleType, sublist); } } /* * If it is a value expression, then output code to compute the value. */ if (val is TokenRVal) { if (dimNo + 1 < rank) { ErrorMsg ((Token)val, "not enough brace levels"); } else { initValue = GenerateFromRVal ((TokenRVal)val); } } /* * If there is an initValue, output "array.Set (subscript[0], subscript[1], ..., initValue)" */ if (initValue != null) { array.PushVal (this, val); for (int i = 0; i <= dimNo; i ++) { ilGen.Emit (val, OpCodes.Ldc_I4, subscripts[i]); } initValue.PushVal (this, val, eleType); ilGen.Emit (val, OpCodes.Call, setMeth.ilGen); } /* * That subscript is processed one way or another, on to the next. */ subscripts[dimNo] ++; } } /** * @brief parenthesized expression * @returns type and location of the result of the computation. */ private CompValu GenerateFromRValParen (TokenRValParen rValParen) { return GenerateFromRVal (rValParen.rVal); } /** * @brief create a rotation object from the x,y,z,w value expressions. */ private CompValu GenerateFromRValRot (TokenRValRot rValRot) { CompValu xRVal, yRVal, zRVal, wRVal; xRVal = Trivialize (GenerateFromRVal (rValRot.xRVal), rValRot); yRVal = Trivialize (GenerateFromRVal (rValRot.yRVal), rValRot); zRVal = Trivialize (GenerateFromRVal (rValRot.zRVal), rValRot); wRVal = Trivialize (GenerateFromRVal (rValRot.wRVal), rValRot); return new CompValuRot (new TokenTypeRot (rValRot), xRVal, yRVal, zRVal, wRVal); } /** * @brief Using 'this' as a pointer to the current script-defined instance object. * The value is located in arg #0 of the current instance method. */ private CompValu GenerateFromRValThis (TokenRValThis zhis) { if (!IsSDTInstMethod ()) { ErrorMsg (zhis, "cannot access instance member of class from static method"); return new CompValuVoid (zhis); } return new CompValuArg (curDeclFunc.sdtClass.MakeRefToken (zhis), 0); } /** * @brief 'undefined' constant. * If this constant gets written to an array element, it will delete that element from the array. * If the script retrieves an element by key that is not defined, it will get this value. * This value can be stored in and retrieved from variables of type 'object' or script-defined classes. * It is a runtime error to cast this value to any other type, eg, * we don't allow list or string variables to be null pointers. */ private CompValu GenerateFromRValUndef (TokenRValUndef rValUndef) { return new CompValuNull (new TokenTypeUndef (rValUndef)); } /** * @brief create a vector object from the x,y,z value expressions. */ private CompValu GenerateFromRValVec (TokenRValVec rValVec) { CompValu xRVal, yRVal, zRVal; xRVal = Trivialize (GenerateFromRVal (rValVec.xRVal), rValVec); yRVal = Trivialize (GenerateFromRVal (rValVec.yRVal), rValVec); zRVal = Trivialize (GenerateFromRVal (rValVec.zRVal), rValVec); return new CompValuVec (new TokenTypeVec (rValVec), xRVal, yRVal, zRVal); } /** * @brief Generate code to get the default initialization value for a variable. */ private CompValu GenerateFromRValInitDef (TokenRValInitDef rValInitDef) { TokenType type = rValInitDef.type; if (type is TokenTypeChar) { return new CompValuChar (type, (char)0); } if (type is TokenTypeRot) { CompValuFloat x = new CompValuFloat (type, ScriptBaseClass.ZERO_ROTATION.x); CompValuFloat y = new CompValuFloat (type, ScriptBaseClass.ZERO_ROTATION.y); CompValuFloat z = new CompValuFloat (type, ScriptBaseClass.ZERO_ROTATION.z); CompValuFloat s = new CompValuFloat (type, ScriptBaseClass.ZERO_ROTATION.s); return new CompValuRot (type, x, y, z, s); } if ((type is TokenTypeKey) || (type is TokenTypeStr)) { return new CompValuString (type, ""); } if (type is TokenTypeVec) { CompValuFloat x = new CompValuFloat (type, ScriptBaseClass.ZERO_VECTOR.x); CompValuFloat y = new CompValuFloat (type, ScriptBaseClass.ZERO_VECTOR.y); CompValuFloat z = new CompValuFloat (type, ScriptBaseClass.ZERO_VECTOR.z); return new CompValuVec (type, x, y, z); } if (type is TokenTypeInt) { return new CompValuInteger (type, 0); } if (type is TokenTypeFloat) { return new CompValuFloat (type, 0); } if (type is TokenTypeVoid) { return new CompValuVoid (type); } /* * Default for 'object' type is 'undef'. * Likewise for script-defined classes and interfaces. */ if ((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeDelegate) || (type is TokenTypeSDTypeInterface) || (type is TokenTypeExc)) { return new CompValuNull (type); } /* * array and list */ CompValuTemp temp = new CompValuTemp (type, this); PushDefaultValue (type); temp.Pop (this, rValInitDef, type); return temp; } /** * @brief Generate code to process an is expression, and produce a boolean value. */ private CompValu GenerateFromRValIsType (TokenRValIsType rValIsType) { /* * Expression we want to know the type of. */ CompValu val = GenerateFromRVal (rValIsType.rValExp); /* * Pass it in to top-level type expression decoder. */ return GenerateFromTypeExp (val, rValIsType.typeExp); } /** * @brief See if the type of the given value matches the type expression. * @param val = where the value to be evaluated is stored * @param typeExp = script tokens representing type expression * @returns location where the boolean result is stored */ private CompValu GenerateFromTypeExp (CompValu val, TokenTypeExp typeExp) { if (typeExp is TokenTypeExpBinOp) { CompValu left = GenerateFromTypeExp (val, ((TokenTypeExpBinOp)typeExp).leftOp); CompValu right = GenerateFromTypeExp (val, ((TokenTypeExpBinOp)typeExp).rightOp); CompValuTemp result = new CompValuTemp (tokenTypeBool, this); Token op = ((TokenTypeExpBinOp)typeExp).binOp; left.PushVal (this, ((TokenTypeExpBinOp)typeExp).leftOp); right.PushVal (this, ((TokenTypeExpBinOp)typeExp).rightOp); if (op is TokenKwAnd) { ilGen.Emit (typeExp, OpCodes.And); } else if (op is TokenKwOr) { ilGen.Emit (typeExp, OpCodes.Or); } else { throw new Exception ("unknown TokenTypeExpBinOp " + op.GetType ()); } result.Pop (this, typeExp); return result; } if (typeExp is TokenTypeExpNot) { CompValu interm = GenerateFromTypeExp (val, ((TokenTypeExpNot)typeExp).typeExp); CompValuTemp result = new CompValuTemp (tokenTypeBool, this); interm.PushVal (this, ((TokenTypeExpNot)typeExp).typeExp, tokenTypeBool); ilGen.Emit (typeExp, OpCodes.Ldc_I4_1); ilGen.Emit (typeExp, OpCodes.Xor); result.Pop (this, typeExp); return result; } if (typeExp is TokenTypeExpPar) { return GenerateFromTypeExp (val, ((TokenTypeExpPar)typeExp).typeExp); } if (typeExp is TokenTypeExpType) { CompValuTemp result = new CompValuTemp (tokenTypeBool, this); val.PushVal (this, typeExp); ilGen.Emit (typeExp, OpCodes.Isinst, ((TokenTypeExpType)typeExp).typeToken.ToSysType ()); ilGen.Emit (typeExp, OpCodes.Ldnull); ilGen.Emit (typeExp, OpCodes.Ceq); ilGen.Emit (typeExp, OpCodes.Ldc_I4_1); ilGen.Emit (typeExp, OpCodes.Xor); result.Pop (this, typeExp); return result; } if (typeExp is TokenTypeExpUndef) { CompValuTemp result = new CompValuTemp (tokenTypeBool, this); val.PushVal (this, typeExp); ilGen.Emit (typeExp, OpCodes.Ldnull); ilGen.Emit (typeExp, OpCodes.Ceq); result.Pop (this, typeExp); return result; } throw new Exception ("unknown TokenTypeExp type " + typeExp.GetType ()); } /** * @brief Push the default (null) value for a particular variable * @param var = variable to get the default value for * @returns with value pushed on stack */ public void PushVarDefaultValue (TokenDeclVar var) { PushDefaultValue (var.type); } public void PushDefaultValue (TokenType type) { if (type is TokenTypeArray) { PushXMRInst (); // instance ilGen.Emit (type, OpCodes.Newobj, xmrArrayConstructorInfo); return; } if (type is TokenTypeChar) { ilGen.Emit (type, OpCodes.Ldc_I4_0); return; } if (type is TokenTypeList) { ilGen.Emit (type, OpCodes.Ldc_I4_0); ilGen.Emit (type, OpCodes.Newarr, typeof (object)); ilGen.Emit (type, OpCodes.Newobj, lslListConstructorInfo); return; } if (type is TokenTypeRot) { // Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroRotationFieldInfo); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.x); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.y); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.z); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.s); ilGen.Emit (type, OpCodes.Newobj, lslRotationConstructorInfo); return; } if ((type is TokenTypeKey) || (type is TokenTypeStr)) { ilGen.Emit (type, OpCodes.Ldstr, ""); return; } if (type is TokenTypeVec) { // Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroVectorFieldInfo); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.x); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.y); ilGen.Emit (type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.z); ilGen.Emit (type, OpCodes.Newobj, lslVectorConstructorInfo); return; } if (type is TokenTypeInt) { ilGen.Emit (type, OpCodes.Ldc_I4_0); return; } if (type is TokenTypeFloat) { ilGen.Emit (type, OpCodes.Ldc_R4, 0.0f); return; } /* * Default for 'object' type is 'undef'. * Likewise for script-defined classes and interfaces. */ if ((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeInterface) || (type is TokenTypeExc)) { ilGen.Emit (type, OpCodes.Ldnull); return; } /* * Void is pushed as the default return value of a void function. * So just push nothing as expected of void functions. */ if (type is TokenTypeVoid) { return; } /* * Default for 'delegate' type is 'undef'. */ if (type is TokenTypeSDTypeDelegate) { ilGen.Emit (type, OpCodes.Ldnull); return; } throw new Exception ("unknown type " + type.GetType ().ToString ()); } /** * @brief Determine if the expression has a constant boolean value * and if so, if the value is true or false. * @param expr = expression to evaluate * @returns true: expression is contant and has boolean value true * false: otherwise */ private bool IsConstBoolExprTrue (CompValu expr) { bool constVal; return IsConstBoolExpr (expr, out constVal) && constVal; } private bool IsConstBoolExpr (CompValu expr, out bool constVal) { if (expr is CompValuChar) { constVal = ((CompValuChar)expr).x != 0; return true; } if (expr is CompValuFloat) { constVal = ((CompValuFloat)expr).x != (double)0; return true; } if (expr is CompValuInteger) { constVal = ((CompValuInteger)expr).x != 0; return true; } if (expr is CompValuString) { string s = ((CompValuString)expr).x; constVal = s != ""; if (constVal && (expr.type is TokenTypeKey)) { constVal = s != ScriptBaseClass.NULL_KEY; } return true; } constVal = false; return false; } /** * @brief Determine if the expression has a constant integer value * and if so, return the integer value. * @param expr = expression to evaluate * @returns true: expression is contant and has integer value * false: otherwise */ private bool IsConstIntExpr (CompValu expr, out int constVal) { if (expr is CompValuChar) { constVal = (int)((CompValuChar)expr).x; return true; } if (expr is CompValuInteger) { constVal = ((CompValuInteger)expr).x; return true; } constVal = 0; return false; } /** * @brief Determine if the expression has a constant string value * and if so, return the string value. * @param expr = expression to evaluate * @returns true: expression is contant and has string value * false: otherwise */ private bool IsConstStrExpr (CompValu expr, out string constVal) { if (expr is CompValuString) { constVal = ((CompValuString)expr).x; return true; } constVal = ""; return false; } /** * @brief create table of legal event handler prototypes. * This is used to make sure script's event handler declrations are valid. */ private static VarDict CreateLegalEventHandlers () { /* * Get handler prototypes with full argument lists. */ VarDict leh = new InternalFuncDict (typeof (IEventHandlers), false); /* * We want the scripts to be able to declare their handlers with * fewer arguments than the full argument lists. So define additional * prototypes with fewer arguments. */ TokenDeclVar[] fullArgProtos = new TokenDeclVar[leh.Count]; int i = 0; foreach (TokenDeclVar fap in leh) fullArgProtos[i++] = fap; foreach (TokenDeclVar fap in fullArgProtos) { TokenArgDecl fal = fap.argDecl; int fullArgCount = fal.vars.Length; for (i = 0; i < fullArgCount; i ++) { TokenArgDecl shortArgList = new TokenArgDecl (null); for (int j = 0; j < i; j ++) { TokenDeclVar var = fal.vars[j]; shortArgList.AddArg (var.type, var.name); } TokenDeclVar shortArgProto = new TokenDeclVar (null, null, null); shortArgProto.name = new TokenName (null, fap.GetSimpleName ()); shortArgProto.retType = fap.retType; shortArgProto.argDecl = shortArgList; leh.AddEntry (shortArgProto); } } return leh; } /** * @brief Emit a call to CheckRun(), (voluntary multitasking switch) */ public void EmitCallCheckRun (Token errorAt, bool stack) { if (curDeclFunc.IsFuncTrivial (this)) throw new Exception (curDeclFunc.fullName + " is supposed to be trivial"); new CallLabel (this, errorAt); // jump here when stack restored PushXMRInst (); // instance ilGen.Emit (errorAt, OpCodes.Call, stack ? checkRunStackMethInfo : checkRunQuickMethInfo); openCallLabel = null; } /** * @brief Emit code to push a callNo var on the stack. */ public void GetCallNo (Token errorAt, ScriptMyLocal callNoVar) { ilGen.Emit (errorAt, OpCodes.Ldloc, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Ldind_I4); } public void GetCallNo (Token errorAt, CompValu callNoVar) { callNoVar.PushVal (this, errorAt); //callNoVar.PushRef (this, errorAt); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Ldind_I4); } /** * @brief Emit code to set a callNo var to a given constant. */ public void SetCallNo (Token errorAt, ScriptMyLocal callNoVar, int val) { ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); ilGen.Emit (errorAt, OpCodes.Stloc, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Stind_I4); } public void SetCallNo (Token errorAt, CompValu callNoVar, int val) { callNoVar.PopPre (this, errorAt); ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); callNoVar.PopPost (this, errorAt); //callNoVar.PushRef (this, errorAt); //ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Stind_I4); } /** * @brief handle a unary operator, such as -x. */ private CompValu UnOpGenerate (CompValu inRVal, Token opcode) { /* * - Negate */ if (opcode is TokenKwSub) { if (inRVal.type is TokenTypeFloat) { CompValuTemp outRVal = new CompValuTemp (new TokenTypeFloat (opcode), this); inRVal.PushVal (this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit (opcode, OpCodes.Neg); // compute the negative outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } if (inRVal.type is TokenTypeInt) { CompValuTemp outRVal = new CompValuTemp (new TokenTypeInt (opcode), this); inRVal.PushVal (this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit (opcode, OpCodes.Neg); // compute the negative outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } if (inRVal.type is TokenTypeRot) { CompValuTemp outRVal = new CompValuTemp (inRVal.type, this); inRVal.PushVal (this, opcode); // push rotation, then call negate routine ilGen.Emit (opcode, OpCodes.Call, lslRotationNegateMethodInfo); outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } if (inRVal.type is TokenTypeVec) { CompValuTemp outRVal = new CompValuTemp (inRVal.type, this); inRVal.PushVal (this, opcode); // push vector, then call negate routine ilGen.Emit (opcode, OpCodes.Call, lslVectorNegateMethodInfo); outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } ErrorMsg (opcode, "can't negate a " + inRVal.type.ToString ()); return inRVal; } /* * ~ Complement (bitwise integer) */ if (opcode is TokenKwTilde) { if (inRVal.type is TokenTypeInt) { CompValuTemp outRVal = new CompValuTemp (new TokenTypeInt (opcode), this); inRVal.PushVal (this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit (opcode, OpCodes.Not); // compute the complement outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } ErrorMsg (opcode, "can't complement a " + inRVal.type.ToString ()); return inRVal; } /* * ! Not (boolean) * * We stuff the 0/1 result in an int because I've seen x+!y in scripts * and we don't want to have to create tables to handle int+bool and * everything like that. */ if (opcode is TokenKwExclam) { CompValuTemp outRVal = new CompValuTemp (new TokenTypeInt (opcode), this); inRVal.PushVal (this, opcode, tokenTypeBool); // anything converts to boolean ilGen.Emit (opcode, OpCodes.Ldc_I4_1); // then XOR with 1 to flip it ilGen.Emit (opcode, OpCodes.Xor); outRVal.Pop (this, opcode); // pop into result return outRVal; // tell caller where we put it } throw new Exception ("unhandled opcode " + opcode.ToString ()); } /** * @brief This is called while trying to compute the value of constant initializers. * It is passed a name and that name is looked up in the constant tables. */ private TokenRVal LookupInitConstants (TokenRVal rVal, ref bool didOne) { /* * If it is a static field of a script-defined type, look it up and hopefully we find a constant there. */ TokenDeclVar gblVar; if (rVal is TokenLValSField) { TokenLValSField lvsf = (TokenLValSField)rVal; if (lvsf.baseType is TokenTypeSDTypeClass) { TokenDeclSDTypeClass sdtClass = ((TokenTypeSDTypeClass)lvsf.baseType).decl; gblVar = sdtClass.members.FindExact (lvsf.fieldName.val, null); if (gblVar != null) { if (gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } } } return rVal; } /* * Only other thing we handle is stand-alone names. */ if (!(rVal is TokenLValName)) return rVal; string name = ((TokenLValName)rVal).name.val; /* * If we are doing the initializations for a script-defined type, * look for the constant among the fields for that type. */ if (currentSDTClass != null) { gblVar = currentSDTClass.members.FindExact (name, null); if (gblVar != null) { if (gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } return rVal; } } /* * Look it up as a script-defined global variable. * Then if the variable is defined as a constant and has a constant value, * we are successful. If it is defined as something else, return failure. */ gblVar = tokenScript.variablesStack.FindExact (name, null); if (gblVar != null) { if (gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } return rVal; } /* * Maybe it is a built-in symbolic constant. */ ScriptConst scriptConst = ScriptConst.Lookup (name); if (scriptConst != null) { rVal = CompValuConst2RValConst (scriptConst.rVal, rVal); if (rVal is TokenRValConst) { didOne = true; return rVal; } } /* * Don't know what it is, return failure. */ return rVal; } /** * @brief This is called while trying to compute the value of constant expressions. * It is passed a name and that name is looked up in the constant tables. */ private TokenRVal LookupBodyConstants (TokenRVal rVal, ref bool didOne) { /* * If it is a static field of a script-defined type, look it up and hopefully we find a constant there. */ TokenDeclVar gblVar; if (rVal is TokenLValSField) { TokenLValSField lvsf = (TokenLValSField)rVal; if (lvsf.baseType is TokenTypeSDTypeClass) { TokenDeclSDTypeClass sdtClass = ((TokenTypeSDTypeClass)lvsf.baseType).decl; gblVar = sdtClass.members.FindExact (lvsf.fieldName.val, null); if ((gblVar != null) && gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } } return rVal; } /* * Only other thing we handle is stand-alone names. */ if (!(rVal is TokenLValName)) return rVal; string name = ((TokenLValName)rVal).name.val; /* * Scan through the variable stack and hopefully we find a constant there. * But we stop as soon as we get a match because that's what the script is referring to. */ CompValu val; for (VarDict vars = ((TokenLValName)rVal).stack; vars != null; vars = vars.outerVarDict) { TokenDeclVar var = vars.FindExact (name, null); if (var != null) { val = var.location; goto foundit; } TokenDeclSDTypeClass baseClass = vars.thisClass; if (baseClass != null) { while ((baseClass = baseClass.extends) != null) { var = baseClass.members.FindExact (name, null); if (var != null) { val = var.location; goto foundit; } } } } /* * Maybe it is a built-in symbolic constant. */ ScriptConst scriptConst = ScriptConst.Lookup (name); if (scriptConst != null) { val = scriptConst.rVal; goto foundit; } /* * Don't know what it is, return failure. */ return rVal; /* * Found a CompValu. If it's a simple constant, then use it. * Otherwise tell caller we failed to simplify. */ foundit: rVal = CompValuConst2RValConst (val, rVal); if (rVal is TokenRValConst) { didOne = true; } return rVal; } private static TokenRVal CompValuConst2RValConst (CompValu val, TokenRVal rVal) { if (val is CompValuChar) rVal = new TokenRValConst (rVal, ((CompValuChar)val).x); if (val is CompValuFloat) rVal = new TokenRValConst (rVal, ((CompValuFloat)val).x); if (val is CompValuInteger) rVal = new TokenRValConst (rVal, ((CompValuInteger)val).x); if (val is CompValuString) rVal = new TokenRValConst (rVal, ((CompValuString)val).x); return rVal; } /** * @brief Generate code to push XMRInstanceSuperType pointer on stack. */ public void PushXMRInst () { if (instancePointer == null) { ilGen.Emit (null, OpCodes.Ldarg_0); } else { ilGen.Emit (null, OpCodes.Ldloc, instancePointer); } } /** * @returns true: Ldarg_0 gives XMRSDTypeClObj pointer * - this is the case for instance methods * false: Ldarg_0 gives XMR_Instance pointer * - this is the case for both global functions and static methods */ public bool IsSDTInstMethod () { return (curDeclFunc.sdtClass != null) && ((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) == 0); } /** * @brief Look for a simply named function or variable (not a field or method) */ public TokenDeclVar FindNamedVar (TokenLValName lValName, TokenType[] argsig) { /* * Look in variable stack for the given name. */ for (VarDict vars = lValName.stack; vars != null; vars = vars.outerVarDict) { // first look for it possibly with an argument signature // so we pick the correct overloaded method TokenDeclVar var = FindSingleMember (vars, lValName.name, argsig); if (var != null) return var; // if that fails, try it without the argument signature. // delegates get entered like any other variable, ie, // no signature on their name. if (argsig != null) { var = FindSingleMember (vars, lValName.name, null); if (var != null) return var; } // if this is the frame for some class members, try searching base class members too TokenDeclSDTypeClass baseClass = vars.thisClass; if (baseClass != null) { while ((baseClass = baseClass.extends) != null) { var = FindSingleMember (baseClass.members, lValName.name, argsig); if (var != null) return var; if (argsig != null) { var = FindSingleMember (baseClass.members, lValName.name, null); if (var != null) return var; } } } } /* * If not found, try one of the built-in constants or functions. */ if (argsig == null) { ScriptConst scriptConst = ScriptConst.Lookup (lValName.name.val); if (scriptConst != null) { TokenDeclVar var = new TokenDeclVar (lValName.name, null, tokenScript); var.name = lValName.name; var.type = scriptConst.rVal.type; var.location = scriptConst.rVal; return var; } } else { TokenDeclVar inline = FindSingleMember (TokenDeclInline.inlineFunctions, lValName.name, argsig); if (inline != null) return inline; } return null; } /** * @brief Find a member of an interface. * @param sdType = interface type * @param name = name of member to find * @param argsig = null: field/property; else: script-visible method argument types * @param baseRVal = pointer to interface object * @returns null: no such member * else: pointer to member * baseRVal = possibly modified to point to type-casted interface object */ private TokenDeclVar FindInterfaceMember (TokenTypeSDTypeInterface sdtType, TokenName name, TokenType[] argsig, ref CompValu baseRVal) { TokenDeclSDTypeInterface sdtDecl = sdtType.decl; TokenDeclSDTypeInterface impl; TokenDeclVar declVar = sdtDecl.FindIFaceMember (this, name, argsig, out impl); if ((declVar != null) && (impl != sdtDecl)) { /* * Accessing a method or propterty of another interface that the primary interface says it implements. * In this case, we have to cast from the primary interface to that secondary interface. * * interface IEnumerable { * IEnumerator GetEnumerator (); * } * interface ICountable : IEnumerable { * integer GetCount (); * } * class List : ICountable { * public GetCount () : ICountable { ... } * public GetEnumerator () : IEnumerable { ... } * } * * ICountable aList = new List (); * IEnumerator anEnumer = aList.GetEnumerator (); << we are here * << baseRVal = aList * << sdtDecl = ICountable * << impl = IEnumerable * << name = GetEnumerator * << argsig = () * So we have to cast aList from ICountable to IEnumerable. */ // make type token for the secondary interface type TokenType subIntfType = impl.MakeRefToken (name); // make a temp variable of the secondary interface type CompValuTemp castBase = new CompValuTemp (subIntfType, this); // output code to cast from the primary interface to the secondary interface // this is 2 basic steps: // 1) cast from primary interface object -> class object // ...gets it from interfaceObject.delegateArray[0].Target // 2) cast from class object -> secondary interface object // ...gets it from classObject.sdtcITable[interfaceIndex] baseRVal.PushVal (this, name, subIntfType); // save result of casting in temp castBase.Pop (this, name); // return temp reference baseRVal = castBase; } return declVar; } /** * @brief Find a member of a script-defined type class. * @param sdtType = reference to class declaration * @param name = name of member to find * @param argsig = argument signature used to select among overloaded members * @returns null: no such member found * else: the member found */ public TokenDeclVar FindThisMember (TokenTypeSDTypeClass sdtType, TokenName name, TokenType[] argsig) { return FindThisMember (sdtType.decl, name, argsig); } public TokenDeclVar FindThisMember (TokenDeclSDTypeClass sdtDecl, TokenName name, TokenType[] argsig) { for (TokenDeclSDTypeClass sdtd = sdtDecl; sdtd != null; sdtd = sdtd.extends) { TokenDeclVar declVar = FindSingleMember (sdtd.members, name, argsig); if (declVar != null) return declVar; } return null; } /** * @brief Look for a single member that matches the given name and argument signature * @param where = which dictionary to look in * @param name = basic name of the field or method, eg, "Printable" * @param argsig = argument types the method is being called with, eg, "(string)" * or null to find a field * @returns null: no member found * else: the member found */ public TokenDeclVar FindSingleMember (VarDict where, TokenName name, TokenType[] argsig) { TokenDeclVar[] members = where.FindCallables (name.val, argsig); if (members == null) return null; if (members.Length > 1) { ErrorMsg (name, "more than one matching member"); for (int i = 0; i < members.Length; i ++) { ErrorMsg (members[i], " " + members[i].argDecl.GetArgSig ()); } } return members[0]; } /** * @brief Find an exact function name and argument signature match. * Also verify that the return value type is an exact match. * @param where = which method dictionary to look in * @param name = basic name of the method, eg, "Printable" * @param ret = expected return value type * @param argsig = argument types the method is being called with, eg, "(string)" * @returns null: no exact match found * else: the matching function */ private TokenDeclVar FindExactWithRet (VarDict where, TokenName name, TokenType ret, TokenType[] argsig) { TokenDeclVar func = where.FindExact (name.val, argsig); if ((func != null) && (func.retType.ToString () != ret.ToString ())) { ErrorMsg (name, "return type mismatch, have " + func.retType.ToString () + ", expect " + ret.ToString ()); } if (func != null) CheckAccess (func, name); return func; } /** * @brief Check the private/protected/public access flags of a member. */ private void CheckAccess (TokenDeclVar var, Token errorAt) { TokenDeclSDType nested; TokenDeclSDType definedBy = var.sdtClass; TokenDeclSDType accessedBy = curDeclFunc.sdtClass; /*******************************\ * Check member-level access * \*******************************/ /* * Note that if accessedBy is null, ie, accessing from global function (or event handlers), * anything tagged as SDT_PRIVATE or SDT_PROTECTED will fail. */ /* * Private means accessed by the class that defined the member or accessed by a nested class * of the class that defined the member. */ if ((var.sdtFlags & ScriptReduce.SDT_PRIVATE) != 0) { for (nested = accessedBy; nested != null; nested = nested.outerSDType) { if (nested == definedBy) goto acc1ok; } ErrorMsg (errorAt, "private member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName); return; } /* * Protected means: * If being accessed by an inner class, the inner class has access to it if the inner class derives * from the declaring class. It also has access to it if an outer class derives from the declaring * class. */ if ((var.sdtFlags & ScriptReduce.SDT_PROTECTED) != 0) { for (nested = accessedBy; nested != null; nested = nested.outerSDType) { for (TokenDeclSDType rootward = nested; rootward != null; rootward = rootward.extends) { if (rootward == definedBy) goto acc1ok; } } ErrorMsg (errorAt, "protected member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName); return; } acc1ok: /******************************\ * Check class-level access * \******************************/ /* * If being accessed by same or inner class than where defined, it is ok. * * class DefiningClass { * varBeingAccessed; * . * . * . * class AccessingClass { * functionDoingAccess() { } * } * . * . * . * } */ nested = accessedBy; while (true) { if (nested == definedBy) return; if (nested == null) break; nested = (TokenDeclSDTypeClass)nested.outerSDType; } /* * It is being accessed by an outer class than where defined, * check for a 'private' or 'protected' class tag that blocks. */ do { /* * If the field's class is defined directly inside the accessing class, * access is allowed regardless of class-level private or protected tags. * * class AccessingClass { * functionDoingAccess() { } * class DefiningClass { * varBeingAccessed; * } * } */ if (definedBy.outerSDType == accessedBy) return; /* * If the field's class is defined two or more levels inside the accessing class, * access is denied if the defining class is tagged private. * * class AccessingClass { * functionDoingAccess() { } * . * . * . * class IntermediateClass { * private class DefiningClass { * varBeingAccessed; * } * } * . * . * . * } */ if ((definedBy.accessLevel & ScriptReduce.SDT_PRIVATE) != 0) { ErrorMsg (errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName + " because of private class " + definedBy.longName.val); return; } /* * Likewise, if DefiningClass is tagged protected, the AccessingClass must derive from the * IntermediateClass or access is denied. */ if ((definedBy.accessLevel & ScriptReduce.SDT_PROTECTED) != 0) { for (TokenDeclSDType extends = accessedBy; extends != definedBy.outerSDType; extends = extends.extends) { if (extends == null) { ErrorMsg (errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName + " because of protected class " + definedBy.longName.val); return; } } } /* * Check next outer level. */ definedBy = definedBy.outerSDType; } while (definedBy != null); } /** * @brief Convert a list of argument types to printable string, eg, "(list,string,float,integer)" * If given a null, return "" indicating it is a field not a method */ public static string ArgSigString (TokenType[] argsig) { if (argsig == null) return ""; StringBuilder sb = new StringBuilder ("("); for (int i = 0; i < argsig.Length; i ++) { if (i > 0) sb.Append (","); sb.Append (argsig[i].ToString ()); } sb.Append (")"); return sb.ToString (); } /** * @brief output error message and remember that we did */ public void ErrorMsg (Token token, string message) { if ((token == null) || (token.emsg == null)) token = errorMessageToken; if (!youveAnError || (token.file != lastErrorFile) || (token.line > lastErrorLine)) { token.ErrorMsg (message); youveAnError = true; lastErrorFile = token.file; lastErrorLine = token.line; } } /** * @brief Find a private static method. * @param owner = class the method is part of * @param name = name of method to find * @param args = array of argument types * @returns pointer to method */ public static MethodInfo GetStaticMethod (Type owner, string name, Type[] args) { MethodInfo mi = owner.GetMethod (name, BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic, null, args, null); if (mi == null) { throw new Exception ("undefined method " + owner.ToString () + "." + name); } return mi; } // http://wiki.secondlife.com/wiki/Rotation 'negate a rotation' says just negate .s component // but http://wiki.secondlife.com/wiki/LSL_Language_Test (lslangtest1.lsl) says negate all 4 values public static LSL_Rotation LSLRotationNegate (LSL_Rotation r) { return new LSL_Rotation (-r.x,-r.y,-r.z,-r.s); } public static LSL_Vector LSLVectorNegate (LSL_Vector v) { return -v; } public static string CatchExcToStr (Exception exc) { return exc.ToString(); } //public static void ConsoleWrite (string str) { Console.Write(str); } /** * @brief Defines an internal label that is used as a target for 'break' and 'continue' statements. */ private class BreakContTarg { public bool used; public ScriptMyLabel label; public TokenStmtBlock block; public BreakContTarg (ScriptCodeGen scg, string name) { used = false; // assume it isn't referenced at all label = scg.ilGen.DefineLabel (name); // label that the break/continue jumps to block = scg.curStmtBlock; // { ... } that the break/continue label is in } } } /** * @brief Marker interface indicates an exception that can't be caught by a script-level try/catch. */ public interface IXMRUncatchable { } /** * @brief Thrown by a script when it attempts to change to an undefined state. * These can be detected at compile time but the moron XEngine compiles * such things, so we compile them as runtime errors. */ [SerializableAttribute] public class ScriptUndefinedStateException : Exception, ISerializable { public string stateName; public ScriptUndefinedStateException (string stateName) : base ("undefined state " + stateName) { this.stateName = stateName; } protected ScriptUndefinedStateException (SerializationInfo info, StreamingContext context) : base (info, context) { } } /** * @brief Created by a throw statement. */ [SerializableAttribute] public class ScriptThrownException : Exception, ISerializable { public object thrown; /** * @brief Called by a throw statement to wrap the object in a unique * tag that capable of capturing a stack trace. Script can * unwrap it by calling xmrExceptionThrownValue(). */ public static Exception Wrap (object thrown) { return new ScriptThrownException (thrown); } private ScriptThrownException (object thrown) : base (thrown.ToString ()) { this.thrown = thrown; } /** * @brief Used by serialization/deserialization. */ protected ScriptThrownException (SerializationInfo info, StreamingContext context) : base (info, context) { } } /** * @brief Thrown by a script when it attempts to change to a defined state. */ [SerializableAttribute] public class ScriptChangeStateException : Exception, ISerializable, IXMRUncatchable { public int newState; public ScriptChangeStateException (int newState) { this.newState = newState; } protected ScriptChangeStateException (SerializationInfo info, StreamingContext context) : base (info, context) { } } /** * @brief We are restoring to the body of a catch { } so we need to * wrap the original exception in an outer exception, so the * system won't try to refill the stack trace. * * We don't mark this one serializable as it should never get * serialized out. It only lives from the throw to the very * beginning of the catch handler where it is promptly unwrapped. * No CheckRun() call can possibly intervene. */ public class ScriptRestoreCatchException : Exception { // old code uses these private object e; public ScriptRestoreCatchException (object e) { this.e = e; } public static object Unwrap (object o) { if (o is IXMRUncatchable) return null; if (o is ScriptRestoreCatchException) return ((ScriptRestoreCatchException)o).e; return o; } // new code uses these private Exception ee; public ScriptRestoreCatchException (Exception ee) { this.ee = ee; } public static Exception Unwrap (Exception oo) { if (oo is IXMRUncatchable) return null; if (oo is ScriptRestoreCatchException) return ((ScriptRestoreCatchException)oo).ee; return oo; } } [SerializableAttribute] public class ScriptBadCallNoException : Exception { public ScriptBadCallNoException (int callNo) : base ("bad callNo " + callNo) { } protected ScriptBadCallNoException (SerializationInfo info, StreamingContext context) : base (info, context) { } } public class CVVMismatchException : Exception { public int oldcvv; public int newcvv; public CVVMismatchException (int oldcvv, int newcvv) : base ("object version is " + oldcvv.ToString () + " but accept only " + newcvv.ToString ()) { this.oldcvv = oldcvv; this.newcvv = newcvv; } } }