/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System.Collections.Generic;
using NUnit.Framework;
using OpenSim.Framework;
using OpenSim.Tests.Common;
using OpenSim.Region.ScriptEngine.Shared;
using OpenSim.Region.Framework.Scenes;
using Nini.Config;
using OpenSim.Region.ScriptEngine.Shared.Api;
using OpenSim.Region.ScriptEngine.Shared.ScriptBase;
using OpenMetaverse;
using System;
using OpenSim.Tests.Common.Mock;
namespace OpenSim.Region.ScriptEngine.Shared.Tests
{
///
/// Tests for LSL_Api
///
[TestFixture, LongRunning]
public class LSL_ApiTest
{
private const double ANGLE_ACCURACY_IN_RADIANS = 1E-6;
private const double VECTOR_COMPONENT_ACCURACY = 0.0000005d;
private const float FLOAT_ACCURACY = 0.00005f;
private LSL_Api m_lslApi;
[SetUp]
public void SetUp()
{
IConfigSource initConfigSource = new IniConfigSource();
IConfig config = initConfigSource.AddConfig("XEngine");
config.Set("Enabled", "true");
Scene scene = SceneHelpers.SetupScene();
SceneObjectPart part = SceneHelpers.AddSceneObject(scene);
XEngine.XEngine engine = new XEngine.XEngine();
engine.Initialise(initConfigSource);
engine.AddRegion(scene);
m_lslApi = new LSL_Api();
m_lslApi.Initialize(engine, part, part.LocalId, part.UUID);
}
[Test]
public void TestllAngleBetween()
{
CheckllAngleBetween(new Vector3(1, 0, 0), 0);
CheckllAngleBetween(new Vector3(1, 0, 0), 90);
CheckllAngleBetween(new Vector3(1, 0, 0), 180);
CheckllAngleBetween(new Vector3(0, 1, 0), 0);
CheckllAngleBetween(new Vector3(0, 1, 0), 90);
CheckllAngleBetween(new Vector3(0, 1, 0), 180);
CheckllAngleBetween(new Vector3(0, 0, 1), 0);
CheckllAngleBetween(new Vector3(0, 0, 1), 90);
CheckllAngleBetween(new Vector3(0, 0, 1), 180);
CheckllAngleBetween(new Vector3(1, 1, 1), 0);
CheckllAngleBetween(new Vector3(1, 1, 1), 90);
CheckllAngleBetween(new Vector3(1, 1, 1), 180);
}
private void CheckllAngleBetween(Vector3 axis,float originalAngle)
{
Quaternion rotation1 = Quaternion.CreateFromAxisAngle(axis, 0);
Quaternion rotation2 = Quaternion.CreateFromAxisAngle(axis, ToRadians(originalAngle));
double deducedAngle = FromLslFloat(m_lslApi.llAngleBetween(ToLslQuaternion(rotation2), ToLslQuaternion(rotation1)));
Assert.Greater(deducedAngle, ToRadians(originalAngle) - ANGLE_ACCURACY_IN_RADIANS);
Assert.Less(deducedAngle, ToRadians(originalAngle) + ANGLE_ACCURACY_IN_RADIANS);
}
#region Conversions to and from LSL_Types
private float ToRadians(double degrees)
{
return (float)(Math.PI * degrees / 180);
}
// private double FromRadians(float radians)
// {
// return radians * 180 / Math.PI;
// }
private double FromLslFloat(LSL_Types.LSLFloat lslFloat)
{
return lslFloat.value;
}
// private LSL_Types.LSLFloat ToLslFloat(double value)
// {
// return new LSL_Types.LSLFloat(value);
// }
// private Quaternion FromLslQuaternion(LSL_Types.Quaternion lslQuaternion)
// {
// return new Quaternion((float)lslQuaternion.x, (float)lslQuaternion.y, (float)lslQuaternion.z, (float)lslQuaternion.s);
// }
private LSL_Types.Quaternion ToLslQuaternion(Quaternion quaternion)
{
return new LSL_Types.Quaternion(quaternion.X, quaternion.Y, quaternion.Z, quaternion.W);
}
#endregion
[Test]
// llRot2Euler test.
public void TestllRot2Euler()
{
// 180, 90 and zero degree rotations.
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, 0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, -0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, 0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, 0.5f, 0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.707107f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, -0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, -0.707107f, 0.0f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -1.0f, 0.0f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, -0.707107f, 0.0f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, -0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, -0.5f, -0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, -0.707107f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, 0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, 0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.707107f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, 0.5f, -0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, -0.707107f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, -0.5f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, -0.707107f, 0.0f));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, -0.5f, 0.5f));
// A couple of messy rotations.
CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f));
CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f));
// Some deliberately malicious rotations (intended on provoking singularity errors)
// The "f" suffexes are deliberately omitted.
CheckllRot2Euler(new LSL_Types.Quaternion(0.50001f, 0.50001f, 0.50001f, 0.50001f));
// More malice. The "f" suffixes are deliberately omitted.
CheckllRot2Euler(new LSL_Types.Quaternion(-0.701055, 0.092296, 0.701055, -0.092296));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683010, 0.183005, 0.683010));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.430460, -0.560982, 0.430460, 0.560982));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.701066, 0.092301, -0.701066, 0.092301));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, -0.683010, 0.183013, 0.683010));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683014, -0.183005, -0.683014));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.353556, 0.612375, 0.353556, -0.612375));
CheckllRot2Euler(new LSL_Types.Quaternion(0.353554, -0.612385, -0.353554, 0.612385));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.560989, 0.430450, 0.560989, -0.430450));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, 0.683009, -0.183013, 0.683009));
CheckllRot2Euler(new LSL_Types.Quaternion(0.430457, -0.560985, -0.430457, 0.560985));
CheckllRot2Euler(new LSL_Types.Quaternion(0.353552, 0.612360, -0.353552, -0.612360));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500003, 0.499991, -0.500003));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.353555, -0.612385, -0.353555, -0.612385));
CheckllRot2Euler(new LSL_Types.Quaternion(0.701066, -0.092301, -0.701066, 0.092301));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500007, 0.499991, -0.500007));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.683002, 0.183016, -0.683002, 0.183016));
CheckllRot2Euler(new LSL_Types.Quaternion(0.430458, 0.560982, 0.430458, 0.560982));
CheckllRot2Euler(new LSL_Types.Quaternion(0.499991, -0.500003, -0.499991, 0.500003));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.183009, 0.683011, -0.183009, 0.683011));
CheckllRot2Euler(new LSL_Types.Quaternion(0.560975, -0.430457, 0.560975, -0.430457));
CheckllRot2Euler(new LSL_Types.Quaternion(0.701055, 0.092300, 0.701055, 0.092300));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.560990, 0.430459, -0.560990, 0.430459));
CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059));
}
// Testing Rot2Euler this way instead of comparing against expected angles because
// 1. There are several ways to get to the original Quaternion. For example a rotation
// of PI and -PI will give the same result. But PI and -PI aren't equal.
// 2. This method checks to see if the calculated angles from a quaternion can be used
// to create a new quaternion to produce the same rotation.
// However, can't compare the newly calculated quaternion against the original because
// once again, there are multiple quaternions that give the same result. For instance
// == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed
// and will still result in the same rotation if the values for X, Y, Z are also changed
// to compensate.
// However, if two quaternions represent the same rotation, then multiplying the first
// quaternion by the conjugate of the second, will give a third quaternion representing
// a zero rotation. This can be tested for by looking at the X, Y, Z values which should
// be zero.
private void CheckllRot2Euler(LSL_Types.Quaternion rot)
{
// Call LSL function to convert quaternion rotaion to euler radians.
LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot);
// Now use the euler radians to recalculate a new quaternion rotation
LSL_Types.Quaternion newRot = m_lslApi.llEuler2Rot(eulerCalc);
// Multiple original quaternion by conjugate of quaternion calculated with angles.
LSL_Types.Quaternion check = rot * new LSL_Types.Quaternion(-newRot.x, -newRot.y, -newRot.z, newRot.s);
Assert.AreEqual(0.0, check.x, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler X bounds check fail");
Assert.AreEqual(0.0, check.y, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Y bounds check fail");
Assert.AreEqual(0.0, check.z, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Z bounds check fail");
}
[Test]
// llSetPrimitiveParams and llGetPrimitiveParams test.
public void TestllSetPrimitiveParams()
{
// Create Prim1.
Scene scene = SceneHelpers.SetupScene();
string obj1Name = "Prim1";
UUID objUuid = new UUID("00000000-0000-0000-0000-000000000001");
SceneObjectPart part1 =
new SceneObjectPart(UUID.Zero, PrimitiveBaseShape.Default,
Vector3.Zero, Quaternion.Identity,
Vector3.Zero) { Name = obj1Name, UUID = objUuid };
Assert.That(scene.AddNewSceneObject(new SceneObjectGroup(part1), false), Is.True);
// Note that prim hollow check is passed with the other prim params in order to allow the
// specification of a different check value from the prim param. A cylinder, prism, sphere,
// torus or ring, with a hole shape of square, is limited to a hollow of 70%. Test 5 below
// specifies a value of 95% and checks to see if 70% was properly returned.
// Test a sphere.
CheckllSetPrimitiveParams(
"test 1", // Prim test identification string
new LSL_Types.Vector3(6.0d, 9.9d, 9.9d), // Prim size
ScriptBaseClass.PRIM_TYPE_SPHERE, // Prim type
ScriptBaseClass.PRIM_HOLE_DEFAULT, // Prim hole type
new LSL_Types.Vector3(0.0d, 0.075d, 0.0d), // Prim cut
0.80f, // Prim hollow
new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim twist
new LSL_Types.Vector3(0.32d, 0.76d, 0.0d), // Prim dimple
0.80f); // Prim hollow check
// Test a prism.
CheckllSetPrimitiveParams(
"test 2", // Prim test identification string
new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size
ScriptBaseClass.PRIM_TYPE_PRISM, // Prim type
ScriptBaseClass.PRIM_HOLE_CIRCLE, // Prim hole type
new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut
0.90f, // Prim hollow
new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim twist
new LSL_Types.Vector3(2.0d, 1.0d, 0.0d), // Prim taper
new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear
0.90f); // Prim hollow check
// Test a box.
CheckllSetPrimitiveParams(
"test 3", // Prim test identification string
new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size
ScriptBaseClass.PRIM_TYPE_BOX, // Prim type
ScriptBaseClass.PRIM_HOLE_TRIANGLE, // Prim hole type
new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut
0.95f, // Prim hollow
new LSL_Types.Vector3(1.0d, 0.0d, 0.0d), // Prim twist
new LSL_Types.Vector3(1.0d, 1.0d, 0.0d), // Prim taper
new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear
0.95f); // Prim hollow check
// Test a tube.
CheckllSetPrimitiveParams(
"test 4", // Prim test identification string
new LSL_Types.Vector3(4.2d, 4.2d, 4.2d), // Prim size
ScriptBaseClass.PRIM_TYPE_TUBE, // Prim type
ScriptBaseClass.PRIM_HOLE_SQUARE, // Prim hole type
new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut
0.00f, // Prim hollow
new LSL_Types.Vector3(1.0d, -1.0d, 0.0d), // Prim twist
new LSL_Types.Vector3(1.0d, 0.05d, 0.0d), // Prim hole size
// Expression for y selected to test precision problems during byte
// cast in SetPrimitiveShapeParams.
new LSL_Types.Vector3(0.0d, 0.35d + 0.1d, 0.0d), // Prim shear
new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim profile cut
// Expression for y selected to test precision problems during sbyte
// cast in SetPrimitiveShapeParams.
new LSL_Types.Vector3(-1.0d, 0.70d + 0.1d + 0.1d, 0.0d), // Prim taper
1.11f, // Prim revolutions
0.88f, // Prim radius
0.95f, // Prim skew
0.00f); // Prim hollow check
// Test a prism.
CheckllSetPrimitiveParams(
"test 5", // Prim test identification string
new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size
ScriptBaseClass.PRIM_TYPE_PRISM, // Prim type
ScriptBaseClass.PRIM_HOLE_SQUARE, // Prim hole type
new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut
0.95f, // Prim hollow
// Expression for x selected to test precision problems during sbyte
// cast in SetPrimitiveShapeBlockParams.
new LSL_Types.Vector3(0.7d + 0.2d, 0.0d, 0.0d), // Prim twist
// Expression for y selected to test precision problems during sbyte
// cast in SetPrimitiveShapeParams.
new LSL_Types.Vector3(2.0d, (1.3d + 0.1d), 0.0d), // Prim taper
new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear
0.70f); // Prim hollow check
// Test a sculpted prim.
CheckllSetPrimitiveParams(
"test 6", // Prim test identification string
new LSL_Types.Vector3(2.0d, 2.0d, 2.0d), // Prim size
ScriptBaseClass.PRIM_TYPE_SCULPT, // Prim type
"be293869-d0d9-0a69-5989-ad27f1946fd4", // Prim map
ScriptBaseClass.PRIM_SCULPT_TYPE_SPHERE); // Prim sculpt type
}
// Set prim params for a box, cylinder or prism and check results.
public void CheckllSetPrimitiveParams(string primTest,
LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut,
float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primTaper, LSL_Types.Vector3 primShear,
float primHollowCheck)
{
// Set the prim params.
m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize,
ScriptBaseClass.PRIM_TYPE, primType, primHoleType,
primCut, primHollow, primTwist, primTaper, primShear));
// Get params for prim to validate settings.
LSL_Types.list primParams =
m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE));
// Validate settings.
CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size");
Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1),
"TestllSetPrimitiveParams " + primTest + " prim type check fail");
Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2),
"TestllSetPrimitiveParams " + primTest + " prim hole default check fail");
CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut");
Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim hollow check fail");
CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist");
CheckllSetPrimitiveParamsVector(primTaper, m_lslApi.llList2Vector(primParams, 6), primTest + " prim taper");
CheckllSetPrimitiveParamsVector(primShear, m_lslApi.llList2Vector(primParams, 7), primTest + " prim shear");
}
// Set prim params for a sphere and check results.
public void CheckllSetPrimitiveParams(string primTest,
LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut,
float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primDimple, float primHollowCheck)
{
// Set the prim params.
m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize,
ScriptBaseClass.PRIM_TYPE, primType, primHoleType,
primCut, primHollow, primTwist, primDimple));
// Get params for prim to validate settings.
LSL_Types.list primParams =
m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE));
// Validate settings.
CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size");
Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1),
"TestllSetPrimitiveParams " + primTest + " prim type check fail");
Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2),
"TestllSetPrimitiveParams " + primTest + " prim hole default check fail");
CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut");
Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim hollow check fail");
CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist");
CheckllSetPrimitiveParamsVector(primDimple, m_lslApi.llList2Vector(primParams, 6), primTest + " prim dimple");
}
// Set prim params for a torus, tube or ring and check results.
public void CheckllSetPrimitiveParams(string primTest,
LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut,
float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primHoleSize,
LSL_Types.Vector3 primShear, LSL_Types.Vector3 primProfCut, LSL_Types.Vector3 primTaper,
float primRev, float primRadius, float primSkew, float primHollowCheck)
{
// Set the prim params.
m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize,
ScriptBaseClass.PRIM_TYPE, primType, primHoleType,
primCut, primHollow, primTwist, primHoleSize, primShear, primProfCut,
primTaper, primRev, primRadius, primSkew));
// Get params for prim to validate settings.
LSL_Types.list primParams =
m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE));
// Valdate settings.
CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size");
Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1),
"TestllSetPrimitiveParams " + primTest + " prim type check fail");
Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2),
"TestllSetPrimitiveParams " + primTest + " prim hole default check fail");
CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut");
Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim hollow check fail");
CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist");
CheckllSetPrimitiveParamsVector(primHoleSize, m_lslApi.llList2Vector(primParams, 6), primTest + " prim hole size");
CheckllSetPrimitiveParamsVector(primShear, m_lslApi.llList2Vector(primParams, 7), primTest + " prim shear");
CheckllSetPrimitiveParamsVector(primProfCut, m_lslApi.llList2Vector(primParams, 8), primTest + " prim profile cut");
CheckllSetPrimitiveParamsVector(primTaper, m_lslApi.llList2Vector(primParams, 9), primTest + " prim taper");
Assert.AreEqual(primRev, m_lslApi.llList2Float(primParams, 10), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim revolutions fail");
Assert.AreEqual(primRadius, m_lslApi.llList2Float(primParams, 11), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim radius fail");
Assert.AreEqual(primSkew, m_lslApi.llList2Float(primParams, 12), FLOAT_ACCURACY,
"TestllSetPrimitiveParams " + primTest + " prim skew fail");
}
// Set prim params for a sculpted prim and check results.
public void CheckllSetPrimitiveParams(string primTest,
LSL_Types.Vector3 primSize, int primType, string primMap, int primSculptType)
{
// Set the prim params.
m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize,
ScriptBaseClass.PRIM_TYPE, primType, primMap, primSculptType));
// Get params for prim to validate settings.
LSL_Types.list primParams =
m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE));
// Validate settings.
CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size");
Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1),
"TestllSetPrimitiveParams " + primTest + " prim type check fail");
Assert.AreEqual(primMap, (string)m_lslApi.llList2String(primParams, 2),
"TestllSetPrimitiveParams " + primTest + " prim map check fail");
Assert.AreEqual(primSculptType, m_lslApi.llList2Integer(primParams, 3),
"TestllSetPrimitiveParams " + primTest + " prim type scuplt check fail");
}
public void CheckllSetPrimitiveParamsVector(LSL_Types.Vector3 vecCheck, LSL_Types.Vector3 vecReturned, string msg)
{
// Check each vector component against expected result.
Assert.AreEqual(vecCheck.x, vecReturned.x, VECTOR_COMPONENT_ACCURACY,
"TestllSetPrimitiveParams " + msg + " vector check fail on x component");
Assert.AreEqual(vecCheck.y, vecReturned.y, VECTOR_COMPONENT_ACCURACY,
"TestllSetPrimitiveParams " + msg + " vector check fail on y component");
Assert.AreEqual(vecCheck.z, vecReturned.z, VECTOR_COMPONENT_ACCURACY,
"TestllSetPrimitiveParams " + msg + " vector check fail on z component");
}
[Test]
// llVecNorm test.
public void TestllVecNorm()
{
// Check special case for normalizing zero vector.
CheckllVecNorm(new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), new LSL_Types.Vector3(0.0d, 0.0d, 0.0d));
// Check various vectors.
CheckllVecNorm(new LSL_Types.Vector3(10.0d, 25.0d, 0.0d), new LSL_Types.Vector3(0.371391d, 0.928477d, 0.0d));
CheckllVecNorm(new LSL_Types.Vector3(1.0d, 0.0d, 0.0d), new LSL_Types.Vector3(1.0d, 0.0d, 0.0d));
CheckllVecNorm(new LSL_Types.Vector3(-90.0d, 55.0d, 2.0d), new LSL_Types.Vector3(-0.853128d, 0.521356d, 0.018958d));
CheckllVecNorm(new LSL_Types.Vector3(255.0d, 255.0d, 255.0d), new LSL_Types.Vector3(0.577350d, 0.577350d, 0.577350d));
}
public void CheckllVecNorm(LSL_Types.Vector3 vec, LSL_Types.Vector3 vecNormCheck)
{
// Call LSL function to normalize the vector.
LSL_Types.Vector3 vecNorm = m_lslApi.llVecNorm(vec);
// Check each vector component against expected result.
Assert.AreEqual(vecNorm.x, vecNormCheck.x, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on x component");
Assert.AreEqual(vecNorm.y, vecNormCheck.y, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on y component");
Assert.AreEqual(vecNorm.z, vecNormCheck.z, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on z component");
}
}
}