/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System.Collections.Generic; using NUnit.Framework; using OpenSim.Framework; using OpenSim.Tests.Common; using OpenSim.Region.ScriptEngine.Shared; using OpenSim.Region.Framework.Scenes; using Nini.Config; using OpenSim.Region.ScriptEngine.Shared.Api; using OpenSim.Region.ScriptEngine.Shared.ScriptBase; using OpenMetaverse; using System; using OpenSim.Tests.Common.Mock; namespace OpenSim.Region.ScriptEngine.Shared.Tests { /// /// Tests for LSL_Api /// [TestFixture, LongRunning] public class LSL_ApiTest { private const double ANGLE_ACCURACY_IN_RADIANS = 1E-6; private const double VECTOR_COMPONENT_ACCURACY = 0.0000005d; private const float FLOAT_ACCURACY = 0.00005f; private LSL_Api m_lslApi; [SetUp] public void SetUp() { IConfigSource initConfigSource = new IniConfigSource(); IConfig config = initConfigSource.AddConfig("XEngine"); config.Set("Enabled", "true"); Scene scene = SceneHelpers.SetupScene(); SceneObjectPart part = SceneHelpers.AddSceneObject(scene); XEngine.XEngine engine = new XEngine.XEngine(); engine.Initialise(initConfigSource); engine.AddRegion(scene); m_lslApi = new LSL_Api(); m_lslApi.Initialize(engine, part, part.LocalId, part.UUID); } [Test] public void TestllAngleBetween() { CheckllAngleBetween(new Vector3(1, 0, 0), 0); CheckllAngleBetween(new Vector3(1, 0, 0), 90); CheckllAngleBetween(new Vector3(1, 0, 0), 180); CheckllAngleBetween(new Vector3(0, 1, 0), 0); CheckllAngleBetween(new Vector3(0, 1, 0), 90); CheckllAngleBetween(new Vector3(0, 1, 0), 180); CheckllAngleBetween(new Vector3(0, 0, 1), 0); CheckllAngleBetween(new Vector3(0, 0, 1), 90); CheckllAngleBetween(new Vector3(0, 0, 1), 180); CheckllAngleBetween(new Vector3(1, 1, 1), 0); CheckllAngleBetween(new Vector3(1, 1, 1), 90); CheckllAngleBetween(new Vector3(1, 1, 1), 180); } private void CheckllAngleBetween(Vector3 axis,float originalAngle) { Quaternion rotation1 = Quaternion.CreateFromAxisAngle(axis, 0); Quaternion rotation2 = Quaternion.CreateFromAxisAngle(axis, ToRadians(originalAngle)); double deducedAngle = FromLslFloat(m_lslApi.llAngleBetween(ToLslQuaternion(rotation2), ToLslQuaternion(rotation1))); Assert.Greater(deducedAngle, ToRadians(originalAngle) - ANGLE_ACCURACY_IN_RADIANS); Assert.Less(deducedAngle, ToRadians(originalAngle) + ANGLE_ACCURACY_IN_RADIANS); } #region Conversions to and from LSL_Types private float ToRadians(double degrees) { return (float)(Math.PI * degrees / 180); } // private double FromRadians(float radians) // { // return radians * 180 / Math.PI; // } private double FromLslFloat(LSL_Types.LSLFloat lslFloat) { return lslFloat.value; } // private LSL_Types.LSLFloat ToLslFloat(double value) // { // return new LSL_Types.LSLFloat(value); // } // private Quaternion FromLslQuaternion(LSL_Types.Quaternion lslQuaternion) // { // return new Quaternion((float)lslQuaternion.x, (float)lslQuaternion.y, (float)lslQuaternion.z, (float)lslQuaternion.s); // } private LSL_Types.Quaternion ToLslQuaternion(Quaternion quaternion) { return new LSL_Types.Quaternion(quaternion.X, quaternion.Y, quaternion.Z, quaternion.W); } #endregion [Test] // llRot2Euler test. public void TestllRot2Euler() { // 180, 90 and zero degree rotations. CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.0f, 1.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, 0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 1.0f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, 0.0f, 0.707107f, -0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, 0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, 0.5f, 0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.707107f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, -0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 0.0f, 0.0f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, -0.707107f, 0.0f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -1.0f, 0.0f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, -0.707107f, 0.0f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.707107f, 0.0f, 0.0f, -0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.5f, -0.5f, -0.5f, -0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, -0.707107f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, 0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, 0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, 0.5f, 0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, 0.707107f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, 0.5f, -0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.0f, -0.707107f, 0.0f, -0.707107f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, -0.5f, -0.5f, -0.5f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.707107f, 0.0f, -0.707107f, 0.0f)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.5f, 0.5f, -0.5f, 0.5f)); // A couple of messy rotations. CheckllRot2Euler(new LSL_Types.Quaternion(1.0f, 5.651f, -3.1f, 67.023f)); CheckllRot2Euler(new LSL_Types.Quaternion(0.719188f, -0.408934f, -0.363998f, -0.427841f)); // Some deliberately malicious rotations (intended on provoking singularity errors) // The "f" suffexes are deliberately omitted. CheckllRot2Euler(new LSL_Types.Quaternion(0.50001f, 0.50001f, 0.50001f, 0.50001f)); // More malice. The "f" suffixes are deliberately omitted. CheckllRot2Euler(new LSL_Types.Quaternion(-0.701055, 0.092296, 0.701055, -0.092296)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683010, 0.183005, 0.683010)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.430460, -0.560982, 0.430460, 0.560982)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.701066, 0.092301, -0.701066, 0.092301)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, -0.683010, 0.183013, 0.683010)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.183005, -0.683014, -0.183005, -0.683014)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.353556, 0.612375, 0.353556, -0.612375)); CheckllRot2Euler(new LSL_Types.Quaternion(0.353554, -0.612385, -0.353554, 0.612385)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.560989, 0.430450, 0.560989, -0.430450)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.183013, 0.683009, -0.183013, 0.683009)); CheckllRot2Euler(new LSL_Types.Quaternion(0.430457, -0.560985, -0.430457, 0.560985)); CheckllRot2Euler(new LSL_Types.Quaternion(0.353552, 0.612360, -0.353552, -0.612360)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500003, 0.499991, -0.500003)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.353555, -0.612385, -0.353555, -0.612385)); CheckllRot2Euler(new LSL_Types.Quaternion(0.701066, -0.092301, -0.701066, 0.092301)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.499991, 0.500007, 0.499991, -0.500007)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.683002, 0.183016, -0.683002, 0.183016)); CheckllRot2Euler(new LSL_Types.Quaternion(0.430458, 0.560982, 0.430458, 0.560982)); CheckllRot2Euler(new LSL_Types.Quaternion(0.499991, -0.500003, -0.499991, 0.500003)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.183009, 0.683011, -0.183009, 0.683011)); CheckllRot2Euler(new LSL_Types.Quaternion(0.560975, -0.430457, 0.560975, -0.430457)); CheckllRot2Euler(new LSL_Types.Quaternion(0.701055, 0.092300, 0.701055, 0.092300)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.560990, 0.430459, -0.560990, 0.430459)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059)); } // Testing Rot2Euler this way instead of comparing against expected angles because // 1. There are several ways to get to the original Quaternion. For example a rotation // of PI and -PI will give the same result. But PI and -PI aren't equal. // 2. This method checks to see if the calculated angles from a quaternion can be used // to create a new quaternion to produce the same rotation. // However, can't compare the newly calculated quaternion against the original because // once again, there are multiple quaternions that give the same result. For instance // == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed // and will still result in the same rotation if the values for X, Y, Z are also changed // to compensate. // However, if two quaternions represent the same rotation, then multiplying the first // quaternion by the conjugate of the second, will give a third quaternion representing // a zero rotation. This can be tested for by looking at the X, Y, Z values which should // be zero. private void CheckllRot2Euler(LSL_Types.Quaternion rot) { // Call LSL function to convert quaternion rotaion to euler radians. LSL_Types.Vector3 eulerCalc = m_lslApi.llRot2Euler(rot); // Now use the euler radians to recalculate a new quaternion rotation LSL_Types.Quaternion newRot = m_lslApi.llEuler2Rot(eulerCalc); // Multiple original quaternion by conjugate of quaternion calculated with angles. LSL_Types.Quaternion check = rot * new LSL_Types.Quaternion(-newRot.x, -newRot.y, -newRot.z, newRot.s); Assert.AreEqual(0.0, check.x, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler X bounds check fail"); Assert.AreEqual(0.0, check.y, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Y bounds check fail"); Assert.AreEqual(0.0, check.z, VECTOR_COMPONENT_ACCURACY, "TestllRot2Euler Z bounds check fail"); } [Test] // llSetPrimitiveParams and llGetPrimitiveParams test. public void TestllSetPrimitiveParams() { // Create Prim1. Scene scene = SceneHelpers.SetupScene(); string obj1Name = "Prim1"; UUID objUuid = new UUID("00000000-0000-0000-0000-000000000001"); SceneObjectPart part1 = new SceneObjectPart(UUID.Zero, PrimitiveBaseShape.Default, Vector3.Zero, Quaternion.Identity, Vector3.Zero) { Name = obj1Name, UUID = objUuid }; Assert.That(scene.AddNewSceneObject(new SceneObjectGroup(part1), false), Is.True); // Note that prim hollow check is passed with the other prim params in order to allow the // specification of a different check value from the prim param. A cylinder, prism, sphere, // torus or ring, with a hole shape of square, is limited to a hollow of 70%. Test 5 below // specifies a value of 95% and checks to see if 70% was properly returned. // Test a sphere. CheckllSetPrimitiveParams( "test 1", // Prim test identification string new LSL_Types.Vector3(6.0d, 9.9d, 9.9d), // Prim size ScriptBaseClass.PRIM_TYPE_SPHERE, // Prim type ScriptBaseClass.PRIM_HOLE_DEFAULT, // Prim hole type new LSL_Types.Vector3(0.0d, 0.075d, 0.0d), // Prim cut 0.80f, // Prim hollow new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim twist new LSL_Types.Vector3(0.32d, 0.76d, 0.0d), // Prim dimple 0.80f); // Prim hollow check // Test a prism. CheckllSetPrimitiveParams( "test 2", // Prim test identification string new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size ScriptBaseClass.PRIM_TYPE_PRISM, // Prim type ScriptBaseClass.PRIM_HOLE_CIRCLE, // Prim hole type new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut 0.90f, // Prim hollow new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim twist new LSL_Types.Vector3(2.0d, 1.0d, 0.0d), // Prim taper new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear 0.90f); // Prim hollow check // Test a box. CheckllSetPrimitiveParams( "test 3", // Prim test identification string new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size ScriptBaseClass.PRIM_TYPE_BOX, // Prim type ScriptBaseClass.PRIM_HOLE_TRIANGLE, // Prim hole type new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut 0.95f, // Prim hollow new LSL_Types.Vector3(1.0d, 0.0d, 0.0d), // Prim twist new LSL_Types.Vector3(1.0d, 1.0d, 0.0d), // Prim taper new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear 0.95f); // Prim hollow check // Test a tube. CheckllSetPrimitiveParams( "test 4", // Prim test identification string new LSL_Types.Vector3(4.2d, 4.2d, 4.2d), // Prim size ScriptBaseClass.PRIM_TYPE_TUBE, // Prim type ScriptBaseClass.PRIM_HOLE_SQUARE, // Prim hole type new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut 0.00f, // Prim hollow new LSL_Types.Vector3(1.0d, -1.0d, 0.0d), // Prim twist new LSL_Types.Vector3(1.0d, 0.05d, 0.0d), // Prim hole size // Expression for y selected to test precision problems during byte // cast in SetPrimitiveShapeParams. new LSL_Types.Vector3(0.0d, 0.35d + 0.1d, 0.0d), // Prim shear new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim profile cut // Expression for y selected to test precision problems during sbyte // cast in SetPrimitiveShapeParams. new LSL_Types.Vector3(-1.0d, 0.70d + 0.1d + 0.1d, 0.0d), // Prim taper 1.11f, // Prim revolutions 0.88f, // Prim radius 0.95f, // Prim skew 0.00f); // Prim hollow check // Test a prism. CheckllSetPrimitiveParams( "test 5", // Prim test identification string new LSL_Types.Vector3(3.5d, 3.5d, 3.5d), // Prim size ScriptBaseClass.PRIM_TYPE_PRISM, // Prim type ScriptBaseClass.PRIM_HOLE_SQUARE, // Prim hole type new LSL_Types.Vector3(0.0d, 1.0d, 0.0d), // Prim cut 0.95f, // Prim hollow // Expression for x selected to test precision problems during sbyte // cast in SetPrimitiveShapeBlockParams. new LSL_Types.Vector3(0.7d + 0.2d, 0.0d, 0.0d), // Prim twist // Expression for y selected to test precision problems during sbyte // cast in SetPrimitiveShapeParams. new LSL_Types.Vector3(2.0d, (1.3d + 0.1d), 0.0d), // Prim taper new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), // Prim shear 0.70f); // Prim hollow check // Test a sculpted prim. CheckllSetPrimitiveParams( "test 6", // Prim test identification string new LSL_Types.Vector3(2.0d, 2.0d, 2.0d), // Prim size ScriptBaseClass.PRIM_TYPE_SCULPT, // Prim type "be293869-d0d9-0a69-5989-ad27f1946fd4", // Prim map ScriptBaseClass.PRIM_SCULPT_TYPE_SPHERE); // Prim sculpt type } // Set prim params for a box, cylinder or prism and check results. public void CheckllSetPrimitiveParams(string primTest, LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut, float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primTaper, LSL_Types.Vector3 primShear, float primHollowCheck) { // Set the prim params. m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize, ScriptBaseClass.PRIM_TYPE, primType, primHoleType, primCut, primHollow, primTwist, primTaper, primShear)); // Get params for prim to validate settings. LSL_Types.list primParams = m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE)); // Validate settings. CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size"); Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1), "TestllSetPrimitiveParams " + primTest + " prim type check fail"); Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2), "TestllSetPrimitiveParams " + primTest + " prim hole default check fail"); CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut"); Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim hollow check fail"); CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist"); CheckllSetPrimitiveParamsVector(primTaper, m_lslApi.llList2Vector(primParams, 6), primTest + " prim taper"); CheckllSetPrimitiveParamsVector(primShear, m_lslApi.llList2Vector(primParams, 7), primTest + " prim shear"); } // Set prim params for a sphere and check results. public void CheckllSetPrimitiveParams(string primTest, LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut, float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primDimple, float primHollowCheck) { // Set the prim params. m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize, ScriptBaseClass.PRIM_TYPE, primType, primHoleType, primCut, primHollow, primTwist, primDimple)); // Get params for prim to validate settings. LSL_Types.list primParams = m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE)); // Validate settings. CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size"); Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1), "TestllSetPrimitiveParams " + primTest + " prim type check fail"); Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2), "TestllSetPrimitiveParams " + primTest + " prim hole default check fail"); CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut"); Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim hollow check fail"); CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist"); CheckllSetPrimitiveParamsVector(primDimple, m_lslApi.llList2Vector(primParams, 6), primTest + " prim dimple"); } // Set prim params for a torus, tube or ring and check results. public void CheckllSetPrimitiveParams(string primTest, LSL_Types.Vector3 primSize, int primType, int primHoleType, LSL_Types.Vector3 primCut, float primHollow, LSL_Types.Vector3 primTwist, LSL_Types.Vector3 primHoleSize, LSL_Types.Vector3 primShear, LSL_Types.Vector3 primProfCut, LSL_Types.Vector3 primTaper, float primRev, float primRadius, float primSkew, float primHollowCheck) { // Set the prim params. m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize, ScriptBaseClass.PRIM_TYPE, primType, primHoleType, primCut, primHollow, primTwist, primHoleSize, primShear, primProfCut, primTaper, primRev, primRadius, primSkew)); // Get params for prim to validate settings. LSL_Types.list primParams = m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE)); // Valdate settings. CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size"); Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1), "TestllSetPrimitiveParams " + primTest + " prim type check fail"); Assert.AreEqual(primHoleType, m_lslApi.llList2Integer(primParams, 2), "TestllSetPrimitiveParams " + primTest + " prim hole default check fail"); CheckllSetPrimitiveParamsVector(primCut, m_lslApi.llList2Vector(primParams, 3), primTest + " prim cut"); Assert.AreEqual(primHollowCheck, m_lslApi.llList2Float(primParams, 4), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim hollow check fail"); CheckllSetPrimitiveParamsVector(primTwist, m_lslApi.llList2Vector(primParams, 5), primTest + " prim twist"); CheckllSetPrimitiveParamsVector(primHoleSize, m_lslApi.llList2Vector(primParams, 6), primTest + " prim hole size"); CheckllSetPrimitiveParamsVector(primShear, m_lslApi.llList2Vector(primParams, 7), primTest + " prim shear"); CheckllSetPrimitiveParamsVector(primProfCut, m_lslApi.llList2Vector(primParams, 8), primTest + " prim profile cut"); CheckllSetPrimitiveParamsVector(primTaper, m_lslApi.llList2Vector(primParams, 9), primTest + " prim taper"); Assert.AreEqual(primRev, m_lslApi.llList2Float(primParams, 10), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim revolutions fail"); Assert.AreEqual(primRadius, m_lslApi.llList2Float(primParams, 11), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim radius fail"); Assert.AreEqual(primSkew, m_lslApi.llList2Float(primParams, 12), FLOAT_ACCURACY, "TestllSetPrimitiveParams " + primTest + " prim skew fail"); } // Set prim params for a sculpted prim and check results. public void CheckllSetPrimitiveParams(string primTest, LSL_Types.Vector3 primSize, int primType, string primMap, int primSculptType) { // Set the prim params. m_lslApi.llSetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, primSize, ScriptBaseClass.PRIM_TYPE, primType, primMap, primSculptType)); // Get params for prim to validate settings. LSL_Types.list primParams = m_lslApi.llGetPrimitiveParams(new LSL_Types.list(ScriptBaseClass.PRIM_SIZE, ScriptBaseClass.PRIM_TYPE)); // Validate settings. CheckllSetPrimitiveParamsVector(primSize, m_lslApi.llList2Vector(primParams, 0), primTest + " prim size"); Assert.AreEqual(primType, m_lslApi.llList2Integer(primParams, 1), "TestllSetPrimitiveParams " + primTest + " prim type check fail"); Assert.AreEqual(primMap, (string)m_lslApi.llList2String(primParams, 2), "TestllSetPrimitiveParams " + primTest + " prim map check fail"); Assert.AreEqual(primSculptType, m_lslApi.llList2Integer(primParams, 3), "TestllSetPrimitiveParams " + primTest + " prim type scuplt check fail"); } public void CheckllSetPrimitiveParamsVector(LSL_Types.Vector3 vecCheck, LSL_Types.Vector3 vecReturned, string msg) { // Check each vector component against expected result. Assert.AreEqual(vecCheck.x, vecReturned.x, VECTOR_COMPONENT_ACCURACY, "TestllSetPrimitiveParams " + msg + " vector check fail on x component"); Assert.AreEqual(vecCheck.y, vecReturned.y, VECTOR_COMPONENT_ACCURACY, "TestllSetPrimitiveParams " + msg + " vector check fail on y component"); Assert.AreEqual(vecCheck.z, vecReturned.z, VECTOR_COMPONENT_ACCURACY, "TestllSetPrimitiveParams " + msg + " vector check fail on z component"); } [Test] // llVecNorm test. public void TestllVecNorm() { // Check special case for normalizing zero vector. CheckllVecNorm(new LSL_Types.Vector3(0.0d, 0.0d, 0.0d), new LSL_Types.Vector3(0.0d, 0.0d, 0.0d)); // Check various vectors. CheckllVecNorm(new LSL_Types.Vector3(10.0d, 25.0d, 0.0d), new LSL_Types.Vector3(0.371391d, 0.928477d, 0.0d)); CheckllVecNorm(new LSL_Types.Vector3(1.0d, 0.0d, 0.0d), new LSL_Types.Vector3(1.0d, 0.0d, 0.0d)); CheckllVecNorm(new LSL_Types.Vector3(-90.0d, 55.0d, 2.0d), new LSL_Types.Vector3(-0.853128d, 0.521356d, 0.018958d)); CheckllVecNorm(new LSL_Types.Vector3(255.0d, 255.0d, 255.0d), new LSL_Types.Vector3(0.577350d, 0.577350d, 0.577350d)); } public void CheckllVecNorm(LSL_Types.Vector3 vec, LSL_Types.Vector3 vecNormCheck) { // Call LSL function to normalize the vector. LSL_Types.Vector3 vecNorm = m_lslApi.llVecNorm(vec); // Check each vector component against expected result. Assert.AreEqual(vecNorm.x, vecNormCheck.x, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on x component"); Assert.AreEqual(vecNorm.y, vecNormCheck.y, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on y component"); Assert.AreEqual(vecNorm.z, vecNormCheck.z, VECTOR_COMPONENT_ACCURACY, "TestllVecNorm vector check fail on z component"); } } }