/*
* Copyright (c) Contributors
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
namespace PrimMesher
{
public struct Quat
{
/// X value
public float X;
/// Y value
public float Y;
/// Z value
public float Z;
/// W value
public float W;
public Quat(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
public Quat(Coord axis, float angle)
{
axis = axis.Normalize();
angle *= 0.5f;
float c = (float)Math.Cos(angle);
float s = (float)Math.Sin(angle);
X = axis.X * s;
Y = axis.Y * s;
Z = axis.Z * s;
W = c;
Normalize();
}
public float Length()
{
return (float)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
}
public Quat Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
float mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
float oomag = 1f / mag;
X *= oomag;
Y *= oomag;
Z *= oomag;
W *= oomag;
}
else
{
X = 0f;
Y = 0f;
Z = 0f;
W = 1f;
}
return this;
}
public static Quat operator *(Quat q1, Quat q2)
{
float x = q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y;
float y = q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X;
float z = q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W;
float w = q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z;
return new Quat(x, y, z, w);
}
public override string ToString()
{
return "< X: " + this.X.ToString() + ", Y: " + this.Y.ToString() + ", Z: " + this.Z.ToString() + ", W: " + this.W.ToString() + ">";
}
}
public struct Coord
{
public float X;
public float Y;
public float Z;
public Coord(float x, float y, float z)
{
this.X = x;
this.Y = y;
this.Z = z;
}
public float Length()
{
return (float)Math.Sqrt(this.X * this.X + this.Y * this.Y + this.Z * this.Z);
}
public Coord Invert()
{
this.X = -this.X;
this.Y = -this.Y;
this.Z = -this.Z;
return this;
}
public Coord Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
float mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
float oomag = 1.0f / mag;
this.X *= oomag;
this.Y *= oomag;
this.Z *= oomag;
}
else
{
this.X = 0.0f;
this.Y = 0.0f;
this.Z = 0.0f;
}
return this;
}
public override string ToString()
{
return this.X.ToString() + " " + this.Y.ToString() + " " + this.Z.ToString();
}
public static Coord Cross(Coord c1, Coord c2)
{
return new Coord(
c1.Y * c2.Z - c2.Y * c1.Z,
c1.Z * c2.X - c2.Z * c1.X,
c1.X * c2.Y - c2.X * c1.Y
);
}
public static Coord operator +(Coord v, Coord a)
{
return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z);
}
public static Coord operator *(Coord v, Coord m)
{
return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z);
}
public static Coord operator *(Coord v, Quat q)
{
// From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
Coord c2 = new Coord(0.0f, 0.0f, 0.0f);
c2.X = q.W * q.W * v.X +
2f * q.Y * q.W * v.Z -
2f * q.Z * q.W * v.Y +
q.X * q.X * v.X +
2f * q.Y * q.X * v.Y +
2f * q.Z * q.X * v.Z -
q.Z * q.Z * v.X -
q.Y * q.Y * v.X;
c2.Y =
2f * q.X * q.Y * v.X +
q.Y * q.Y * v.Y +
2f * q.Z * q.Y * v.Z +
2f * q.W * q.Z * v.X -
q.Z * q.Z * v.Y +
q.W * q.W * v.Y -
2f * q.X * q.W * v.Z -
q.X * q.X * v.Y;
c2.Z =
2f * q.X * q.Z * v.X +
2f * q.Y * q.Z * v.Y +
q.Z * q.Z * v.Z -
2f * q.W * q.Y * v.X -
q.Y * q.Y * v.Z +
2f * q.W * q.X * v.Y -
q.X * q.X * v.Z +
q.W * q.W * v.Z;
return c2;
}
}
public struct Face
{
public int primFace;
// vertices
public int v1;
public int v2;
public int v3;
public Face(int v1, int v2, int v3)
{
primFace = 0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
public Coord SurfaceNormal(List coordList)
{
Coord c1 = coordList[this.v1];
Coord c2 = coordList[this.v2];
Coord c3 = coordList[this.v3];
Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
return Coord.Cross(edge1, edge2).Normalize();
}
}
internal struct Angle
{
internal float angle;
internal float X;
internal float Y;
internal Angle(float angle, float x, float y)
{
this.angle = angle;
this.X = x;
this.Y = y;
}
}
internal class AngleList
{
private float iX, iY; // intersection point
private static Angle[] angles3 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Angle[] angles4 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Angle[] angles6 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Angle[] angles12 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f),
new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static Angle[] angles24 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f),
new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f),
new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f),
new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f),
new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f),
new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f),
new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f),
new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f),
new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f),
new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f),
new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f),
new Angle(1.0f, 1.0f, 0.0f)
};
private Angle interpolatePoints(float newPoint, Angle p1, Angle p2)
{
float m = (newPoint - p1.angle) / (p2.angle - p1.angle);
return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y));
}
private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{ // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
double uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3);
if (denom != 0.0)
{
double ua = uaNumerator / denom;
iX = (float)(x1 + ua * (x2 - x1));
iY = (float)(y1 + ua * (y2 - y1));
}
}
internal List angles;
internal void makeAngles(int sides, float startAngle, float stopAngle, bool hasCut)
{
angles = new List();
const double twoPi = System.Math.PI * 2.0;
const float twoPiInv = (float)(1.0d / twoPi);
if (sides < 1)
throw new Exception("number of sides not greater than zero");
if (stopAngle <= startAngle)
throw new Exception("stopAngle not greater than startAngle");
if ((sides == 3 || sides == 4 || sides == 6 || sides == 12 || sides == 24))
{
startAngle *= twoPiInv;
stopAngle *= twoPiInv;
Angle[] sourceAngles;
switch (sides)
{
case 3:
sourceAngles = angles3;
break;
case 4:
sourceAngles = angles4;
break;
case 6:
sourceAngles = angles6;
break;
case 12:
sourceAngles = angles12;
break;
default:
sourceAngles = angles24;
break;
}
int startAngleIndex = (int)(startAngle * sides);
int endAngleIndex = sourceAngles.Length - 1;
if (hasCut)
{
if (stopAngle < 1.0f)
endAngleIndex = (int)(stopAngle * sides) + 1;
if (endAngleIndex == startAngleIndex)
endAngleIndex++;
for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++)
{
angles.Add(sourceAngles[angleIndex]);
}
if (startAngle > 0.0f)
angles[0] = interpolatePoints(startAngle, angles[0], angles[1]);
if (stopAngle < 1.0f)
{
int lastAngleIndex = angles.Count - 1;
angles[lastAngleIndex] = interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]);
}
}
else
{
for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex; angleIndex++)
angles.Add(sourceAngles[angleIndex]);
}
}
else
{
double stepSize = twoPi / sides;
int startStep = (int)(startAngle / stepSize);
double angle = stepSize * startStep;
int step = startStep;
double stopAngleTest = stopAngle;
if (stopAngle < twoPi)
{
stopAngleTest = stepSize * ((int)(stopAngle / stepSize) + 1);
if (stopAngleTest < stopAngle)
stopAngleTest += stepSize;
if (stopAngleTest > twoPi)
stopAngleTest = twoPi;
}
while (angle <= stopAngleTest)
{
Angle newAngle;
newAngle.angle = (float)angle;
newAngle.X = (float)System.Math.Cos(angle);
newAngle.Y = (float)System.Math.Sin(angle);
angles.Add(newAngle);
step += 1;
angle = stepSize * step;
}
if (startAngle > angles[0].angle)
{
Angle newAngle;
intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float)Math.Cos(startAngle), (float)Math.Sin(startAngle));
newAngle.angle = startAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[0] = newAngle;
}
int index = angles.Count - 1;
if (stopAngle < angles[index].angle)
{
Angle newAngle;
intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float)Math.Cos(stopAngle), (float)Math.Sin(stopAngle));
newAngle.angle = stopAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[index] = newAngle;
}
}
}
}
///
/// generates a profile for extrusion
///
public class Profile
{
private const float twoPi = 2.0f * (float)Math.PI;
public string errorMessage = null;
public List coords;
public List faces;
// use these for making individual meshes for each prim face
public List outerCoordIndices = null;
public List hollowCoordIndices = null;
public int numOuterVerts = 0;
public int numHollowVerts = 0;
public int outerFaceNumber = -1;
public int hollowFaceNumber = -1;
public int bottomFaceNumber = 0;
public int numPrimFaces = 0;
public Profile()
{
coords = new List();
faces = new List();
}
public Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool hasProfileCut, bool createFaces)
{
const float halfSqr2 = 0.7071067811866f;
coords = new List();
faces = new List();
List hollowCoords = new List();
bool hasHollow = (hollow > 0.0f);
AngleList angles = new AngleList();
AngleList hollowAngles = new AngleList();
float xScale = 0.5f;
float yScale = 0.5f;
if (sides == 4) // corners of a square are sqrt(2) from center
{
xScale = halfSqr2;
yScale = halfSqr2;
}
float startAngle = profileStart * twoPi;
float stopAngle = profileEnd * twoPi;
try { angles.makeAngles(sides, startAngle, stopAngle,hasProfileCut); }
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex.ToString()
+ "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString();
return;
}
numOuterVerts = angles.angles.Count;
Angle angle;
Coord newVert = new Coord();
// flag to create as few triangles as possible for 3 or 4 side profile
bool simpleFace = (sides < 5 && !hasHollow && !hasProfileCut);
if (hasHollow)
{
if (sides == hollowSides)
hollowAngles = angles;
else
{
try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle, hasProfileCut); }
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex.ToString()
+ "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString();
return;
}
int numHollowAngles = hollowAngles.angles.Count;
for (int i = 0; i < numHollowAngles; i++)
{
angle = hollowAngles.angles[i];
newVert.X = hollow * xScale * angle.X;
newVert.Y = hollow * yScale * angle.Y;
newVert.Z = 0.0f;
hollowCoords.Add(newVert);
}
}
numHollowVerts = hollowAngles.angles.Count;
}
else if (!simpleFace)
{
Coord center = new Coord(0.0f, 0.0f, 0.0f);
this.coords.Add(center);
}
int numAngles = angles.angles.Count;
bool hollowsame = (hasHollow && hollowSides == sides);
for (int i = 0; i < numAngles; i++)
{
angle = angles.angles[i];
newVert.X = angle.X * xScale;
newVert.Y = angle.Y * yScale;
newVert.Z = 0.0f;
coords.Add(newVert);
if (hollowsame)
{
newVert.X *= hollow;
newVert.Y *= hollow;
hollowCoords.Add(newVert);
}
}
if (hasHollow)
{
hollowCoords.Reverse();
coords.AddRange(hollowCoords);
if (createFaces)
{
int numTotalVerts = numOuterVerts + numHollowVerts;
if (numOuterVerts == numHollowVerts)
{
Face newFace = new Face();
for (int coordIndex = 0; coordIndex < numOuterVerts - 1; coordIndex++)
{
newFace.v1 = coordIndex;
newFace.v2 = coordIndex + 1;
newFace.v3 = numTotalVerts - coordIndex - 1;
faces.Add(newFace);
newFace.v1 = coordIndex + 1;
newFace.v2 = numTotalVerts - coordIndex - 2;
newFace.v3 = numTotalVerts - coordIndex - 1;
faces.Add(newFace);
}
if (!hasProfileCut)
{
newFace.v1 = numOuterVerts - 1;
newFace.v2 = 0;
newFace.v3 = numOuterVerts;
faces.Add(newFace);
newFace.v1 = 0;
newFace.v2 = numTotalVerts - 1;
newFace.v3 = numOuterVerts;
faces.Add(newFace);
}
}
else if (numOuterVerts < numHollowVerts)
{
Face newFace = new Face();
int j = 0; // j is the index for outer vertices
int i;
int maxJ = numOuterVerts - 1;
float curHollowAngle = 0;
for (i = 0; i < numHollowVerts; i++) // i is the index for inner vertices
{
curHollowAngle = hollowAngles.angles[i].angle;
if (j < maxJ)
{
if (angles.angles[j + 1].angle - curHollowAngle < curHollowAngle - angles.angles[j].angle + 0.000001f)
{
newFace.v1 = numTotalVerts - i - 1;
newFace.v2 = j;
newFace.v3 = j + 1;
faces.Add(newFace);
j++;
}
}
else
{
if (1.0f - curHollowAngle < curHollowAngle - angles.angles[j].angle + 0.000001f)
break;
}
newFace.v1 = j;
newFace.v2 = numTotalVerts - i - 2;
newFace.v3 = numTotalVerts - i - 1;
faces.Add(newFace);
}
if (!hasProfileCut)
{
if (i == numHollowVerts)
{
newFace.v1 = numTotalVerts - numHollowVerts;
newFace.v2 = maxJ;
newFace.v3 = 0;
faces.Add(newFace);
}
else
{
if (1.0f - curHollowAngle < curHollowAngle - angles.angles[maxJ].angle + 0.000001f)
{
newFace.v1 = numTotalVerts - i - 1;
newFace.v2 = maxJ;
newFace.v3 = 0;
faces.Add(newFace);
}
for (; i < numHollowVerts - 1; i++)
{
newFace.v1 = 0;
newFace.v2 = numTotalVerts - i - 2;
newFace.v3 = numTotalVerts - i - 1;
faces.Add(newFace);
}
}
newFace.v1 = 0;
newFace.v2 = numTotalVerts - numHollowVerts;
newFace.v3 = numTotalVerts - 1;
faces.Add(newFace);
}
}
else // numHollowVerts < numOuterVerts
{
Face newFace = new Face();
int j = 0; // j is the index for inner vertices
int maxJ = numHollowVerts - 1;
for (int i = 0; i < numOuterVerts; i++)
{
if (j < maxJ)
if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[j].angle + 0.000001f)
{
newFace.v1 = i;
newFace.v2 = numTotalVerts - j - 2;
newFace.v3 = numTotalVerts - j - 1;
faces.Add(newFace);
j += 1;
}
newFace.v1 = numTotalVerts - j - 1;
newFace.v2 = i;
newFace.v3 = i + 1;
faces.Add(newFace);
}
if (!hasProfileCut)
{
int i = numOuterVerts - 1;
if (hollowAngles.angles[0].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[maxJ].angle + 0.000001f)
{
newFace.v1 = 0;
newFace.v2 = numTotalVerts - maxJ - 1;
newFace.v3 = numTotalVerts - 1;
faces.Add(newFace);
}
newFace.v1 = numTotalVerts - maxJ - 1;
newFace.v2 = i;
newFace.v3 = 0;
faces.Add(newFace);
}
}
}
}
else if (createFaces)
{
if (simpleFace)
{
if (sides == 3)
faces.Add(new Face(0, 1, 2));
else if (sides == 4)
{
faces.Add(new Face(0, 1, 2));
faces.Add(new Face(0, 2, 3));
}
}
else
{
for (int i = 1; i < numAngles ; i++)
{
Face newFace = new Face();
newFace.v1 = 0;
newFace.v2 = i;
newFace.v3 = i + 1;
faces.Add(newFace);
}
if (!hasProfileCut)
{
Face newFace = new Face();
newFace.v1 = 0;
newFace.v2 = numAngles;
newFace.v3 = 1;
faces.Add(newFace);
}
}
}
hollowCoords = null;
}
public Profile Copy()
{
return Copy(true);
}
public Profile Copy(bool needFaces)
{
Profile copy = new Profile();
copy.coords.AddRange(coords);
if (needFaces)
copy.faces.AddRange(faces);
copy.numOuterVerts = numOuterVerts;
copy.numHollowVerts = numHollowVerts;
return copy;
}
public void AddPos(Coord v)
{
this.AddPos(v.X, v.Y, v.Z);
}
public void AddPos(float x, float y, float z)
{
int i;
int numVerts = coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
this.coords[i] = vert;
}
}
public void AddRot(Quat q)
{
int i;
int numVerts = coords.Count;
for (i = 0; i < numVerts; i++)
coords[i] *= q;
}
public void Scale(float x, float y)
{
int i;
int numVerts = coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = coords[i];
vert.X *= x;
vert.X = (float)Math.Round(vert.X,5);
vert.Y *= y;
vert.Y = (float)Math.Round(vert.Y,5);
coords[i] = vert;
}
if(x == 0f || y == 0f)
faces = new List();
}
///
/// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial vertices
///
public void FlipNormals()
{
int numFaces = faces.Count;
if(numFaces == 0)
return;
int i;
Face tmpFace;
int tmp;
for (i = 0; i < numFaces; i++)
{
tmpFace = faces[i];
tmp = tmpFace.v3;
tmpFace.v3 = tmpFace.v1;
tmpFace.v1 = tmp;
faces[i] = tmpFace;
}
}
public void AddValue2FaceVertexIndices(int num)
{
int numFaces = faces.Count;
if(numFaces == 0)
return;
Face tmpFace;
for (int i = 0; i < numFaces; i++)
{
tmpFace = faces[i];
tmpFace.v1 += num;
tmpFace.v2 += num;
tmpFace.v3 += num;
faces[i] = tmpFace;
}
}
public void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = System.IO.Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
for (int i = 0; i < faces.Count; i++)
{
string s = coords[faces[i].v1].ToString();
s += " " + coords[faces[i].v2].ToString();
s += " " + coords[faces[i].v3].ToString();
sw.WriteLine(s);
}
sw.Close();
}
}
public struct PathNode
{
public Coord position;
public Quat rotation;
public float xScale;
public float yScale;
public float percentOfPath;
}
public enum PathType { Linear = 0, Circular = 1, Flexible = 2 }
public class Path
{
public List pathNodes = new List();
public float twistBegin = 0.0f;
public float twistEnd = 0.0f;
public float topShearX = 0.0f;
public float topShearY = 0.0f;
public float pathCutBegin = 0.0f;
public float pathCutEnd = 1.0f;
public float dimpleBegin = 0.0f;
public float dimpleEnd = 1.0f;
public float skew = 0.0f;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
public float taperX = 0.0f;
public float taperY = 0.0f;
public float radius = 0.0f;
public float revolutions = 1.0f;
public int stepsPerRevolution = 24;
private const float twoPi = 2.0f * (float)Math.PI;
public void Create(PathType pathType, int steps)
{
if (taperX > .9999f)
taperX = 1.0f;
else if (taperX < -.9999f)
taperX = -1.0f;
if (taperY > .9999f)
taperY = 1.0f;
else if (taperY < -.9999f)
taperY = -1.0f;
if (pathType == PathType.Linear || pathType == PathType.Flexible)
{
int step = 0;
float length = pathCutEnd - pathCutBegin;
float twistTotal = twistEnd - twistBegin;
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number
float start = -0.5f;
float stepSize = length / (float)steps;
float percentOfPathMultiplier = stepSize * 0.999999f;
float xOffset = topShearX * pathCutBegin;
float yOffset = topShearY * pathCutBegin;
float zOffset = start;
float xOffsetStepIncrement = topShearX * length / steps;
float yOffsetStepIncrement = topShearY * length / steps;
float percentOfPath = pathCutBegin;
zOffset += percentOfPath;
// sanity checks
bool done = false;
while (!done)
{
PathNode newNode = new PathNode();
newNode.xScale = 1.0f;
if (taperX > 0.0f)
newNode.xScale -= percentOfPath * taperX;
else if(taperX < 0.0f)
newNode.xScale += (1.0f - percentOfPath) * taperX;
newNode.yScale = 1.0f;
if (taperY > 0.0f)
newNode.yScale -= percentOfPath * taperY;
else if(taperY < 0.0f)
newNode.yScale += (1.0f - percentOfPath) * taperY;
float twist = twistBegin + twistTotal * percentOfPath;
newNode.rotation = new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.position = new Coord(xOffset, yOffset, zOffset);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
if (step < steps)
{
step += 1;
percentOfPath += percentOfPathMultiplier;
xOffset += xOffsetStepIncrement;
yOffset += yOffsetStepIncrement;
zOffset += stepSize;
if (percentOfPath > pathCutEnd)
done = true;
}
else done = true;
}
} // end of linear path code
else // pathType == Circular
{
float twistTotal = twistEnd - twistBegin;
// if the profile has a lot of twist, add more layers otherwise the layers may overlap
// and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't
// accurately match the viewer
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
{
if (twistTotalAbs > Math.PI * 1.5f)
steps *= 2;
if (twistTotalAbs > Math.PI * 3.0f)
steps *= 2;
}
float yPathScale = holeSizeY * 0.5f;
float pathLength = pathCutEnd - pathCutBegin;
float totalSkew = skew * 2.0f * pathLength;
float skewStart = pathCutBegin * 2.0f * skew - skew;
float xOffsetTopShearXFactor = topShearX * (0.25f + 0.5f * (0.5f - holeSizeY));
float yShearCompensation = 1.0f + Math.Abs(topShearY) * 0.25f;
// It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end
// angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used
// to calculate the sine for generating the path radius appears to approximate it's effects there
// too, but there are some subtle differences in the radius which are noticeable as the prim size
// increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on
// the meshes generated with this technique appear nearly identical in shape to the same prims when
// displayed by the viewer.
float startAngle = (twoPi * pathCutBegin * revolutions) - topShearY * 0.9f;
float endAngle = (twoPi * pathCutEnd * revolutions) - topShearY * 0.9f;
float stepSize = twoPi / stepsPerRevolution;
int step = (int)(startAngle / stepSize);
float angle = startAngle;
bool done = false;
while (!done) // loop through the length of the path and add the layers
{
PathNode newNode = new PathNode();
float xProfileScale = (1.0f - Math.Abs(skew)) * holeSizeX;
float yProfileScale = holeSizeY;
float percentOfPath = angle / (twoPi * revolutions);
float percentOfAngles = (angle - startAngle) / (endAngle - startAngle);
if (taperX > 0.01f)
xProfileScale *= 1.0f - percentOfPath * taperX;
else if (taperX < -0.01f)
xProfileScale *= 1.0f + (1.0f - percentOfPath) * taperX;
if (taperY > 0.01f)
yProfileScale *= 1.0f - percentOfPath * taperY;
else if (taperY < -0.01f)
yProfileScale *= 1.0f + (1.0f - percentOfPath) * taperY;
newNode.xScale = xProfileScale;
newNode.yScale = yProfileScale;
float radiusScale = 1.0f;
if (radius > 0.001f)
radiusScale = 1.0f - radius * percentOfPath;
else if (radius < 0.001f)
radiusScale = 1.0f + radius * (1.0f - percentOfPath);
float twist = twistBegin + twistTotal * percentOfPath;
float xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles);
xOffset += (float)Math.Sin(angle) * xOffsetTopShearXFactor;
float yOffset = yShearCompensation * (float)Math.Cos(angle) * (0.5f - yPathScale) * radiusScale;
float zOffset = (float)Math.Sin(angle + topShearY) * (0.5f - yPathScale) * radiusScale;
newNode.position = new Coord(xOffset, yOffset, zOffset);
// now orient the rotation of the profile layer relative to it's position on the path
// adding taperY to the angle used to generate the quat appears to approximate the viewer
newNode.rotation = new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + topShearY);
// next apply twist rotation to the profile layer
if (twistTotal != 0.0f || twistBegin != 0.0f)
newNode.rotation *= new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
// calculate terms for next iteration
// calculate the angle for the next iteration of the loop
if (angle >= endAngle - 0.01)
done = true;
else
{
step += 1;
angle = stepSize * step;
if (angle > endAngle)
angle = endAngle;
}
}
}
}
}
public class PrimMesh
{
public string errorMessage = "";
private const float twoPi = 2.0f * (float)Math.PI;
public List coords;
// public List normals;
public List faces;
private int sides = 4;
private int hollowSides = 4;
private float profileStart = 0.0f;
private float profileEnd = 1.0f;
private float hollow = 0.0f;
public int twistBegin = 0;
public int twistEnd = 0;
public float topShearX = 0.0f;
public float topShearY = 0.0f;
public float pathCutBegin = 0.0f;
public float pathCutEnd = 1.0f;
public float dimpleBegin = 0.0f;
public float dimpleEnd = 1.0f;
public float skew = 0.0f;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
public float taperX = 0.0f;
public float taperY = 0.0f;
public float radius = 0.0f;
public float revolutions = 1.0f;
public int stepsPerRevolution = 24;
private bool hasProfileCut = false;
private bool hasHollow = false;
public int numPrimFaces = 0;
///
/// Human readable string representation of the parameters used to create a mesh.
///
///
public string ParamsToDisplayString()
{
string s = "";
s += "sides..................: " + this.sides.ToString();
s += "\nhollowSides..........: " + this.hollowSides.ToString();
s += "\nprofileStart.........: " + this.profileStart.ToString();
s += "\nprofileEnd...........: " + this.profileEnd.ToString();
s += "\nhollow...............: " + this.hollow.ToString();
s += "\ntwistBegin...........: " + this.twistBegin.ToString();
s += "\ntwistEnd.............: " + this.twistEnd.ToString();
s += "\ntopShearX............: " + this.topShearX.ToString();
s += "\ntopShearY............: " + this.topShearY.ToString();
s += "\npathCutBegin.........: " + this.pathCutBegin.ToString();
s += "\npathCutEnd...........: " + this.pathCutEnd.ToString();
s += "\ndimpleBegin..........: " + this.dimpleBegin.ToString();
s += "\ndimpleEnd............: " + this.dimpleEnd.ToString();
s += "\nskew.................: " + this.skew.ToString();
s += "\nholeSizeX............: " + this.holeSizeX.ToString();
s += "\nholeSizeY............: " + this.holeSizeY.ToString();
s += "\ntaperX...............: " + this.taperX.ToString();
s += "\ntaperY...............: " + this.taperY.ToString();
s += "\nradius...............: " + this.radius.ToString();
s += "\nrevolutions..........: " + this.revolutions.ToString();
s += "\nstepsPerRevolution...: " + this.stepsPerRevolution.ToString();
s += "\nhasProfileCut........: " + this.hasProfileCut.ToString();
s += "\nhasHollow............: " + this.hasHollow.ToString();
return s;
}
public bool HasProfileCut
{
get { return hasProfileCut; }
set { hasProfileCut = value; }
}
public bool HasHollow
{
get { return hasHollow; }
}
///
/// Constructs a PrimMesh object and creates the profile for extrusion.
///
///
///
///
///
///
///
public PrimMesh(int _sides, float _profileStart, float _profileEnd, float _hollow, int _hollowSides)
{
coords = new List();
faces = new List();
sides = _sides;
profileStart = _profileStart;
profileEnd = _profileEnd;
hollow = _hollow;
hollowSides = _hollowSides;
if (sides < 3)
sides = 3;
if (hollowSides < 3)
hollowSides = 3;
if (profileStart < 0.0f)
profileStart = 0.0f;
if (profileEnd > 1.0f)
profileEnd = 1.0f;
if (profileEnd < 0.02f)
profileEnd = 0.02f;
if (profileStart >= profileEnd)
profileStart = profileEnd - 0.02f;
if (hollow > 0.99f)
hollow = 0.99f;
if (hollow < 0.0f)
hollow = 0.0f;
}
///
/// Extrudes a profile along a path.
///
public void Extrude(PathType pathType)
{
bool needEndFaces = false;
coords = new List();
faces = new List();
int steps = 1;
float length = pathCutEnd - pathCutBegin;
hasProfileCut = this.profileEnd - this.profileStart < 0.9999f;
hasHollow = (this.hollow > 0.001f);
float twistBegin = this.twistBegin / 360.0f * twoPi;
float twistEnd = this.twistEnd / 360.0f * twoPi;
float twistTotal = twistEnd - twistBegin;
float twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number
float hollow = this.hollow;
float initialProfileRot = 0.0f;
if (pathType == PathType.Circular)
{
needEndFaces = false;
if (pathCutBegin != 0.0f || pathCutEnd != 1.0f)
needEndFaces = true;
else if (taperX != 0.0f || taperY != 0.0f)
needEndFaces = true;
else if (skew != 0.0f)
needEndFaces = true;
else if (twistTotal != 0.0f)
needEndFaces = true;
else if (radius != 0.0f)
needEndFaces = true;
}
else needEndFaces = true;
if (pathType == PathType.Circular)
{
if (sides == 3)
{
initialProfileRot = (float)Math.PI;
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else hollow *= 0.5f;
}
else if (sides == 4)
{
initialProfileRot = 0.25f * (float)Math.PI;
if (hollowSides != 4)
hollow *= 0.707f;
}
else if (sides > 4)
{
initialProfileRot = (float)Math.PI;
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow /= 0.7f;
}
}
}
else
{
if (sides == 3)
{
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else hollow *= 0.5f;
}
else if (sides == 4)
{
initialProfileRot = 1.25f * (float)Math.PI;
if (hollowSides != 4)
hollow *= 0.707f;
}
else if (sides == 24 && hollowSides == 4)
hollow *= 1.414f;
}
Profile profile = new Profile(sides, profileStart, profileEnd, hollow, hollowSides,
HasProfileCut,true);
errorMessage = profile.errorMessage;
numPrimFaces = profile.numPrimFaces;
if (initialProfileRot != 0.0f)
{
profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot));
}
Path path = new Path();
path.twistBegin = twistBegin;
path.twistEnd = twistEnd;
path.topShearX = topShearX;
path.topShearY = topShearY;
path.pathCutBegin = pathCutBegin;
path.pathCutEnd = pathCutEnd;
path.dimpleBegin = dimpleBegin;
path.dimpleEnd = dimpleEnd;
path.skew = skew;
path.holeSizeX = holeSizeX;
path.holeSizeY = holeSizeY;
path.taperX = taperX;
path.taperY = taperY;
path.radius = radius;
path.revolutions = revolutions;
path.stepsPerRevolution = stepsPerRevolution;
path.Create(pathType, steps);
int lastNode = path.pathNodes.Count - 1;
for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
{
PathNode node = path.pathNodes[nodeIndex];
Profile newLayer = profile.Copy();
newLayer.Scale(node.xScale, node.yScale);
newLayer.AddRot(node.rotation);
newLayer.AddPos(node.position);
// append this layer
int coordsStart = coords.Count;
coords.AddRange(newLayer.coords);
if (needEndFaces && nodeIndex == 0 && newLayer.faces.Count > 0)
{
newLayer.AddValue2FaceVertexIndices(coordsStart);
newLayer.FlipNormals();
faces.AddRange(newLayer.faces);
}
// fill faces between layers
List linkfaces = new List();
int numVerts = newLayer.coords.Count;
Face newFace1 = new Face();
Face newFace2 = new Face();
if (nodeIndex > 0)
{
int startVert = coordsStart;
int endVert = coords.Count;
if (!hasProfileCut)
{
if(numVerts > 5 && !hasHollow)
startVert++;
int i = startVert;
for (int l = 0; l < profile.numOuterVerts - 1; l++)
{
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = i + 1;
linkfaces.Add(newFace1);
newFace2.v1 = i + 1;
newFace2.v2 = i - numVerts;
newFace2.v3 = i + 1 - numVerts;
linkfaces.Add(newFace2);
i++;
}
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = startVert;
linkfaces.Add(newFace1);
newFace2.v1 = startVert;
newFace2.v2 = i - numVerts;
newFace2.v3 = startVert - numVerts;
linkfaces.Add(newFace2);
if (hasHollow)
{
startVert = ++i;
for (int l = 0; l < profile.numHollowVerts - 1; l++)
{
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = i + 1;
linkfaces.Add(newFace1);
newFace2.v1 = i + 1;
newFace2.v2 = i - numVerts;
newFace2.v3 = i + 1 - numVerts;
linkfaces.Add(newFace2);
i++;
}
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = startVert;
linkfaces.Add(newFace1);
newFace2.v1 = startVert;
newFace2.v2 = i - numVerts;
newFace2.v3 = startVert - numVerts;
linkfaces.Add(newFace2);
}
}
else
{
for (int i = startVert; i < endVert; i++)
{
int iNext = i + 1;
if (i == endVert - 1)
iNext = startVert;
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = iNext;
linkfaces.Add(newFace1);
newFace2.v1 = iNext;
newFace2.v2 = i - numVerts;
newFace2.v3 = iNext - numVerts;
linkfaces.Add(newFace2);
}
}
}
if(linkfaces.Count > 0)
faces.AddRange(linkfaces);
if (needEndFaces && nodeIndex == lastNode && newLayer.faces.Count > 0)
{
newLayer.AddValue2FaceVertexIndices(coordsStart);
faces.AddRange(newLayer.faces);
}
} // for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
// more cleanup will be done at Meshmerizer.cs
}
///
/// DEPRICATED - use Extrude(PathType.Linear) instead
/// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism.
///
///
public void ExtrudeLinear()
{
Extrude(PathType.Linear);
}
///
/// DEPRICATED - use Extrude(PathType.Circular) instead
/// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring.
///
///
public void ExtrudeCircular()
{
Extrude(PathType.Circular);
}
private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3)
{
Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
Coord normal = Coord.Cross(edge1, edge2);
normal.Normalize();
return normal;
}
private Coord SurfaceNormal(Face face)
{
return SurfaceNormal(this.coords[face.v1], this.coords[face.v2], this.coords[face.v3]);
}
///
/// Calculate the surface normal for a face in the list of faces
///
///
///
public Coord SurfaceNormal(int faceIndex)
{
int numFaces = this.faces.Count;
if (faceIndex < 0 || faceIndex >= numFaces)
throw new Exception("faceIndex out of range");
return SurfaceNormal(this.faces[faceIndex]);
}
///
/// Duplicates a PrimMesh object. All object properties are copied by value, including lists.
///
///
public PrimMesh Copy()
{
PrimMesh copy = new PrimMesh(this.sides, this.profileStart, this.profileEnd, this.hollow, this.hollowSides);
copy.twistBegin = this.twistBegin;
copy.twistEnd = this.twistEnd;
copy.topShearX = this.topShearX;
copy.topShearY = this.topShearY;
copy.pathCutBegin = this.pathCutBegin;
copy.pathCutEnd = this.pathCutEnd;
copy.dimpleBegin = this.dimpleBegin;
copy.dimpleEnd = this.dimpleEnd;
copy.skew = this.skew;
copy.holeSizeX = this.holeSizeX;
copy.holeSizeY = this.holeSizeY;
copy.taperX = this.taperX;
copy.taperY = this.taperY;
copy.radius = this.radius;
copy.revolutions = this.revolutions;
copy.stepsPerRevolution = this.stepsPerRevolution;
copy.numPrimFaces = this.numPrimFaces;
copy.errorMessage = this.errorMessage;
copy.coords = new List(this.coords);
copy.faces = new List(this.faces);
return copy;
}
///
/// Adds a value to each XYZ vertex coordinate in the mesh
///
///
///
///
public void AddPos(float x, float y, float z)
{
int i;
int numVerts = this.coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = this.coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
this.coords[i] = vert;
}
}
///
/// Rotates the mesh
///
///
public void AddRot(Quat q)
{
int i;
int numVerts = this.coords.Count;
for (i = 0; i < numVerts; i++)
this.coords[i] *= q;
}
#if VERTEX_INDEXER
public VertexIndexer GetVertexIndexer()
{
return null;
}
#endif
///
/// Scales the mesh
///
///
///
///
public void Scale(float x, float y, float z)
{
int i;
int numVerts = this.coords.Count;
//Coord vert;
Coord m = new Coord(x, y, z);
for (i = 0; i < numVerts; i++)
this.coords[i] *= m;
}
///
/// Dumps the mesh to a Blender compatible "Raw" format file
///
///
///
///
public void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = System.IO.Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
for (int i = 0; i < this.faces.Count; i++)
{
string s = this.coords[this.faces[i].v1].ToString();
s += " " + this.coords[this.faces[i].v2].ToString();
s += " " + this.coords[this.faces[i].v3].ToString();
sw.WriteLine(s);
}
sw.Close();
}
}
}