/* * Copyright (c) Contributors * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; using System.IO; namespace PrimMesher { public struct Quat { /// <summary>X value</summary> public float X; /// <summary>Y value</summary> public float Y; /// <summary>Z value</summary> public float Z; /// <summary>W value</summary> public float W; public Quat(float x, float y, float z, float w) { X = x; Y = y; Z = z; W = w; } public Quat(Coord axis, float angle) { axis = axis.Normalize(); angle *= 0.5f; float c = (float)Math.Cos(angle); float s = (float)Math.Sin(angle); X = axis.X * s; Y = axis.Y * s; Z = axis.Z * s; W = c; Normalize(); } public float Length() { return (float)Math.Sqrt(X * X + Y * Y + Z * Z + W * W); } public Quat Normalize() { const float MAG_THRESHOLD = 0.0000001f; float mag = Length(); // Catch very small rounding errors when normalizing if (mag > MAG_THRESHOLD) { float oomag = 1f / mag; X *= oomag; Y *= oomag; Z *= oomag; W *= oomag; } else { X = 0f; Y = 0f; Z = 0f; W = 1f; } return this; } public static Quat operator *(Quat q1, Quat q2) { float x = q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y; float y = q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X; float z = q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W; float w = q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z; return new Quat(x, y, z, w); } public override string ToString() { return "< X: " + this.X.ToString() + ", Y: " + this.Y.ToString() + ", Z: " + this.Z.ToString() + ", W: " + this.W.ToString() + ">"; } } public struct Coord { public float X; public float Y; public float Z; public Coord(float x, float y, float z) { this.X = x; this.Y = y; this.Z = z; } public float Length() { return (float)Math.Sqrt(this.X * this.X + this.Y * this.Y + this.Z * this.Z); } public Coord Invert() { this.X = -this.X; this.Y = -this.Y; this.Z = -this.Z; return this; } public Coord Normalize() { const float MAG_THRESHOLD = 0.0000001f; float mag = Length(); // Catch very small rounding errors when normalizing if (mag > MAG_THRESHOLD) { float oomag = 1.0f / mag; this.X *= oomag; this.Y *= oomag; this.Z *= oomag; } else { this.X = 0.0f; this.Y = 0.0f; this.Z = 0.0f; } return this; } public override string ToString() { return this.X.ToString() + " " + this.Y.ToString() + " " + this.Z.ToString(); } public static Coord Cross(Coord c1, Coord c2) { return new Coord( c1.Y * c2.Z - c2.Y * c1.Z, c1.Z * c2.X - c2.Z * c1.X, c1.X * c2.Y - c2.X * c1.Y ); } public static Coord operator +(Coord v, Coord a) { return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z); } public static Coord operator *(Coord v, Coord m) { return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z); } public static Coord operator *(Coord v, Quat q) { // From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/ Coord c2 = new Coord(0.0f, 0.0f, 0.0f); c2.X = q.W * q.W * v.X + 2f * q.Y * q.W * v.Z - 2f * q.Z * q.W * v.Y + q.X * q.X * v.X + 2f * q.Y * q.X * v.Y + 2f * q.Z * q.X * v.Z - q.Z * q.Z * v.X - q.Y * q.Y * v.X; c2.Y = 2f * q.X * q.Y * v.X + q.Y * q.Y * v.Y + 2f * q.Z * q.Y * v.Z + 2f * q.W * q.Z * v.X - q.Z * q.Z * v.Y + q.W * q.W * v.Y - 2f * q.X * q.W * v.Z - q.X * q.X * v.Y; c2.Z = 2f * q.X * q.Z * v.X + 2f * q.Y * q.Z * v.Y + q.Z * q.Z * v.Z - 2f * q.W * q.Y * v.X - q.Y * q.Y * v.Z + 2f * q.W * q.X * v.Y - q.X * q.X * v.Z + q.W * q.W * v.Z; return c2; } } public struct Face { public int primFace; // vertices public int v1; public int v2; public int v3; public Face(int v1, int v2, int v3) { primFace = 0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } public Coord SurfaceNormal(List<Coord> coordList) { Coord c1 = coordList[this.v1]; Coord c2 = coordList[this.v2]; Coord c3 = coordList[this.v3]; Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z); Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z); return Coord.Cross(edge1, edge2).Normalize(); } } internal struct Angle { internal float angle; internal float X; internal float Y; internal Angle(float angle, float x, float y) { this.angle = angle; this.X = x; this.Y = y; } } internal class AngleList { private float iX, iY; // intersection point private static Angle[] angles3 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(1.0f, 1.0f, 0.0f) }; private static Angle[] angles4 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.25f, 0.0f, 1.0f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.75f, 0.0f, -1.0f), new Angle(1.0f, 1.0f, 0.0f) }; private static Angle[] angles6 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f), new Angle(1.0f, 1.0f, 0.0f) }; private static Angle[] angles12 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f), new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f), new Angle(0.25f, 0.0f, 1.0f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(0.75f, 0.0f, -1.0f), new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f), new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f), new Angle(1.0f, 1.0f, 0.0f) }; private static Angle[] angles24 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f), new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f), new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f), new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f), new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f), new Angle(0.25f, 0.0f, 1.0f), new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f), new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f), new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f), new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f), new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f), new Angle(0.75f, 0.0f, -1.0f), new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f), new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f), new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f), new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f), new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f), new Angle(1.0f, 1.0f, 0.0f) }; private Angle interpolatePoints(float newPoint, Angle p1, Angle p2) { float m = (newPoint - p1.angle) / (p2.angle - p1.angle); return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y)); } private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); double uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3); if (denom != 0.0) { double ua = uaNumerator / denom; iX = (float)(x1 + ua * (x2 - x1)); iY = (float)(y1 + ua * (y2 - y1)); } } internal List<Angle> angles; internal void makeAngles(int sides, float startAngle, float stopAngle, bool hasCut) { angles = new List<Angle>(); const double twoPi = System.Math.PI * 2.0; const float twoPiInv = (float)(1.0d / twoPi); if (sides < 1) throw new Exception("number of sides not greater than zero"); if (stopAngle <= startAngle) throw new Exception("stopAngle not greater than startAngle"); if ((sides == 3 || sides == 4 || sides == 6 || sides == 12 || sides == 24)) { startAngle *= twoPiInv; stopAngle *= twoPiInv; Angle[] sourceAngles; switch (sides) { case 3: sourceAngles = angles3; break; case 4: sourceAngles = angles4; break; case 6: sourceAngles = angles6; break; case 12: sourceAngles = angles12; break; default: sourceAngles = angles24; break; } int startAngleIndex = (int)(startAngle * sides); int endAngleIndex = sourceAngles.Length - 1; if (hasCut) { if (stopAngle < 1.0f) endAngleIndex = (int)(stopAngle * sides) + 1; if (endAngleIndex == startAngleIndex) endAngleIndex++; for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++) { angles.Add(sourceAngles[angleIndex]); } if (startAngle > 0.0f) angles[0] = interpolatePoints(startAngle, angles[0], angles[1]); if (stopAngle < 1.0f) { int lastAngleIndex = angles.Count - 1; angles[lastAngleIndex] = interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]); } } else { for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex; angleIndex++) angles.Add(sourceAngles[angleIndex]); } } else { double stepSize = twoPi / sides; int startStep = (int)(startAngle / stepSize); double angle = stepSize * startStep; int step = startStep; double stopAngleTest = stopAngle; if (stopAngle < twoPi) { stopAngleTest = stepSize * ((int)(stopAngle / stepSize) + 1); if (stopAngleTest < stopAngle) stopAngleTest += stepSize; if (stopAngleTest > twoPi) stopAngleTest = twoPi; } while (angle <= stopAngleTest) { Angle newAngle; newAngle.angle = (float)angle; newAngle.X = (float)System.Math.Cos(angle); newAngle.Y = (float)System.Math.Sin(angle); angles.Add(newAngle); step += 1; angle = stepSize * step; } if (startAngle > angles[0].angle) { Angle newAngle; intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float)Math.Cos(startAngle), (float)Math.Sin(startAngle)); newAngle.angle = startAngle; newAngle.X = iX; newAngle.Y = iY; angles[0] = newAngle; } int index = angles.Count - 1; if (stopAngle < angles[index].angle) { Angle newAngle; intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float)Math.Cos(stopAngle), (float)Math.Sin(stopAngle)); newAngle.angle = stopAngle; newAngle.X = iX; newAngle.Y = iY; angles[index] = newAngle; } } } } /// <summary> /// generates a profile for extrusion /// </summary> public class Profile { private const float twoPi = 2.0f * (float)Math.PI; public string errorMessage = null; public List<Coord> coords; public List<Face> faces; // use these for making individual meshes for each prim face public List<int> outerCoordIndices = null; public List<int> hollowCoordIndices = null; public int numOuterVerts = 0; public int numHollowVerts = 0; public int outerFaceNumber = -1; public int hollowFaceNumber = -1; public int bottomFaceNumber = 0; public int numPrimFaces = 0; public Profile() { this.coords = new List<Coord>(); this.faces = new List<Face>(); } public Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool hasProfileCut, bool createFaces) { const float halfSqr2 = 0.7071067811866f; this.coords = new List<Coord>(); this.faces = new List<Face>(); List<Coord> hollowCoords = new List<Coord>(); bool hasHollow = (hollow > 0.0f); AngleList angles = new AngleList(); AngleList hollowAngles = new AngleList(); float xScale = 0.5f; float yScale = 0.5f; if (sides == 4) // corners of a square are sqrt(2) from center { xScale = halfSqr2; yScale = halfSqr2; } float startAngle = profileStart * twoPi; float stopAngle = profileEnd * twoPi; try { angles.makeAngles(sides, startAngle, stopAngle,hasProfileCut); } catch (Exception ex) { errorMessage = "makeAngles failed: Exception: " + ex.ToString() + "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString(); return; } this.numOuterVerts = angles.angles.Count; Angle angle; Coord newVert = new Coord(); // flag to create as few triangles as possible for 3 or 4 side profile bool simpleFace = (sides < 5 && !hasHollow && !hasProfileCut); if (hasHollow) { if (sides == hollowSides) hollowAngles = angles; else { try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle, hasProfileCut); } catch (Exception ex) { errorMessage = "makeAngles failed: Exception: " + ex.ToString() + "\nsides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString(); return; } int numHollowAngles = hollowAngles.angles.Count; for (int i = 0; i < numHollowAngles; i++) { angle = hollowAngles.angles[i]; newVert.X = hollow * xScale * angle.X; newVert.Y = hollow * yScale * angle.Y; newVert.Z = 0.0f; hollowCoords.Add(newVert); } } this.numHollowVerts = hollowAngles.angles.Count; } else if (!simpleFace) { Coord center = new Coord(0.0f, 0.0f, 0.0f); this.coords.Add(center); } int numAngles = angles.angles.Count; bool hollowsame = (hasHollow && hollowSides == sides); for (int i = 0; i < numAngles; i++) { angle = angles.angles[i]; newVert.X = angle.X * xScale; newVert.Y = angle.Y * yScale; newVert.Z = 0.0f; this.coords.Add(newVert); if (hollowsame) { newVert.X *= hollow; newVert.Y *= hollow; hollowCoords.Add(newVert); } } if (hasHollow) { hollowCoords.Reverse(); this.coords.AddRange(hollowCoords); if (createFaces) { int numTotalVerts = this.numOuterVerts + this.numHollowVerts; if (this.numOuterVerts == this.numHollowVerts) { Face newFace = new Face(); for (int coordIndex = 0; coordIndex < this.numOuterVerts - 1; coordIndex++) { newFace.v1 = coordIndex; newFace.v2 = coordIndex + 1; newFace.v3 = numTotalVerts - coordIndex - 1; this.faces.Add(newFace); newFace.v1 = coordIndex + 1; newFace.v2 = numTotalVerts - coordIndex - 2; newFace.v3 = numTotalVerts - coordIndex - 1; this.faces.Add(newFace); } if (!hasProfileCut) { newFace.v1 = this.numOuterVerts - 1; newFace.v2 = 0; newFace.v3 = this.numOuterVerts; this.faces.Add(newFace); newFace.v1 = 0; newFace.v2 = numTotalVerts - 1; newFace.v3 = this.numOuterVerts; this.faces.Add(newFace); } } else if (this.numOuterVerts < this.numHollowVerts) { Face newFace = new Face(); int j = 0; // j is the index for outer vertices int i; int maxJ = this.numOuterVerts - 1; float curHollowAngle = 0; for (i = 0; i < this.numHollowVerts; i++) // i is the index for inner vertices { curHollowAngle = hollowAngles.angles[i].angle; if (j < maxJ) { if (angles.angles[j + 1].angle - curHollowAngle < curHollowAngle - angles.angles[j].angle + 0.000001f) { newFace.v1 = numTotalVerts - i - 1; newFace.v2 = j; newFace.v3 = j + 1; this.faces.Add(newFace); j++; } } else { if (1.0f - curHollowAngle < curHollowAngle - angles.angles[j].angle + 0.000001f) break; } newFace.v1 = j; newFace.v2 = numTotalVerts - i - 2; newFace.v3 = numTotalVerts - i - 1; this.faces.Add(newFace); } if (!hasProfileCut) { if (i == this.numHollowVerts) { newFace.v1 = numTotalVerts - this.numHollowVerts; newFace.v2 = maxJ; newFace.v3 = 0; this.faces.Add(newFace); } else { if (1.0f - curHollowAngle < curHollowAngle - angles.angles[maxJ].angle + 0.000001f) { newFace.v1 = numTotalVerts - i - 1; newFace.v2 = maxJ; newFace.v3 = 0; this.faces.Add(newFace); } for (; i < this.numHollowVerts - 1; i++) { newFace.v1 = 0; newFace.v2 = numTotalVerts - i - 2; newFace.v3 = numTotalVerts - i - 1; this.faces.Add(newFace); } } newFace.v1 = 0; newFace.v2 = numTotalVerts - this.numHollowVerts; newFace.v3 = numTotalVerts - 1; this.faces.Add(newFace); } } else // numHollowVerts < numOuterVerts { Face newFace = new Face(); int j = 0; // j is the index for inner vertices int maxJ = this.numHollowVerts - 1; for (int i = 0; i < this.numOuterVerts; i++) { if (j < maxJ) if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[j].angle + 0.000001f) { newFace.v1 = i; newFace.v2 = numTotalVerts - j - 2; newFace.v3 = numTotalVerts - j - 1; this.faces.Add(newFace); j += 1; } newFace.v1 = numTotalVerts - j - 1; newFace.v2 = i; newFace.v3 = i + 1; this.faces.Add(newFace); } if (!hasProfileCut) { int i = this.numOuterVerts - 1; if (hollowAngles.angles[0].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[maxJ].angle + 0.000001f) { newFace.v1 = 0; newFace.v2 = numTotalVerts - maxJ - 1; newFace.v3 = numTotalVerts - 1; this.faces.Add(newFace); } newFace.v1 = numTotalVerts - maxJ - 1; newFace.v2 = i; newFace.v3 = 0; this.faces.Add(newFace); } } } } else if (createFaces) { if (simpleFace) { if (sides == 3) this.faces.Add(new Face(0, 1, 2)); else if (sides == 4) { this.faces.Add(new Face(0, 1, 2)); this.faces.Add(new Face(0, 2, 3)); } } else { for (int i = 1; i < numAngles ; i++) { Face newFace = new Face(); newFace.v1 = 0; newFace.v2 = i; newFace.v3 = i + 1; this.faces.Add(newFace); } if (!hasProfileCut) { Face newFace = new Face(); newFace.v1 = 0; newFace.v2 = numAngles; newFace.v3 = 1; this.faces.Add(newFace); } } } hollowCoords = null; } public Profile Copy() { return this.Copy(true); } public Profile Copy(bool needFaces) { Profile copy = new Profile(); copy.coords.AddRange(this.coords); if (needFaces) copy.faces.AddRange(this.faces); copy.numOuterVerts = this.numOuterVerts; copy.numHollowVerts = this.numHollowVerts; return copy; } public void AddPos(Coord v) { this.AddPos(v.X, v.Y, v.Z); } public void AddPos(float x, float y, float z) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X += x; vert.Y += y; vert.Z += z; this.coords[i] = vert; } } public void AddRot(Quat q) { int i; int numVerts = this.coords.Count; for (i = 0; i < numVerts; i++) this.coords[i] *= q; } public void Scale(float x, float y) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X *= x; vert.Y *= y; this.coords[i] = vert; } } /// <summary> /// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial vertices /// </summary> public void FlipNormals() { int i; int numFaces = this.faces.Count; Face tmpFace; int tmp; for (i = 0; i < numFaces; i++) { tmpFace = this.faces[i]; tmp = tmpFace.v3; tmpFace.v3 = tmpFace.v1; tmpFace.v1 = tmp; this.faces[i] = tmpFace; } } public void AddValue2FaceVertexIndices(int num) { int numFaces = this.faces.Count; Face tmpFace; for (int i = 0; i < numFaces; i++) { tmpFace = this.faces[i]; tmpFace.v1 += num; tmpFace.v2 += num; tmpFace.v3 += num; this.faces[i] = tmpFace; } } public void DumpRaw(String path, String name, String title) { if (path == null) return; String fileName = name + "_" + title + ".raw"; String completePath = System.IO.Path.Combine(path, fileName); StreamWriter sw = new StreamWriter(completePath); for (int i = 0; i < this.faces.Count; i++) { string s = this.coords[this.faces[i].v1].ToString(); s += " " + this.coords[this.faces[i].v2].ToString(); s += " " + this.coords[this.faces[i].v3].ToString(); sw.WriteLine(s); } sw.Close(); } } public struct PathNode { public Coord position; public Quat rotation; public float xScale; public float yScale; public float percentOfPath; } public enum PathType { Linear = 0, Circular = 1, Flexible = 2 } public class Path { public List<PathNode> pathNodes = new List<PathNode>(); public float twistBegin = 0.0f; public float twistEnd = 0.0f; public float topShearX = 0.0f; public float topShearY = 0.0f; public float pathCutBegin = 0.0f; public float pathCutEnd = 1.0f; public float dimpleBegin = 0.0f; public float dimpleEnd = 1.0f; public float skew = 0.0f; public float holeSizeX = 1.0f; // called pathScaleX in pbs public float holeSizeY = 0.25f; public float taperX = 0.0f; public float taperY = 0.0f; public float radius = 0.0f; public float revolutions = 1.0f; public int stepsPerRevolution = 24; private const float twoPi = 2.0f * (float)Math.PI; public void Create(PathType pathType, int steps) { if (this.taperX > 0.999f) this.taperX = 0.999f; if (this.taperX < -0.999f) this.taperX = -0.999f; if (this.taperY > 0.999f) this.taperY = 0.999f; if (this.taperY < -0.999f) this.taperY = -0.999f; if (pathType == PathType.Linear || pathType == PathType.Flexible) { int step = 0; float length = this.pathCutEnd - this.pathCutBegin; float twistTotal = twistEnd - twistBegin; float twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number float start = -0.5f; float stepSize = length / (float)steps; float percentOfPathMultiplier = stepSize * 0.999999f; float xOffset = this.topShearX * this.pathCutBegin; float yOffset = this.topShearY * this.pathCutBegin; float zOffset = start; float xOffsetStepIncrement = this.topShearX * length / steps; float yOffsetStepIncrement = this.topShearY * length / steps; float percentOfPath = this.pathCutBegin; zOffset += percentOfPath; // sanity checks bool done = false; while (!done) { PathNode newNode = new PathNode(); newNode.xScale = 1.0f; if (this.taperX == 0.0f) newNode.xScale = 1.0f; else if (this.taperX > 0.0f) newNode.xScale = 1.0f - percentOfPath * this.taperX; else newNode.xScale = 1.0f + (1.0f - percentOfPath) * this.taperX; newNode.yScale = 1.0f; if (this.taperY == 0.0f) newNode.yScale = 1.0f; else if (this.taperY > 0.0f) newNode.yScale = 1.0f - percentOfPath * this.taperY; else newNode.yScale = 1.0f + (1.0f - percentOfPath) * this.taperY; float twist = twistBegin + twistTotal * percentOfPath; newNode.rotation = new Quat(new Coord(0.0f, 0.0f, 1.0f), twist); newNode.position = new Coord(xOffset, yOffset, zOffset); newNode.percentOfPath = percentOfPath; pathNodes.Add(newNode); if (step < steps) { step += 1; percentOfPath += percentOfPathMultiplier; xOffset += xOffsetStepIncrement; yOffset += yOffsetStepIncrement; zOffset += stepSize; if (percentOfPath > this.pathCutEnd) done = true; } else done = true; } } // end of linear path code else // pathType == Circular { float twistTotal = twistEnd - twistBegin; // if the profile has a lot of twist, add more layers otherwise the layers may overlap // and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't // accurately match the viewer float twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) { if (twistTotalAbs > Math.PI * 1.5f) steps *= 2; if (twistTotalAbs > Math.PI * 3.0f) steps *= 2; } float yPathScale = this.holeSizeY * 0.5f; float pathLength = this.pathCutEnd - this.pathCutBegin; float totalSkew = this.skew * 2.0f * pathLength; float skewStart = this.pathCutBegin * 2.0f * this.skew - this.skew; float xOffsetTopShearXFactor = this.topShearX * (0.25f + 0.5f * (0.5f - this.holeSizeY)); float yShearCompensation = 1.0f + Math.Abs(this.topShearY) * 0.25f; // It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end // angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used // to calculate the sine for generating the path radius appears to approximate it's effects there // too, but there are some subtle differences in the radius which are noticeable as the prim size // increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on // the meshes generated with this technique appear nearly identical in shape to the same prims when // displayed by the viewer. float startAngle = (twoPi * this.pathCutBegin * this.revolutions) - this.topShearY * 0.9f; float endAngle = (twoPi * this.pathCutEnd * this.revolutions) - this.topShearY * 0.9f; float stepSize = twoPi / this.stepsPerRevolution; int step = (int)(startAngle / stepSize); float angle = startAngle; bool done = false; while (!done) // loop through the length of the path and add the layers { PathNode newNode = new PathNode(); float xProfileScale = (1.0f - Math.Abs(this.skew)) * this.holeSizeX; float yProfileScale = this.holeSizeY; float percentOfPath = angle / (twoPi * this.revolutions); float percentOfAngles = (angle - startAngle) / (endAngle - startAngle); if (this.taperX > 0.01f) xProfileScale *= 1.0f - percentOfPath * this.taperX; else if (this.taperX < -0.01f) xProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperX; if (this.taperY > 0.01f) yProfileScale *= 1.0f - percentOfPath * this.taperY; else if (this.taperY < -0.01f) yProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperY; newNode.xScale = xProfileScale; newNode.yScale = yProfileScale; float radiusScale = 1.0f; if (this.radius > 0.001f) radiusScale = 1.0f - this.radius * percentOfPath; else if (this.radius < 0.001f) radiusScale = 1.0f + this.radius * (1.0f - percentOfPath); float twist = twistBegin + twistTotal * percentOfPath; float xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles); xOffset += (float)Math.Sin(angle) * xOffsetTopShearXFactor; float yOffset = yShearCompensation * (float)Math.Cos(angle) * (0.5f - yPathScale) * radiusScale; float zOffset = (float)Math.Sin(angle + this.topShearY) * (0.5f - yPathScale) * radiusScale; newNode.position = new Coord(xOffset, yOffset, zOffset); // now orient the rotation of the profile layer relative to it's position on the path // adding taperY to the angle used to generate the quat appears to approximate the viewer newNode.rotation = new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + this.topShearY); // next apply twist rotation to the profile layer if (twistTotal != 0.0f || twistBegin != 0.0f) newNode.rotation *= new Quat(new Coord(0.0f, 0.0f, 1.0f), twist); newNode.percentOfPath = percentOfPath; pathNodes.Add(newNode); // calculate terms for next iteration // calculate the angle for the next iteration of the loop if (angle >= endAngle - 0.01) done = true; else { step += 1; angle = stepSize * step; if (angle > endAngle) angle = endAngle; } } } } } public class PrimMesh { public string errorMessage = ""; private const float twoPi = 2.0f * (float)Math.PI; public List<Coord> coords; // public List<Coord> normals; public List<Face> faces; private int sides = 4; private int hollowSides = 4; private float profileStart = 0.0f; private float profileEnd = 1.0f; private float hollow = 0.0f; public int twistBegin = 0; public int twistEnd = 0; public float topShearX = 0.0f; public float topShearY = 0.0f; public float pathCutBegin = 0.0f; public float pathCutEnd = 1.0f; public float dimpleBegin = 0.0f; public float dimpleEnd = 1.0f; public float skew = 0.0f; public float holeSizeX = 1.0f; // called pathScaleX in pbs public float holeSizeY = 0.25f; public float taperX = 0.0f; public float taperY = 0.0f; public float radius = 0.0f; public float revolutions = 1.0f; public int stepsPerRevolution = 24; private bool hasProfileCut = false; private bool hasHollow = false; public int numPrimFaces = 0; /// <summary> /// Human readable string representation of the parameters used to create a mesh. /// </summary> /// <returns></returns> public string ParamsToDisplayString() { string s = ""; s += "sides..................: " + this.sides.ToString(); s += "\nhollowSides..........: " + this.hollowSides.ToString(); s += "\nprofileStart.........: " + this.profileStart.ToString(); s += "\nprofileEnd...........: " + this.profileEnd.ToString(); s += "\nhollow...............: " + this.hollow.ToString(); s += "\ntwistBegin...........: " + this.twistBegin.ToString(); s += "\ntwistEnd.............: " + this.twistEnd.ToString(); s += "\ntopShearX............: " + this.topShearX.ToString(); s += "\ntopShearY............: " + this.topShearY.ToString(); s += "\npathCutBegin.........: " + this.pathCutBegin.ToString(); s += "\npathCutEnd...........: " + this.pathCutEnd.ToString(); s += "\ndimpleBegin..........: " + this.dimpleBegin.ToString(); s += "\ndimpleEnd............: " + this.dimpleEnd.ToString(); s += "\nskew.................: " + this.skew.ToString(); s += "\nholeSizeX............: " + this.holeSizeX.ToString(); s += "\nholeSizeY............: " + this.holeSizeY.ToString(); s += "\ntaperX...............: " + this.taperX.ToString(); s += "\ntaperY...............: " + this.taperY.ToString(); s += "\nradius...............: " + this.radius.ToString(); s += "\nrevolutions..........: " + this.revolutions.ToString(); s += "\nstepsPerRevolution...: " + this.stepsPerRevolution.ToString(); s += "\nhasProfileCut........: " + this.hasProfileCut.ToString(); s += "\nhasHollow............: " + this.hasHollow.ToString(); return s; } public bool HasProfileCut { get { return hasProfileCut; } set { hasProfileCut = value; } } public bool HasHollow { get { return hasHollow; } } /// <summary> /// Constructs a PrimMesh object and creates the profile for extrusion. /// </summary> /// <param name="sides"></param> /// <param name="profileStart"></param> /// <param name="profileEnd"></param> /// <param name="hollow"></param> /// <param name="hollowSides"></param> /// <param name="sphereMode"></param> public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides) { this.coords = new List<Coord>(); this.faces = new List<Face>(); this.sides = sides; this.profileStart = profileStart; this.profileEnd = profileEnd; this.hollow = hollow; this.hollowSides = hollowSides; if (sides < 3) this.sides = 3; if (hollowSides < 3) this.hollowSides = 3; if (profileStart < 0.0f) this.profileStart = 0.0f; if (profileEnd > 1.0f) this.profileEnd = 1.0f; if (profileEnd < 0.02f) this.profileEnd = 0.02f; if (profileStart >= profileEnd) this.profileStart = profileEnd - 0.02f; if (hollow > 0.99f) this.hollow = 0.99f; if (hollow < 0.0f) this.hollow = 0.0f; } /// <summary> /// Extrudes a profile along a path. /// </summary> public void Extrude(PathType pathType) { bool needEndFaces = false; this.coords = new List<Coord>(); this.faces = new List<Face>(); int steps = 1; float length = this.pathCutEnd - this.pathCutBegin; this.hasProfileCut = this.profileEnd - this.profileStart < 0.9999f; this.hasHollow = (this.hollow > 0.001f); float twistBegin = this.twistBegin / 360.0f * twoPi; float twistEnd = this.twistEnd / 360.0f * twoPi; float twistTotal = twistEnd - twistBegin; float twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number float hollow = this.hollow; if (pathType == PathType.Circular) { needEndFaces = false; if (this.pathCutBegin != 0.0f || this.pathCutEnd != 1.0f) needEndFaces = true; else if (this.taperX != 0.0f || this.taperY != 0.0f) needEndFaces = true; else if (this.skew != 0.0f) needEndFaces = true; else if (twistTotal != 0.0f) needEndFaces = true; else if (this.radius != 0.0f) needEndFaces = true; } else needEndFaces = true; // sanity checks float initialProfileRot = 0.0f; if (pathType == PathType.Circular) { if (this.sides == 3) { initialProfileRot = (float)Math.PI; if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else hollow *= 0.5f; } else if (this.sides == 4) { initialProfileRot = 0.25f * (float)Math.PI; if (this.hollowSides != 4) hollow *= 0.707f; } else if (this.sides > 4) { initialProfileRot = (float)Math.PI; if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow /= 0.7f; } } } else { if (this.sides == 3) { if (this.hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else hollow *= 0.5f; } else if (this.sides == 4) { initialProfileRot = 1.25f * (float)Math.PI; if (this.hollowSides != 4) hollow *= 0.707f; } else if (this.sides == 24 && this.hollowSides == 4) hollow *= 1.414f; } Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides, this.hasProfileCut,true); this.errorMessage = profile.errorMessage; this.numPrimFaces = profile.numPrimFaces; if (initialProfileRot != 0.0f) { profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot)); } float thisV = 0.0f; float lastV = 0.0f; Path path = new Path(); path.twistBegin = twistBegin; path.twistEnd = twistEnd; path.topShearX = topShearX; path.topShearY = topShearY; path.pathCutBegin = pathCutBegin; path.pathCutEnd = pathCutEnd; path.dimpleBegin = dimpleBegin; path.dimpleEnd = dimpleEnd; path.skew = skew; path.holeSizeX = holeSizeX; path.holeSizeY = holeSizeY; path.taperX = taperX; path.taperY = taperY; path.radius = radius; path.revolutions = revolutions; path.stepsPerRevolution = stepsPerRevolution; path.Create(pathType, steps); int lastNode = path.pathNodes.Count -1; for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++) { PathNode node = path.pathNodes[nodeIndex]; Profile newLayer = profile.Copy(); newLayer.Scale(node.xScale, node.yScale); newLayer.AddRot(node.rotation); newLayer.AddPos(node.position); if (needEndFaces && nodeIndex == 0) { newLayer.FlipNormals(); } // if (nodeIndex == 0) // append this layer int coordsLen = this.coords.Count; newLayer.AddValue2FaceVertexIndices(coordsLen); this.coords.AddRange(newLayer.coords); if (needEndFaces) { if (nodeIndex == 0) this.faces.AddRange(newLayer.faces); else if (nodeIndex == lastNode) { if (node.xScale > 1e-6 && node.yScale > 1e-6) this.faces.AddRange(newLayer.faces); } } // fill faces between layers int numVerts = newLayer.coords.Count; Face newFace1 = new Face(); Face newFace2 = new Face(); thisV = 1.0f - node.percentOfPath; if (nodeIndex > 0) { int startVert = coordsLen; int endVert = this.coords.Count; if (!this.hasProfileCut) { int i = startVert; for (int l = 0; l < profile.numOuterVerts - 1; l++) { newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = i + 1; this.faces.Add(newFace1); newFace2.v1 = i + 1; newFace2.v2 = i - numVerts; newFace2.v3 = i + 1 - numVerts; this.faces.Add(newFace2); i++; } newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = startVert; this.faces.Add(newFace1); newFace2.v1 = startVert; newFace2.v2 = i - numVerts; newFace2.v3 = startVert - numVerts; this.faces.Add(newFace2); if (this.hasHollow) { startVert = ++i; for (int l = 0; l < profile.numHollowVerts - 1; l++) { newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = i + 1; this.faces.Add(newFace1); newFace2.v1 = i + 1; newFace2.v2 = i - numVerts; newFace2.v3 = i + 1 - numVerts; this.faces.Add(newFace2); i++; } newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = startVert; this.faces.Add(newFace1); newFace2.v1 = startVert; newFace2.v2 = i - numVerts; newFace2.v3 = startVert - numVerts; this.faces.Add(newFace2); } } else { for (int i = startVert; i < endVert; i++) { int iNext = i + 1; if (i == endVert - 1) iNext = startVert; newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = iNext; this.faces.Add(newFace1); newFace2.v1 = iNext; newFace2.v2 = i - numVerts; newFace2.v3 = iNext - numVerts; this.faces.Add(newFace2); } } } lastV = thisV; } // for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++) } /// <summary> /// DEPRICATED - use Extrude(PathType.Linear) instead /// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism. /// </summary> /// public void ExtrudeLinear() { this.Extrude(PathType.Linear); } /// <summary> /// DEPRICATED - use Extrude(PathType.Circular) instead /// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring. /// </summary> /// public void ExtrudeCircular() { this.Extrude(PathType.Circular); } private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3) { Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z); Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z); Coord normal = Coord.Cross(edge1, edge2); normal.Normalize(); return normal; } private Coord SurfaceNormal(Face face) { return SurfaceNormal(this.coords[face.v1], this.coords[face.v2], this.coords[face.v3]); } /// <summary> /// Calculate the surface normal for a face in the list of faces /// </summary> /// <param name="faceIndex"></param> /// <returns></returns> public Coord SurfaceNormal(int faceIndex) { int numFaces = this.faces.Count; if (faceIndex < 0 || faceIndex >= numFaces) throw new Exception("faceIndex out of range"); return SurfaceNormal(this.faces[faceIndex]); } /// <summary> /// Duplicates a PrimMesh object. All object properties are copied by value, including lists. /// </summary> /// <returns></returns> public PrimMesh Copy() { PrimMesh copy = new PrimMesh(this.sides, this.profileStart, this.profileEnd, this.hollow, this.hollowSides); copy.twistBegin = this.twistBegin; copy.twistEnd = this.twistEnd; copy.topShearX = this.topShearX; copy.topShearY = this.topShearY; copy.pathCutBegin = this.pathCutBegin; copy.pathCutEnd = this.pathCutEnd; copy.dimpleBegin = this.dimpleBegin; copy.dimpleEnd = this.dimpleEnd; copy.skew = this.skew; copy.holeSizeX = this.holeSizeX; copy.holeSizeY = this.holeSizeY; copy.taperX = this.taperX; copy.taperY = this.taperY; copy.radius = this.radius; copy.revolutions = this.revolutions; copy.stepsPerRevolution = this.stepsPerRevolution; copy.numPrimFaces = this.numPrimFaces; copy.errorMessage = this.errorMessage; copy.coords = new List<Coord>(this.coords); copy.faces = new List<Face>(this.faces); return copy; } /// <summary> /// Adds a value to each XYZ vertex coordinate in the mesh /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <param name="z"></param> public void AddPos(float x, float y, float z) { int i; int numVerts = this.coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = this.coords[i]; vert.X += x; vert.Y += y; vert.Z += z; this.coords[i] = vert; } } /// <summary> /// Rotates the mesh /// </summary> /// <param name="q"></param> public void AddRot(Quat q) { int i; int numVerts = this.coords.Count; for (i = 0; i < numVerts; i++) this.coords[i] *= q; } #if VERTEX_INDEXER public VertexIndexer GetVertexIndexer() { return null; } #endif /// <summary> /// Scales the mesh /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <param name="z"></param> public void Scale(float x, float y, float z) { int i; int numVerts = this.coords.Count; //Coord vert; Coord m = new Coord(x, y, z); for (i = 0; i < numVerts; i++) this.coords[i] *= m; } /// <summary> /// Dumps the mesh to a Blender compatible "Raw" format file /// </summary> /// <param name="path"></param> /// <param name="name"></param> /// <param name="title"></param> public void DumpRaw(String path, String name, String title) { if (path == null) return; String fileName = name + "_" + title + ".raw"; String completePath = System.IO.Path.Combine(path, fileName); StreamWriter sw = new StreamWriter(completePath); for (int i = 0; i < this.faces.Count; i++) { string s = this.coords[this.faces[i].v1].ToString(); s += " " + this.coords[this.faces[i].v2].ToString(); s += " " + this.coords[this.faces[i].v3].ToString(); sw.WriteLine(s); } sw.Close(); } } }