/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; using OpenSim.Framework; using OpenSim.Region.Framework; using OpenSim.Region.CoreModules; using OpenSim.Region.PhysicsModules.SharedBase; using Nini.Config; using log4net; using OpenMetaverse; namespace OpenSim.Region.PhysicsModule.BulletS { public sealed class BSTerrainMesh : BSTerrainPhys { static string LogHeader = "[BULLETSIM TERRAIN MESH]"; private float[] m_savedHeightMap; int m_sizeX; int m_sizeY; BulletShape m_terrainShape; BulletBody m_terrainBody; public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, Vector3 regionSize) : base(physicsScene, regionBase, id) { } public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id /* parameters for making mesh */) : base(physicsScene, regionBase, id) { } // Create terrain mesh from a heightmap. public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, float[] initialMap, Vector3 minCoords, Vector3 maxCoords) : base(physicsScene, regionBase, id) { int indicesCount; int[] indices; int verticesCount; float[] vertices; m_savedHeightMap = initialMap; m_sizeX = (int)(maxCoords.X - minCoords.X); m_sizeY = (int)(maxCoords.Y - minCoords.Y); bool meshCreationSuccess = false; if (BSParam.TerrainMeshMagnification == 1) { // If a magnification of one, use the old routine that is tried and true. meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh(m_physicsScene, initialMap, m_sizeX, m_sizeY, // input size Vector3.Zero, // base for mesh out indicesCount, out indices, out verticesCount, out vertices); } else { // Other magnifications use the newer routine meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh2(m_physicsScene, initialMap, m_sizeX, m_sizeY, // input size BSParam.TerrainMeshMagnification, physicsScene.TerrainManager.DefaultRegionSize, Vector3.Zero, // base for mesh out indicesCount, out indices, out verticesCount, out vertices); } if (!meshCreationSuccess) { // DISASTER!! m_physicsScene.DetailLog("{0},BSTerrainMesh.create,failedConversionOfHeightmap,id={1}", BSScene.DetailLogZero, ID); m_physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } m_physicsScene.DetailLog("{0},BSTerrainMesh.create,meshed,id={1},indices={2},indSz={3},vertices={4},vertSz={5}", BSScene.DetailLogZero, ID, indicesCount, indices.Length, verticesCount, vertices.Length); m_terrainShape = m_physicsScene.PE.CreateMeshShape(m_physicsScene.World, indicesCount, indices, verticesCount, vertices); if (!m_terrainShape.HasPhysicalShape) { // DISASTER!! m_physicsScene.DetailLog("{0},BSTerrainMesh.create,failedCreationOfShape,id={1}", BSScene.DetailLogZero, ID); m_physicsScene.Logger.ErrorFormat("{0} Failed creation of terrain mesh! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } Vector3 pos = regionBase; Quaternion rot = Quaternion.Identity; m_terrainBody = m_physicsScene.PE.CreateBodyWithDefaultMotionState(m_terrainShape, ID, pos, rot); if (!m_terrainBody.HasPhysicalBody) { // DISASTER!! m_physicsScene.Logger.ErrorFormat("{0} Failed creation of terrain body! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } physicsScene.PE.SetShapeCollisionMargin(m_terrainShape, BSParam.TerrainCollisionMargin); // Set current terrain attributes m_physicsScene.PE.SetFriction(m_terrainBody, BSParam.TerrainFriction); m_physicsScene.PE.SetHitFraction(m_terrainBody, BSParam.TerrainHitFraction); m_physicsScene.PE.SetRestitution(m_terrainBody, BSParam.TerrainRestitution); m_physicsScene.PE.SetContactProcessingThreshold(m_terrainBody, BSParam.TerrainContactProcessingThreshold); m_physicsScene.PE.SetCollisionFlags(m_terrainBody, CollisionFlags.CF_STATIC_OBJECT); // Static objects are not very massive. m_physicsScene.PE.SetMassProps(m_terrainBody, 0f, Vector3.Zero); // Put the new terrain to the world of physical objects m_physicsScene.PE.AddObjectToWorld(m_physicsScene.World, m_terrainBody); // Redo its bounding box now that it is in the world m_physicsScene.PE.UpdateSingleAabb(m_physicsScene.World, m_terrainBody); m_terrainBody.collisionType = CollisionType.Terrain; m_terrainBody.ApplyCollisionMask(m_physicsScene); if (BSParam.UseSingleSidedMeshes) { m_physicsScene.DetailLog("{0},BSTerrainMesh.settingCustomMaterial,id={1}", BSScene.DetailLogZero, id); m_physicsScene.PE.AddToCollisionFlags(m_terrainBody, CollisionFlags.CF_CUSTOM_MATERIAL_CALLBACK); } // Make it so the terrain will not move or be considered for movement. m_physicsScene.PE.ForceActivationState(m_terrainBody, ActivationState.DISABLE_SIMULATION); } public override void Dispose() { if (m_terrainBody.HasPhysicalBody) { m_physicsScene.PE.RemoveObjectFromWorld(m_physicsScene.World, m_terrainBody); // Frees both the body and the shape. m_physicsScene.PE.DestroyObject(m_physicsScene.World, m_terrainBody); m_terrainBody.Clear(); m_terrainShape.Clear(); } } public override float GetTerrainHeightAtXYZ(Vector3 pos) { // For the moment use the saved heightmap to get the terrain height. // TODO: raycast downward to find the true terrain below the position. float ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET; int mapIndex = (int)pos.Y * m_sizeY + (int)pos.X; try { ret = m_savedHeightMap[mapIndex]; } catch { // Sometimes they give us wonky values of X and Y. Give a warning and return something. m_physicsScene.Logger.WarnFormat("{0} Bad request for terrain height. terrainBase={1}, pos={2}", LogHeader, TerrainBase, pos); ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET; } return ret; } // The passed position is relative to the base of the region. public override float GetWaterLevelAtXYZ(Vector3 pos) { return m_physicsScene.SimpleWaterLevel; } // Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh( BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; // Simple mesh creation which assumes magnification == 1. // TODO: do a more general solution that scales, adds new vertices and smoothes the result. // Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop // from zero to <= sizeX). The triangle indices are then generated as two triangles // per heightmap point. There are sizeX by sizeY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // One vertice per heightmap value plus the vertices off the side and bottom edge. int totalVertices = (sizeX + 1) * (sizeY + 1); vertices = new float[totalVertices * 3]; int totalIndices = sizeX * sizeY * 6; indices = new int[totalIndices]; if (physicsScene != null) physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3}", BSScene.DetailLogZero, totalVertices, totalIndices, extentBase); float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. for (int yy = 0; yy <= sizeY; yy++) { for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { int offset = yy * sizeX + xx; // Extend the height with the height from the last row or column if (yy == sizeY) offset -= sizeX; if (xx == sizeX) offset -= 1; float height = heightMap[offset]; minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx + extentBase.X; vertices[verticesCount + 1] = (float)yy + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } verticesCount = verticesCount / 3; for (int yy = 0; yy < sizeY; yy++) { for (int xx = 0; xx < sizeX; xx++) { int offset = yy * (sizeX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + sizeX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + sizeX + 2; indices[indicesCount + 5] = offset + sizeX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return ret; } private class HeightMapGetter { private float[] m_heightMap; private int m_sizeX; private int m_sizeY; public HeightMapGetter(float[] pHeightMap, int pSizeX, int pSizeY) { m_heightMap = pHeightMap; m_sizeX = pSizeX; m_sizeY = pSizeY; } // The heightmap is extended as an infinite plane at the last height public float GetHeight(int xx, int yy) { int offset = 0; // Extend the height with the height from the last row or column if (yy >= m_sizeY) if (xx >= m_sizeX) offset = (m_sizeY - 1) * m_sizeX + (m_sizeX - 1); else offset = (m_sizeY - 1) * m_sizeX + xx; else if (xx >= m_sizeX) offset = yy * m_sizeX + (m_sizeX - 1); else offset = yy * m_sizeX + xx; return m_heightMap[offset]; } } // Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Version that handles magnification. // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh2( BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap int magnification, // number of vertices per heighmap step Vector3 extent, // dimensions of the output mesh Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; HeightMapGetter hmap = new HeightMapGetter(heightMap, sizeX, sizeY); // The vertices dimension of the output mesh int meshX = sizeX * magnification; int meshY = sizeY * magnification; // The output size of one mesh step float meshXStep = extent.X / meshX; float meshYStep = extent.Y / meshY; // Create an array of vertices that is meshX+1 by meshY+1 (note the loop // from zero to <= meshX). The triangle indices are then generated as two triangles // per heightmap point. There are meshX by meshY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // Vertices for the output heightmap plus one on the side and bottom to complete triangles int totalVertices = (meshX + 1) * (meshY + 1); vertices = new float[totalVertices * 3]; int totalIndices = meshX * meshY * 6; indices = new int[totalIndices]; if (physicsScene != null) physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,inSize={1},outSize={2},totVert={3},totInd={4},extentBase={5}", BSScene.DetailLogZero, new Vector2(sizeX, sizeY), new Vector2(meshX, meshY), totalVertices, totalIndices, extentBase); float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. // Loop through the output vertices and compute the mediun height in between the input vertices for (int yy = 0; yy <= meshY; yy++) { for (int xx = 0; xx <= meshX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { float offsetY = (float)yy * (float)sizeY / (float)meshY; // The Y that is closest to the mesh point int stepY = (int)offsetY; float fractionalY = offsetY - (float)stepY; float offsetX = (float)xx * (float)sizeX / (float)meshX; // The X that is closest to the mesh point int stepX = (int)offsetX; float fractionalX = offsetX - (float)stepX; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,xx={1},yy={2},offX={3},stepX={4},fractX={5},offY={6},stepY={7},fractY={8}", // BSScene.DetailLogZero, xx, yy, offsetX, stepX, fractionalX, offsetY, stepY, fractionalY); // get the four corners of the heightmap square the mesh point is in float heightUL = hmap.GetHeight(stepX , stepY ); float heightUR = hmap.GetHeight(stepX + 1, stepY ); float heightLL = hmap.GetHeight(stepX , stepY + 1); float heightLR = hmap.GetHeight(stepX + 1, stepY + 1); // bilinear interplolation float height = heightUL * (1 - fractionalX) * (1 - fractionalY) + heightUR * fractionalX * (1 - fractionalY) + heightLL * (1 - fractionalX) * fractionalY + heightLR * fractionalX * fractionalY; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,heightUL={1},heightUR={2},heightLL={3},heightLR={4},heightMap={5}", // BSScene.DetailLogZero, heightUL, heightUR, heightLL, heightLR, height); minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx * meshXStep + extentBase.X; vertices[verticesCount + 1] = (float)yy * meshYStep + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } // The number of vertices generated verticesCount /= 3; // Loop through all the heightmap squares and create indices for the two triangles for that square for (int yy = 0; yy < meshY; yy++) { for (int xx = 0; xx < meshX; xx++) { int offset = yy * (meshX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + meshX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + meshX + 2; indices[indicesCount + 5] = offset + meshX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return ret; } } }