/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Revision 2011/12 by Ubit Umarov * * */ /* * Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. */ //#define SPAM using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using System.Threading; using log4net; using OpenMetaverse; using OdeAPI; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.OdePlugin { public class OdePrim : PhysicsActor { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private bool m_isphysical; private bool m_fakeisphysical; private bool m_isphantom; private bool m_fakeisphantom; internal bool m_isVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively private bool m_fakeisVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively protected bool m_building; protected bool m_forcePosOrRotation; private bool m_iscolliding; internal bool m_isSelected; private bool m_delaySelect; private bool m_lastdoneSelected; internal bool m_outbounds; private Quaternion m_lastorientation = new Quaternion(); private Quaternion _orientation; private Vector3 _position; private Vector3 _velocity; private Vector3 _torque; private Vector3 m_lastVelocity; private Vector3 m_lastposition; private Vector3 m_rotationalVelocity; private Vector3 _size; private Vector3 _acceleration; private Vector3 m_angularlock = Vector3.One; private IntPtr Amotor = IntPtr.Zero; private Vector3 m_force; private Vector3 m_forceacc; private Vector3 m_angularForceacc; private Vector3 m_PIDTarget; private float m_PIDTau; private float PID_D = 35f; private float PID_G = 25f; private bool m_usePID; // KF: These next 7 params apply to llSetHoverHeight(float height, integer water, float tau), // and are for non-VEHICLES only. private float m_PIDHoverHeight; private float m_PIDHoverTau; private bool m_useHoverPID; private PIDHoverType m_PIDHoverType = PIDHoverType.Ground; private float m_targetHoverHeight; private float m_groundHeight; private float m_waterHeight; private float m_buoyancy; //KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle. private int body_autodisable_frames = 5; private int bodydisablecontrol = 0; // Default we're a Geometry private CollisionCategories m_collisionCategories = (CollisionCategories.Geom); // Default colide nonphysical don't try to colide with anything private const CollisionCategories m_default_collisionFlagsNotPhysical = 0; private const CollisionCategories m_default_collisionFlagsPhysical = (CollisionCategories.Geom | CollisionCategories.Character | CollisionCategories.Land | CollisionCategories.VolumeDtc); // private bool m_collidesLand = true; private bool m_collidesWater; public bool m_returnCollisions; private bool m_NoColide; // for now only for internal use for bad meshs // Default, Collide with Other Geometries, spaces and Bodies private CollisionCategories m_collisionFlags = m_default_collisionFlagsNotPhysical; public bool m_disabled; public uint m_localID; private IMesh m_mesh; private object m_meshlock = new object(); private PrimitiveBaseShape _pbs; public OdeScene _parent_scene; /// /// The physics space which contains prim geometry /// public IntPtr m_targetSpace = IntPtr.Zero; public IntPtr prim_geom; public IntPtr _triMeshData; private PhysicsActor _parent; private List childrenPrim = new List(); private bool m_throttleUpdates; private int throttleCounter; public float m_collisionscore; int m_colliderfilter = 0; public IntPtr collide_geom; // for objects: geom if single prim space it linkset private float m_density = 10.000006836f; // Aluminum g/cm3; private byte m_shapetype; public bool _zeroFlag; private bool m_lastUpdateSent; public IntPtr Body = IntPtr.Zero; public String Name { get; private set; } private Vector3 _target_velocity; public Vector3 primOOBsize; // prim real dimensions from mesh public Vector3 primOOBoffset; // its centroid out of mesh or rest aabb public float primOOBradiusSQ; public d.Mass primdMass; // prim inertia information on it's own referencial float primMass; // prim own mass float primVolume; // prim own volume; float _mass; // object mass acording to case private bool hasOOBoffsetFromMesh = false; // if true we did compute it form mesh centroid, else from aabb public int givefakepos = 0; private Vector3 fakepos; public int givefakeori = 0; private Quaternion fakeori; public int m_eventsubscription; private CollisionEventUpdate CollisionEventsThisFrame = new CollisionEventUpdate(); public volatile bool childPrim; public ODEDynamics m_vehicle; internal int m_material = (int)Material.Wood; private float mu; private float bounce; /// /// Is this prim subject to physics? Even if not, it's still solid for collision purposes. /// public override bool IsPhysical // this is not reliable for internal use { get { return m_fakeisphysical; } set { m_fakeisphysical = value; // we show imediatly to outside that we changed physical // and also to stop imediatly some updates // but real change will only happen in taintprocessing if (!value) // Zero the remembered last velocity m_lastVelocity = Vector3.Zero; AddChange(changes.Physical, value); } } public override bool IsVolumeDtc { get { return m_fakeisVolumeDetect; } set { m_fakeisVolumeDetect = value; AddChange(changes.VolumeDtc, value); } } public override bool Phantom // this is not reliable for internal use { get { return m_fakeisphantom; } set { m_fakeisphantom = value; AddChange(changes.Phantom, value); } } public override bool Building // this is not reliable for internal use { get { return m_building; } set { if (value) m_building = true; AddChange(changes.building, value); } } public override void getContactData(ref ContactData cdata) { cdata.mu = mu; cdata.bounce = bounce; // cdata.softcolide = m_softcolide; cdata.softcolide = false; if (m_isphysical) { ODEDynamics veh; if (_parent != null) veh = ((OdePrim)_parent).m_vehicle; else veh = m_vehicle; if (veh != null && veh.Type != Vehicle.TYPE_NONE) cdata.mu *= veh.FrictionFactor; } } public override int PhysicsActorType { get { return (int)ActorTypes.Prim; } set { return; } } public override bool SetAlwaysRun { get { return false; } set { return; } } public override uint LocalID { get { return m_localID; } set { //m_log.Info("[PHYSICS]: Setting TrackerID: " + value); m_localID = value; } } public override bool Grabbed { set { return; } } public override bool Selected { set { if (value) m_isSelected = value; // if true set imediatly to stop moves etc AddChange(changes.Selected, value); } } public override bool Flying { // no flying prims for you get { return false; } set { } } public override bool IsColliding { get { return m_iscolliding; } set { if (value) { m_colliderfilter += 2; if (m_colliderfilter > 2) m_colliderfilter = 2; } else { m_colliderfilter--; if (m_colliderfilter < 0) m_colliderfilter = 0; } if (m_colliderfilter == 0) m_iscolliding = false; else m_iscolliding = true; } } public override bool CollidingGround { get { return false; } set { return; } } public override bool CollidingObj { get { return false; } set { return; } } public override bool ThrottleUpdates { get { return m_throttleUpdates; } set { m_throttleUpdates = value; } } public override bool Stopped { get { return _zeroFlag; } } public override Vector3 Position { get { if (givefakepos > 0) return fakepos; else return _position; } set { fakepos = value; givefakepos++; AddChange(changes.Position, value); } } public override Vector3 Size { get { return _size; } set { if (value.IsFinite()) { AddChange(changes.Size, value); } else { m_log.WarnFormat("[PHYSICS]: Got NaN Size on object {0}", Name); } } } public override float Mass { get { return primMass; } } public override Vector3 Force { //get { return Vector3.Zero; } get { return m_force; } set { if (value.IsFinite()) { AddChange(changes.Force, value); } else { m_log.WarnFormat("[PHYSICS]: NaN in Force Applied to an Object {0}", Name); } } } public override void SetVolumeDetect(int param) { m_fakeisVolumeDetect = (param != 0); AddChange(changes.VolumeDtc, m_fakeisVolumeDetect); } public override Vector3 GeometricCenter { // this is not real geometric center but a average of positions relative to root prim acording to // http://wiki.secondlife.com/wiki/llGetGeometricCenter // ignoring tortured prims details since sl also seems to ignore // so no real use in doing it on physics get { return Vector3.Zero; } } public override Vector3 CenterOfMass { get { d.Vector3 dtmp; if (IsPhysical && !childPrim && Body != IntPtr.Zero) { dtmp = d.BodyGetPosition(Body); return new Vector3(dtmp.X, dtmp.Y, dtmp.Z); } else if (prim_geom != IntPtr.Zero) { d.Quaternion dq; d.GeomCopyQuaternion(prim_geom, out dq); Quaternion q; q.X = dq.X; q.Y = dq.Y; q.Z = dq.Z; q.W = dq.W; Vector3 vtmp = primOOBoffset * q; dtmp = d.GeomGetPosition(prim_geom); return new Vector3(dtmp.X + vtmp.X, dtmp.Y + vtmp.Y, dtmp.Z + vtmp.Z); } else return Vector3.Zero; } } /* public override Vector3 PrimOOBsize { get { return primOOBsize; } } public override Vector3 PrimOOBoffset { get { return primOOBoffset; } } public override float PrimOOBRadiusSQ { get { return primOOBradiusSQ; } } */ public override PrimitiveBaseShape Shape { set { /* IMesh mesh = null; if (_parent_scene.needsMeshing(value)) { bool convex; if (m_shapetype == 0) convex = false; else convex = true; mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex); } if (mesh != null) { lock (m_meshlock) m_mesh = mesh; } */ AddChange(changes.Shape, value); } } public override byte PhysicsShapeType { get { return m_shapetype; } set { m_shapetype = value; AddChange(changes.Shape, null); } } public override Vector3 Velocity { get { if (_zeroFlag) return Vector3.Zero; return _velocity; } set { if (value.IsFinite()) { AddChange(changes.Velocity, value); // _velocity = value; } else { m_log.WarnFormat("[PHYSICS]: Got NaN Velocity in Object {0}", Name); } } } public override Vector3 Torque { get { if (!IsPhysical || Body == IntPtr.Zero) return Vector3.Zero; return _torque; } set { if (value.IsFinite()) { AddChange(changes.Torque, value); } else { m_log.WarnFormat("[PHYSICS]: Got NaN Torque in Object {0}", Name); } } } public override float CollisionScore { get { return m_collisionscore; } set { m_collisionscore = value; } } public override bool Kinematic { get { return false; } set { } } public override Quaternion Orientation { get { if (givefakeori > 0) return fakeori; else return _orientation; } set { if (QuaternionIsFinite(value)) { fakeori = value; givefakeori++; AddChange(changes.Orientation, value); } else m_log.WarnFormat("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object {0}", Name); } } public override Vector3 Acceleration { get { return _acceleration; } set { } } public override Vector3 RotationalVelocity { get { Vector3 pv = Vector3.Zero; if (_zeroFlag) return pv; m_lastUpdateSent = false; if (m_rotationalVelocity.ApproxEquals(pv, 0.0001f)) return pv; return m_rotationalVelocity; } set { if (value.IsFinite()) { m_rotationalVelocity = value; if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body)) d.BodyEnable(Body); } else { m_log.WarnFormat("[PHYSICS]: Got NaN RotationalVelocity in Object {0}", Name); } } } public override float Buoyancy { get { return m_buoyancy; } set { m_buoyancy = value; } } public override bool FloatOnWater { set { AddChange(changes.CollidesWater, value); } } public override Vector3 PIDTarget { set { if (value.IsFinite()) { m_PIDTarget = value; } else m_log.WarnFormat("[PHYSICS]: Got NaN PIDTarget from Scene on Object {0}", Name); } } public override bool PIDActive { set { m_usePID = value; } } public override float PIDTau { set { m_PIDTau = value; } } public override float PIDHoverHeight { set { m_PIDHoverHeight = value; ; } } public override bool PIDHoverActive { set { m_useHoverPID = value; } } public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } } public override float PIDHoverTau { set { m_PIDHoverTau = value; } } public override Quaternion APIDTarget { set { return; } } public override bool APIDActive { set { return; } } public override float APIDStrength { set { return; } } public override float APIDDamping { set { return; } } public override int VehicleType { // we may need to put a fake on this get { if (m_vehicle == null) return (int)Vehicle.TYPE_NONE; else return (int)m_vehicle.Type; } set { AddChange(changes.VehicleType, value); } } public override void VehicleFloatParam(int param, float value) { strVehicleFloatParam fp = new strVehicleFloatParam(); fp.param = param; fp.value = value; AddChange(changes.VehicleFloatParam, fp); } public override void VehicleVectorParam(int param, Vector3 value) { strVehicleVectorParam fp = new strVehicleVectorParam(); fp.param = param; fp.value = value; AddChange(changes.VehicleVectorParam, fp); } public override void VehicleRotationParam(int param, Quaternion value) { strVehicleQuatParam fp = new strVehicleQuatParam(); fp.param = param; fp.value = value; AddChange(changes.VehicleRotationParam, fp); } public override void VehicleFlags(int param, bool value) { strVehicleBoolParam bp = new strVehicleBoolParam(); bp.param = param; bp.value = value; AddChange(changes.VehicleFlags, bp); } public override void SetVehicle(object vdata) { AddChange(changes.SetVehicle, vdata); } public void SetAcceleration(Vector3 accel) { _acceleration = accel; } public override void AddForce(Vector3 force, bool pushforce) { if (force.IsFinite()) { AddChange(changes.AddForce, force / _parent_scene.ODE_STEPSIZE); } else { m_log.WarnFormat("[PHYSICS]: Got Invalid linear force vector from Scene in Object {0}", Name); } //m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString()); } public override void AddAngularForce(Vector3 force, bool pushforce) { if (force.IsFinite()) { AddChange(changes.AddAngForce, force / _parent_scene.ODE_STEPSIZE); } else { m_log.WarnFormat("[PHYSICS]: Got Invalid Angular force vector from Scene in Object {0}", Name); } } public override void CrossingFailure() { if (m_outbounds) { _position.X = Util.Clip(_position.X, 0.5f, _parent_scene.WorldExtents.X - 0.5f); _position.Y = Util.Clip(_position.Y, 0.5f, _parent_scene.WorldExtents.Y - 0.5f); _position.Z = Util.Clip(_position.Z + 0.2f, -100f, 50000f); m_lastposition = _position; _velocity.X = 0; _velocity.Y = 0; _velocity.Z = 0; m_lastVelocity = _velocity; if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Stop(); if(Body != IntPtr.Zero) d.BodySetLinearVel(Body, 0, 0, 0); // stop it if (prim_geom != IntPtr.Zero) d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); m_outbounds = false; changeDisable(false); base.RequestPhysicsterseUpdate(); } } public override void SetMomentum(Vector3 momentum) { } public override void SetMaterial(int pMaterial) { m_material = pMaterial; mu = _parent_scene.m_materialContactsData[pMaterial].mu; bounce = _parent_scene.m_materialContactsData[pMaterial].bounce; } public void setPrimForRemoval() { AddChange(changes.Remove, null); } public override void link(PhysicsActor obj) { AddChange(changes.Link, obj); } public override void delink() { AddChange(changes.DeLink, null); } public override void LockAngularMotion(Vector3 axis) { // reverse the zero/non zero values for ODE. if (axis.IsFinite()) { axis.X = (axis.X > 0) ? 1f : 0f; axis.Y = (axis.Y > 0) ? 1f : 0f; axis.Z = (axis.Z > 0) ? 1f : 0f; m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z); AddChange(changes.AngLock, axis); } else { m_log.WarnFormat("[PHYSICS]: Got NaN locking axis from Scene on Object {0}", Name); } } public override void SubscribeEvents(int ms) { m_eventsubscription = ms; _parent_scene.AddCollisionEventReporting(this); } public override void UnSubscribeEvents() { _parent_scene.RemoveCollisionEventReporting(this); m_eventsubscription = 0; } public void AddCollisionEvent(uint CollidedWith, ContactPoint contact) { if (CollisionEventsThisFrame == null) CollisionEventsThisFrame = new CollisionEventUpdate(); CollisionEventsThisFrame.AddCollider(CollidedWith, contact); } public void SendCollisions() { if (CollisionEventsThisFrame == null) return; base.SendCollisionUpdate(CollisionEventsThisFrame); if (CollisionEventsThisFrame.m_objCollisionList.Count == 0) CollisionEventsThisFrame = null; else CollisionEventsThisFrame = new CollisionEventUpdate(); } public override bool SubscribedEvents() { if (m_eventsubscription > 0) return true; return false; } public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size, Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical,bool pisPhantom,byte _shapeType,uint plocalID) { Name = primName; LocalID = plocalID; m_vehicle = null; if (!pos.IsFinite()) { pos = new Vector3(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f), parent_scene.GetTerrainHeightAtXY(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f)) + 0.5f); m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Position for {0}", Name); } _position = pos; givefakepos = 0; PID_D = parent_scene.bodyPIDD; PID_G = parent_scene.bodyPIDG; m_density = parent_scene.geomDefaultDensity; // m_tensor = parent_scene.bodyMotorJointMaxforceTensor; body_autodisable_frames = parent_scene.bodyFramesAutoDisable; prim_geom = IntPtr.Zero; collide_geom = IntPtr.Zero; Body = IntPtr.Zero; if (!size.IsFinite()) { size = new Vector3(0.5f, 0.5f, 0.5f); m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Size for {0}", Name); } if (size.X <= 0) size.X = 0.01f; if (size.Y <= 0) size.Y = 0.01f; if (size.Z <= 0) size.Z = 0.01f; _size = size; if (!QuaternionIsFinite(rotation)) { rotation = Quaternion.Identity; m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Rotation for {0}", Name); } _orientation = rotation; givefakeori = 0; _pbs = pbs; _parent_scene = parent_scene; m_targetSpace = IntPtr.Zero; if (pos.Z < 0) { m_isphysical = false; } else { m_isphysical = pisPhysical; } m_fakeisphysical = m_isphysical; m_isVolumeDetect = false; m_fakeisVolumeDetect = false; m_force = Vector3.Zero; m_iscolliding = false; m_colliderfilter = 0; m_NoColide = false; hasOOBoffsetFromMesh = false; _triMeshData = IntPtr.Zero; m_shapetype = _shapeType; m_lastdoneSelected = false; m_isSelected = false; m_delaySelect = false; m_isphantom = pisPhantom; m_fakeisphantom = pisPhantom; mu = parent_scene.m_materialContactsData[(int)Material.Wood].mu; bounce = parent_scene.m_materialContactsData[(int)Material.Wood].bounce; CalcPrimBodyData(); m_mesh = null; if (_parent_scene.needsMeshing(pbs)) { bool convex; if (m_shapetype == 0) convex = false; else convex = true; m_mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex); } m_building = true; // control must set this to false when done AddChange(changes.Add, null); } private void resetCollisionAccounting() { m_collisionscore = 0; } private void UpdateCollisionCatFlags() { if(m_isphysical && m_disabled) { m_collisionCategories = 0; m_collisionFlags = 0; } else if (m_isSelected) { m_collisionCategories = CollisionCategories.Selected; m_collisionFlags = 0; } else if (m_isVolumeDetect) { m_collisionCategories = CollisionCategories.VolumeDtc; if (m_isphysical) m_collisionFlags = CollisionCategories.Geom | CollisionCategories.Character; else m_collisionFlags = 0; } else if (m_isphantom) { m_collisionCategories = CollisionCategories.Phantom; if (m_isphysical) m_collisionFlags = CollisionCategories.Land; else m_collisionFlags = 0; } else { m_collisionCategories = CollisionCategories.Geom; if (m_isphysical) m_collisionFlags = m_default_collisionFlagsPhysical; else m_collisionFlags = m_default_collisionFlagsNotPhysical; } } private void ApplyCollisionCatFlags() { if (prim_geom != IntPtr.Zero) { if (!childPrim && childrenPrim.Count > 0) { foreach (OdePrim prm in childrenPrim) { if (m_isphysical && m_disabled) { prm.m_collisionCategories = 0; prm.m_collisionFlags = 0; } else { // preserve some if (prm.m_isSelected) { prm.m_collisionCategories = CollisionCategories.Selected; prm.m_collisionFlags = 0; } else if (prm.m_isVolumeDetect) { prm.m_collisionCategories = CollisionCategories.VolumeDtc; if (m_isphysical) prm.m_collisionFlags = CollisionCategories.Geom | CollisionCategories.Character; else prm.m_collisionFlags = 0; } else if (prm.m_isphantom) { prm.m_collisionCategories = CollisionCategories.Phantom; if (m_isphysical) prm.m_collisionFlags = CollisionCategories.Land; else prm.m_collisionFlags = 0; } else { prm.m_collisionCategories = m_collisionCategories; prm.m_collisionFlags = m_collisionFlags; } } if (prm.prim_geom != IntPtr.Zero) { if (prm.m_NoColide) { d.GeomSetCategoryBits(prm.prim_geom, 0); if (m_isphysical) d.GeomSetCollideBits(prm.prim_geom, (int)CollisionCategories.Land); else d.GeomSetCollideBits(prm.prim_geom, 0); } else { d.GeomSetCategoryBits(prm.prim_geom, (uint)prm.m_collisionCategories); d.GeomSetCollideBits(prm.prim_geom, (uint)prm.m_collisionFlags); } } } } if (m_NoColide) { d.GeomSetCategoryBits(prim_geom, 0); d.GeomSetCollideBits(prim_geom, (uint)CollisionCategories.Land); if (collide_geom != prim_geom && collide_geom != IntPtr.Zero) { d.GeomSetCategoryBits(collide_geom, 0); d.GeomSetCollideBits(collide_geom, (uint)CollisionCategories.Land); } } else { d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags); if (collide_geom != prim_geom && collide_geom != IntPtr.Zero) { d.GeomSetCategoryBits(collide_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(collide_geom, (uint)m_collisionFlags); } } } } private void createAMotor(Vector3 axis) { if (Body == IntPtr.Zero) return; if (Amotor != IntPtr.Zero) { d.JointDestroy(Amotor); Amotor = IntPtr.Zero; } int axisnum = 3 - (int)(axis.X + axis.Y + axis.Z); if (axisnum <= 0) return; // stop it d.BodySetTorque(Body, 0, 0, 0); d.BodySetAngularVel(Body, 0, 0, 0); Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero); d.JointAttach(Amotor, Body, IntPtr.Zero); d.JointSetAMotorMode(Amotor, 0); d.JointSetAMotorNumAxes(Amotor, axisnum); // get current orientation to lock d.Quaternion dcur = d.BodyGetQuaternion(Body); Quaternion curr; // crap convertion between identical things curr.X = dcur.X; curr.Y = dcur.Y; curr.Z = dcur.Z; curr.W = dcur.W; Vector3 ax; int i = 0; int j = 0; if (axis.X == 0) { ax = (new Vector3(1, 0, 0)) * curr; // rotate world X to current local X // ODE should do this with axis relative to body 1 but seems to fail d.JointSetAMotorAxis(Amotor, 0, 0, ax.X, ax.Y, ax.Z); d.JointSetAMotorAngle(Amotor, 0, 0); d.JointSetAMotorParam(Amotor, (int)d.JointParam.LoStop, -0.000001f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.HiStop, 0.000001f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.Vel, 0); d.JointSetAMotorParam(Amotor, (int)d.JointParam.FudgeFactor, 0.0001f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.Bounce, 0f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.FMax, 5e8f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.StopCFM, 0f); d.JointSetAMotorParam(Amotor, (int)d.JointParam.StopERP, 0.8f); i++; j = 256; // move to next axis set } if (axis.Y == 0) { ax = (new Vector3(0, 1, 0)) * curr; d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z); d.JointSetAMotorAngle(Amotor, i, 0); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopCFM, 0f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopERP, 0.8f); i++; j += 256; } if (axis.Z == 0) { ax = (new Vector3(0, 0, 1)) * curr; d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z); d.JointSetAMotorAngle(Amotor, i, 0); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopCFM, 0f); d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopERP, 0.8f); } } private bool setMesh(OdeScene parent_scene) { IntPtr vertices, indices; int vertexCount, indexCount; int vertexStride, triStride; if (Body != IntPtr.Zero) { if (childPrim) { if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildDelink(this, false); } } else { DestroyBody(); } } IMesh mesh = null; lock (m_meshlock) { if (m_mesh == null) { bool convex; if (m_shapetype == 0) convex = false; else convex = true; mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex); } else { mesh = m_mesh; } if (mesh == null) { m_log.WarnFormat("[PHYSICS]: CreateMesh Failed on prim {0} at <{1},{2},{3}>.", Name, _position.X, _position.Y, _position.Z); return false; } mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount); // Note, that vertices are fixed in unmanaged heap mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount); // Also fixed, needs release after usage if (vertexCount == 0 || indexCount == 0) { m_log.WarnFormat("[PHYSICS]: Got invalid mesh on prim {0} at <{1},{2},{3}>. mesh UUID {4}", Name, _position.X, _position.Y, _position.Z, _pbs.SculptTexture.ToString()); mesh.releaseSourceMeshData(); return false; } primOOBoffset = mesh.GetCentroid(); hasOOBoffsetFromMesh = true; mesh.releaseSourceMeshData(); m_mesh = null; } IntPtr geo = IntPtr.Zero; try { _triMeshData = d.GeomTriMeshDataCreate(); d.GeomTriMeshDataBuildSimple(_triMeshData, vertices, vertexStride, vertexCount, indices, indexCount, triStride); d.GeomTriMeshDataPreprocess(_triMeshData); _parent_scene.waitForSpaceUnlock(m_targetSpace); geo = d.CreateTriMesh(m_targetSpace, _triMeshData, null, null, null); } catch (Exception e) { m_log.ErrorFormat("[PHYSICS]: SetGeom Mesh failed for {0} exception: {1}", Name, e); if (_triMeshData != IntPtr.Zero) { d.GeomTriMeshDataDestroy(_triMeshData); _triMeshData = IntPtr.Zero; } return false; } SetGeom(geo); return true; } private void SetGeom(IntPtr geom) { prim_geom = geom; //Console.WriteLine("SetGeom to " + prim_geom + " for " + Name); if (prim_geom != IntPtr.Zero) { if (m_NoColide) { d.GeomSetCategoryBits(prim_geom, 0); if (m_isphysical) { d.GeomSetCollideBits(prim_geom, (uint)CollisionCategories.Land); } else { d.GeomSetCollideBits(prim_geom, 0); d.GeomDisable(prim_geom); } } else { d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags); } CalcPrimBodyData(); _parent_scene.geom_name_map[prim_geom] = Name; _parent_scene.actor_name_map[prim_geom] = this; } else m_log.Warn("Setting bad Geom"); } /// /// Create a geometry for the given mesh in the given target space. /// /// /// If null, then a mesh is used that is based on the profile shape data. private void CreateGeom() { if (_triMeshData != IntPtr.Zero) { d.GeomTriMeshDataDestroy(_triMeshData); _triMeshData = IntPtr.Zero; } bool haveMesh = false; hasOOBoffsetFromMesh = false; m_NoColide = false; if (_parent_scene.needsMeshing(_pbs)) { haveMesh = setMesh(_parent_scene); // this will give a mesh to non trivial known prims if (!haveMesh) m_NoColide = true; } if (!haveMesh) { if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1 && _size.X == _size.Y && _size.Y == _size.Z) { // it's a sphere _parent_scene.waitForSpaceUnlock(m_targetSpace); try { SetGeom(d.CreateSphere(m_targetSpace, _size.X * 0.5f)); } catch (Exception e) { m_log.WarnFormat("[PHYSICS]: Create sphere failed: {0}", e); return; } } else {// do it as a box _parent_scene.waitForSpaceUnlock(m_targetSpace); try { //Console.WriteLine(" CreateGeom 4"); SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z)); } catch (Exception e) { m_log.Warn("[PHYSICS]: Create box failed: {0}", e); return; } } } } /// /// Set a new geometry for this prim. /// /// private void RemoveGeom() { if (prim_geom != IntPtr.Zero) { _parent_scene.geom_name_map.Remove(prim_geom); _parent_scene.actor_name_map.Remove(prim_geom); try { d.GeomDestroy(prim_geom); if (_triMeshData != IntPtr.Zero) { d.GeomTriMeshDataDestroy(_triMeshData); _triMeshData = IntPtr.Zero; } } // catch (System.AccessViolationException) catch (Exception e) { m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction failed for {0} exception {1}", Name, e); } prim_geom = IntPtr.Zero; collide_geom = IntPtr.Zero; } else { m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction BAD {0}", Name); } Body = IntPtr.Zero; hasOOBoffsetFromMesh = false; CalcPrimBodyData(); } /* private void ChildSetGeom(OdePrim odePrim) { // well.. DestroyBody(); MakeBody(); } */ //sets non physical prim m_targetSpace to right space in spaces grid for static prims // should only be called for non physical prims unless they are becoming non physical private void SetInStaticSpace(OdePrim prim) { IntPtr targetSpace = _parent_scene.MoveGeomToStaticSpace(prim.prim_geom, prim._position, prim.m_targetSpace); prim.m_targetSpace = targetSpace; collide_geom = IntPtr.Zero; } public void enableBodySoft() { m_disabled = false; if (!childPrim && !m_isSelected) { if (m_isphysical && Body != IntPtr.Zero) { UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); d.BodyEnable(Body); } } resetCollisionAccounting(); } private void disableBodySoft() { m_disabled = true; if (!childPrim) { if (m_isphysical && Body != IntPtr.Zero) { if (m_isSelected) m_collisionFlags = CollisionCategories.Selected; else m_collisionCategories = 0; m_collisionFlags = 0; ApplyCollisionCatFlags(); d.BodyDisable(Body); } } } private void MakeBody() { if (!m_isphysical) // only physical get bodies return; if (childPrim) // child prims don't get bodies; return; if (m_building) return; if (prim_geom == IntPtr.Zero) { m_log.Warn("[PHYSICS]: Unable to link the linkset. Root has no geom yet"); return; } if (Body != IntPtr.Zero) { d.BodyDestroy(Body); Body = IntPtr.Zero; m_log.Warn("[PHYSICS]: MakeBody called having a body"); } if (d.GeomGetBody(prim_geom) != IntPtr.Zero) { d.GeomSetBody(prim_geom, IntPtr.Zero); m_log.Warn("[PHYSICS]: MakeBody root geom already had a body"); } d.Matrix3 mymat = new d.Matrix3(); d.Quaternion myrot = new d.Quaternion(); d.Mass objdmass = new d.Mass { }; Body = d.BodyCreate(_parent_scene.world); DMassDup(ref primdMass, out objdmass); // rotate inertia myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.RfromQ(out mymat, ref myrot); d.MassRotate(ref objdmass, ref mymat); // set the body rotation d.BodySetRotation(Body, ref mymat); // recompute full object inertia if needed if (childrenPrim.Count > 0) { d.Matrix3 mat = new d.Matrix3(); d.Quaternion quat = new d.Quaternion(); d.Mass tmpdmass = new d.Mass { }; Vector3 rcm; rcm.X = _position.X + objdmass.c.X; rcm.Y = _position.Y + objdmass.c.Y; rcm.Z = _position.Z + objdmass.c.Z; lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { if (prm.prim_geom == IntPtr.Zero) { m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements, skipping it. No geom yet"); continue; } DMassCopy(ref prm.primdMass, ref tmpdmass); // apply prim current rotation to inertia quat.X = prm._orientation.X; quat.Y = prm._orientation.Y; quat.Z = prm._orientation.Z; quat.W = prm._orientation.W; d.RfromQ(out mat, ref quat); d.MassRotate(ref tmpdmass, ref mat); Vector3 ppos = prm._position; ppos.X += tmpdmass.c.X - rcm.X; ppos.Y += tmpdmass.c.Y - rcm.Y; ppos.Z += tmpdmass.c.Z - rcm.Z; // refer inertia to root prim center of mass position d.MassTranslate(ref tmpdmass, ppos.X, ppos.Y, ppos.Z); d.MassAdd(ref objdmass, ref tmpdmass); // add to total object inertia // fix prim colision cats if (d.GeomGetBody(prm.prim_geom) != IntPtr.Zero) { d.GeomSetBody(prm.prim_geom, IntPtr.Zero); m_log.Warn("[PHYSICS]: MakeBody child geom already had a body"); } d.GeomClearOffset(prm.prim_geom); d.GeomSetBody(prm.prim_geom, Body); prm.Body = Body; d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat); // set relative rotation } } } d.GeomClearOffset(prim_geom); // make sure we don't have a hidden offset // associate root geom with body d.GeomSetBody(prim_geom, Body); d.BodySetPosition(Body, _position.X + objdmass.c.X, _position.Y + objdmass.c.Y, _position.Z + objdmass.c.Z); d.GeomSetOffsetWorldPosition(prim_geom, _position.X, _position.Y, _position.Z); d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body myrot.W = -myrot.W; d.RfromQ(out mymat, ref myrot); d.MassRotate(ref objdmass, ref mymat); d.BodySetMass(Body, ref objdmass); _mass = objdmass.mass; // disconnect from world gravity so we can apply buoyancy d.BodySetGravityMode(Body, false); d.BodySetAutoDisableFlag(Body, true); d.BodySetAutoDisableSteps(Body, body_autodisable_frames); // d.BodySetLinearDampingThreshold(Body, 0.01f); // d.BodySetAngularDampingThreshold(Body, 0.001f); d.BodySetDamping(Body, .002f, .002f); if (m_targetSpace != IntPtr.Zero) { _parent_scene.waitForSpaceUnlock(m_targetSpace); if (d.SpaceQuery(m_targetSpace, prim_geom)) d.SpaceRemove(m_targetSpace, prim_geom); } if (childrenPrim.Count == 0) { collide_geom = prim_geom; m_targetSpace = _parent_scene.ActiveSpace; d.SpaceAdd(m_targetSpace, prim_geom); } else { m_targetSpace = d.HashSpaceCreate(_parent_scene.ActiveSpace); d.HashSpaceSetLevels(m_targetSpace, -2, 8); d.SpaceSetSublevel(m_targetSpace, 3); d.SpaceSetCleanup(m_targetSpace, false); d.SpaceAdd(m_targetSpace, prim_geom); d.GeomSetCategoryBits(m_targetSpace, (uint)(CollisionCategories.Space | CollisionCategories.Geom | CollisionCategories.Phantom | CollisionCategories.VolumeDtc )); d.GeomSetCollideBits(m_targetSpace, 0); collide_geom = m_targetSpace; } if (m_delaySelect) { m_isSelected = true; m_delaySelect = false; } lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { if (prm.prim_geom == IntPtr.Zero) continue; Vector3 ppos = prm._position; d.GeomSetOffsetWorldPosition(prm.prim_geom, ppos.X, ppos.Y, ppos.Z); // set relative position if (prm.m_targetSpace != m_targetSpace) { if (prm.m_targetSpace != IntPtr.Zero) { _parent_scene.waitForSpaceUnlock(prm.m_targetSpace); if (d.SpaceQuery(prm.m_targetSpace, prm.prim_geom)) d.SpaceRemove(prm.m_targetSpace, prm.prim_geom); } prm.m_targetSpace = m_targetSpace; d.SpaceAdd(m_targetSpace, prm.prim_geom); } prm.m_collisionscore = 0; if(!m_disabled) prm.m_disabled = false; _parent_scene.addActivePrim(prm); } } // The body doesn't already have a finite rotation mode set here if ((!m_angularlock.ApproxEquals(Vector3.One, 0.0f)) && _parent == null) { createAMotor(m_angularlock); } m_collisionscore = 0; UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); if (m_isSelected || m_disabled) { d.BodyDisable(Body); } else { d.BodySetAngularVel(Body, m_rotationalVelocity.X, m_rotationalVelocity.Y, m_rotationalVelocity.Z); d.BodySetLinearVel(Body, _velocity.X, _velocity.Y, _velocity.Z); } _parent_scene.addActivePrim(this); _parent_scene.addActiveGroups(this); } private void DestroyBody() { if (Body != IntPtr.Zero) { _parent_scene.remActivePrim(this); collide_geom = IntPtr.Zero; if (m_disabled) m_collisionCategories = 0; else if (m_isSelected) m_collisionCategories = CollisionCategories.Selected; else if (m_isVolumeDetect) m_collisionCategories = CollisionCategories.VolumeDtc; else if (m_isphantom) m_collisionCategories = CollisionCategories.Phantom; else m_collisionCategories = CollisionCategories.Geom; m_collisionFlags = 0; if (prim_geom != IntPtr.Zero) { if (m_NoColide) { d.GeomSetCategoryBits(prim_geom, 0); d.GeomSetCollideBits(prim_geom, 0); } else { d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags); } UpdateDataFromGeom(); d.GeomSetBody(prim_geom, IntPtr.Zero); SetInStaticSpace(this); } if (!childPrim) { lock (childrenPrim) { foreach (OdePrim prm in childrenPrim) { _parent_scene.remActivePrim(prm); if (prm.m_isSelected) prm.m_collisionCategories = CollisionCategories.Selected; else if (prm.m_isVolumeDetect) prm.m_collisionCategories = CollisionCategories.VolumeDtc; else if (prm.m_isphantom) prm.m_collisionCategories = CollisionCategories.Phantom; else prm.m_collisionCategories = CollisionCategories.Geom; prm.m_collisionFlags = 0; if (prm.prim_geom != IntPtr.Zero) { if (prm.m_NoColide) { d.GeomSetCategoryBits(prm.prim_geom, 0); d.GeomSetCollideBits(prm.prim_geom, 0); } else { d.GeomSetCategoryBits(prm.prim_geom, (uint)prm.m_collisionCategories); d.GeomSetCollideBits(prm.prim_geom, (uint)prm.m_collisionFlags); } prm.UpdateDataFromGeom(); SetInStaticSpace(prm); } prm.Body = IntPtr.Zero; prm._mass = prm.primMass; prm.m_collisionscore = 0; } } if (Amotor != IntPtr.Zero) { d.JointDestroy(Amotor); Amotor = IntPtr.Zero; } _parent_scene.remActiveGroup(this); d.BodyDestroy(Body); } Body = IntPtr.Zero; } _mass = primMass; m_collisionscore = 0; } private void FixInertia(Vector3 NewPos,Quaternion newrot) { d.Matrix3 mat = new d.Matrix3(); d.Quaternion quat = new d.Quaternion(); d.Mass tmpdmass = new d.Mass { }; d.Mass objdmass = new d.Mass { }; d.BodyGetMass(Body, out tmpdmass); objdmass = tmpdmass; d.Vector3 dobjpos; d.Vector3 thispos; // get current object position and rotation dobjpos = d.BodyGetPosition(Body); // get prim own inertia in its local frame tmpdmass = primdMass; // transform to object frame mat = d.GeomGetOffsetRotation(prim_geom); d.MassRotate(ref tmpdmass, ref mat); thispos = d.GeomGetOffsetPosition(prim_geom); d.MassTranslate(ref tmpdmass, thispos.X, thispos.Y, thispos.Z); // subtract current prim inertia from object DMassSubPartFromObj(ref tmpdmass, ref objdmass); // back prim own inertia tmpdmass = primdMass; // update to new position and orientation _position = NewPos; d.GeomSetOffsetWorldPosition(prim_geom, NewPos.X, NewPos.Y, NewPos.Z); _orientation = newrot; quat.X = newrot.X; quat.Y = newrot.Y; quat.Z = newrot.Z; quat.W = newrot.W; d.GeomSetOffsetWorldQuaternion(prim_geom, ref quat); mat = d.GeomGetOffsetRotation(prim_geom); d.MassRotate(ref tmpdmass, ref mat); thispos = d.GeomGetOffsetPosition(prim_geom); d.MassTranslate(ref tmpdmass, thispos.X, thispos.Y, thispos.Z); d.MassAdd(ref objdmass, ref tmpdmass); // fix all positions IntPtr g = d.BodyGetFirstGeom(Body); while (g != IntPtr.Zero) { thispos = d.GeomGetOffsetPosition(g); thispos.X -= objdmass.c.X; thispos.Y -= objdmass.c.Y; thispos.Z -= objdmass.c.Z; d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z); g = d.dBodyGetNextGeom(g); } d.BodyVectorToWorld(Body,objdmass.c.X, objdmass.c.Y, objdmass.c.Z,out thispos); d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z); d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body d.BodySetMass(Body, ref objdmass); _mass = objdmass.mass; } private void FixInertia(Vector3 NewPos) { d.Matrix3 primmat = new d.Matrix3(); d.Mass tmpdmass = new d.Mass { }; d.Mass objdmass = new d.Mass { }; d.Mass primmass = new d.Mass { }; d.Vector3 dobjpos; d.Vector3 thispos; d.BodyGetMass(Body, out objdmass); // get prim own inertia in its local frame primmass = primdMass; // transform to object frame primmat = d.GeomGetOffsetRotation(prim_geom); d.MassRotate(ref primmass, ref primmat); tmpdmass = primmass; thispos = d.GeomGetOffsetPosition(prim_geom); d.MassTranslate(ref tmpdmass, thispos.X, thispos.Y, thispos.Z); // subtract current prim inertia from object DMassSubPartFromObj(ref tmpdmass, ref objdmass); // update to new position _position = NewPos; d.GeomSetOffsetWorldPosition(prim_geom, NewPos.X, NewPos.Y, NewPos.Z); thispos = d.GeomGetOffsetPosition(prim_geom); d.MassTranslate(ref primmass, thispos.X, thispos.Y, thispos.Z); d.MassAdd(ref objdmass, ref primmass); // fix all positions IntPtr g = d.BodyGetFirstGeom(Body); while (g != IntPtr.Zero) { thispos = d.GeomGetOffsetPosition(g); thispos.X -= objdmass.c.X; thispos.Y -= objdmass.c.Y; thispos.Z -= objdmass.c.Z; d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z); g = d.dBodyGetNextGeom(g); } d.BodyVectorToWorld(Body, objdmass.c.X, objdmass.c.Y, objdmass.c.Z, out thispos); // get current object position and rotation dobjpos = d.BodyGetPosition(Body); d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z); d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body d.BodySetMass(Body, ref objdmass); _mass = objdmass.mass; } private void FixInertia(Quaternion newrot) { d.Matrix3 mat = new d.Matrix3(); d.Quaternion quat = new d.Quaternion(); d.Mass tmpdmass = new d.Mass { }; d.Mass objdmass = new d.Mass { }; d.Vector3 dobjpos; d.Vector3 thispos; d.BodyGetMass(Body, out objdmass); // get prim own inertia in its local frame tmpdmass = primdMass; mat = d.GeomGetOffsetRotation(prim_geom); d.MassRotate(ref tmpdmass, ref mat); // transform to object frame thispos = d.GeomGetOffsetPosition(prim_geom); d.MassTranslate(ref tmpdmass, thispos.X, thispos.Y, thispos.Z); // subtract current prim inertia from object DMassSubPartFromObj(ref tmpdmass, ref objdmass); // update to new orientation _orientation = newrot; quat.X = newrot.X; quat.Y = newrot.Y; quat.Z = newrot.Z; quat.W = newrot.W; d.GeomSetOffsetWorldQuaternion(prim_geom, ref quat); tmpdmass = primdMass; mat = d.GeomGetOffsetRotation(prim_geom); d.MassRotate(ref tmpdmass, ref mat); d.MassTranslate(ref tmpdmass, thispos.X, thispos.Y, thispos.Z); d.MassAdd(ref objdmass, ref tmpdmass); // fix all positions IntPtr g = d.BodyGetFirstGeom(Body); while (g != IntPtr.Zero) { thispos = d.GeomGetOffsetPosition(g); thispos.X -= objdmass.c.X; thispos.Y -= objdmass.c.Y; thispos.Z -= objdmass.c.Z; d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z); g = d.dBodyGetNextGeom(g); } d.BodyVectorToWorld(Body, objdmass.c.X, objdmass.c.Y, objdmass.c.Z, out thispos); // get current object position and rotation dobjpos = d.BodyGetPosition(Body); d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z); d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body d.BodySetMass(Body, ref objdmass); _mass = objdmass.mass; } #region Mass Calculation private float CalculatePrimVolume() { float volume = _size.X * _size.Y * _size.Z; // default float tmp; float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f; float hollowVolume = hollowAmount * hollowAmount; switch (_pbs.ProfileShape) { case ProfileShape.Square: // default box if (_pbs.PathCurve == (byte)Extrusion.Straight) { if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= (0.5f * .5f); break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { //a tube volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY); volume -= volume * tmp * tmp; if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= 0.5f * 0.5f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.Circle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.78539816339f; // elipse base if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.HalfCircle: if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.52359877559829887307710723054658f; } break; case ProfileShape.EquilateralTriangle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.32475953f; if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.32475953f; volume *= 0.01f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; default: break; } float taperX1; float taperY1; float taperX; float taperY; float pathBegin; float pathEnd; float profileBegin; float profileEnd; if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible) { taperX1 = _pbs.PathScaleX * 0.01f; if (taperX1 > 1.0f) taperX1 = 2.0f - taperX1; taperX = 1.0f - taperX1; taperY1 = _pbs.PathScaleY * 0.01f; if (taperY1 > 1.0f) taperY1 = 2.0f - taperY1; taperY = 1.0f - taperY1; } else { taperX = _pbs.PathTaperX * 0.01f; if (taperX < 0.0f) taperX = -taperX; taperX1 = 1.0f - taperX; taperY = _pbs.PathTaperY * 0.01f; if (taperY < 0.0f) taperY = -taperY; taperY1 = 1.0f - taperY; } volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY); pathBegin = (float)_pbs.PathBegin * 2.0e-5f; pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f; volume *= (pathEnd - pathBegin); // this is crude aproximation profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f; profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f; volume *= (profileEnd - profileBegin); return volume; } private void CalcPrimBodyData() { float volume; if (prim_geom == IntPtr.Zero) { // Ubit let's have a initial basic OOB primOOBsize.X = _size.X; primOOBsize.Y = _size.Y; primOOBsize.Z = _size.Z; primOOBoffset = Vector3.Zero; } else { d.AABB AABB; d.GeomGetAABB(prim_geom, out AABB); // get the AABB from engine geom primOOBsize.X = (AABB.MaxX - AABB.MinX); primOOBsize.Y = (AABB.MaxY - AABB.MinY); primOOBsize.Z = (AABB.MaxZ - AABB.MinZ); if (!hasOOBoffsetFromMesh) { primOOBoffset.X = (AABB.MaxX + AABB.MinX) * 0.5f; primOOBoffset.Y = (AABB.MaxY + AABB.MinY) * 0.5f; primOOBoffset.Z = (AABB.MaxZ + AABB.MinZ) * 0.5f; } } // also its own inertia and mass // keep using basic shape mass for now volume = CalculatePrimVolume(); primVolume = volume; primMass = m_density * volume; if (primMass <= 0) primMass = 0.0001f;//ckrinke: Mass must be greater then zero. if (primMass > _parent_scene.maximumMassObject) primMass = _parent_scene.maximumMassObject; _mass = primMass; // just in case d.MassSetBoxTotal(out primdMass, primMass, primOOBsize.X, primOOBsize.Y, primOOBsize.Z); d.MassTranslate(ref primdMass, primOOBoffset.X, primOOBoffset.Y, primOOBoffset.Z); primOOBsize *= 0.5f; // let obb size be a corner coords primOOBradiusSQ = primOOBsize.LengthSquared(); } #endregion /// /// Add a child prim to this parent prim. /// /// Child prim // I'm the parent // prim is the child public void ParentPrim(OdePrim prim) { //Console.WriteLine("ParentPrim " + m_primName); if (this.m_localID != prim.m_localID) { DestroyBody(); // for now we need to rebuil entire object on link change lock (childrenPrim) { // adopt the prim if (!childrenPrim.Contains(prim)) childrenPrim.Add(prim); // see if this prim has kids and adopt them also // should not happen for now foreach (OdePrim prm in prim.childrenPrim) { if (!childrenPrim.Contains(prm)) { if (prm.Body != IntPtr.Zero) { if (prm.prim_geom != IntPtr.Zero) d.GeomSetBody(prm.prim_geom, IntPtr.Zero); if (prm.Body != prim.Body) prm.DestroyBody(); // don't loose bodies around prm.Body = IntPtr.Zero; } childrenPrim.Add(prm); prm._parent = this; } } } //Remove old children from the prim prim.childrenPrim.Clear(); if (prim.Body != IntPtr.Zero) { if (prim.prim_geom != IntPtr.Zero) d.GeomSetBody(prim.prim_geom, IntPtr.Zero); prim.DestroyBody(); // don't loose bodies around prim.Body = IntPtr.Zero; } prim.childPrim = true; prim._parent = this; MakeBody(); // full nasty reconstruction } } private void UpdateChildsfromgeom() { if (childrenPrim.Count > 0) { foreach (OdePrim prm in childrenPrim) prm.UpdateDataFromGeom(); } } private void UpdateDataFromGeom() { if (prim_geom != IntPtr.Zero) { d.Quaternion qtmp = new d.Quaternion { }; d.GeomCopyQuaternion(prim_geom, out qtmp); _orientation.W = qtmp.W; _orientation.X = qtmp.X; _orientation.Y = qtmp.Y; _orientation.Z = qtmp.Z; d.Vector3 lpos; d.GeomCopyPosition(prim_geom, out lpos); _position.X = lpos.X; _position.Y = lpos.Y; _position.Z = lpos.Z; } } private void ChildDelink(OdePrim odePrim, bool remakebodies) { // Okay, we have a delinked child.. destroy all body and remake if (odePrim != this && !childrenPrim.Contains(odePrim)) return; DestroyBody(); if (odePrim == this) // delinking the root prim { OdePrim newroot = null; lock (childrenPrim) { if (childrenPrim.Count > 0) { newroot = childrenPrim[0]; childrenPrim.RemoveAt(0); foreach (OdePrim prm in childrenPrim) { newroot.childrenPrim.Add(prm); } childrenPrim.Clear(); } if (newroot != null) { newroot.childPrim = false; newroot._parent = null; if (remakebodies) newroot.MakeBody(); } } } else { lock (childrenPrim) { childrenPrim.Remove(odePrim); odePrim.childPrim = false; odePrim._parent = null; // odePrim.UpdateDataFromGeom(); if (remakebodies) odePrim.MakeBody(); } } if (remakebodies) MakeBody(); } protected void ChildRemove(OdePrim odePrim, bool reMakeBody) { // Okay, we have a delinked child.. destroy all body and remake if (odePrim != this && !childrenPrim.Contains(odePrim)) return; DestroyBody(); if (odePrim == this) { OdePrim newroot = null; lock (childrenPrim) { if (childrenPrim.Count > 0) { newroot = childrenPrim[0]; childrenPrim.RemoveAt(0); foreach (OdePrim prm in childrenPrim) { newroot.childrenPrim.Add(prm); } childrenPrim.Clear(); } if (newroot != null) { newroot.childPrim = false; newroot._parent = null; newroot.MakeBody(); } } if (reMakeBody) MakeBody(); return; } else { lock (childrenPrim) { childrenPrim.Remove(odePrim); odePrim.childPrim = false; odePrim._parent = null; if (reMakeBody) odePrim.MakeBody(); } } MakeBody(); } #region changes private void changeadd() { CreateGeom(); if (prim_geom != IntPtr.Zero) { d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.GeomSetQuaternion(prim_geom, ref myrot); if (!m_isphysical) { SetInStaticSpace(this); UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); } else MakeBody(); } } private void changeAngularLock(Vector3 newLock) { // do we have a Physical object? if (Body != IntPtr.Zero) { //Check that we have a Parent //If we have a parent then we're not authorative here if (_parent == null) { if (!newLock.ApproxEquals(Vector3.One, 0f)) { createAMotor(newLock); } else { if (Amotor != IntPtr.Zero) { d.JointDestroy(Amotor); Amotor = IntPtr.Zero; } } } } // Store this for later in case we get turned into a separate body m_angularlock = newLock; } private void changeLink(OdePrim NewParent) { if (_parent == null && NewParent != null) { NewParent.ParentPrim(this); } else if (_parent != null) { if (_parent is OdePrim) { if (NewParent != _parent) { (_parent as OdePrim).ChildDelink(this, false); // for now... childPrim = false; if (NewParent != null) { NewParent.ParentPrim(this); } } } } _parent = NewParent; } private void Stop() { if (!childPrim) { m_force = Vector3.Zero; m_forceacc = Vector3.Zero; m_angularForceacc = Vector3.Zero; _torque = Vector3.Zero; _velocity = Vector3.Zero; _acceleration = Vector3.Zero; m_rotationalVelocity = Vector3.Zero; _target_velocity = Vector3.Zero; if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Stop(); } if (Body != IntPtr.Zero) { d.BodySetForce(Body, 0f, 0f, 0f); d.BodySetTorque(Body, 0f, 0f, 0f); d.BodySetLinearVel(Body, 0f, 0f, 0f); d.BodySetAngularVel(Body, 0f, 0f, 0f); } } private void changePhantomStatus(bool newval) { m_isphantom = newval; UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); } /* not in use internal void ChildSelectedChange(bool childSelect) { if(childPrim) return; if (childSelect == m_isSelected) return; if (childSelect) { DoSelectedStatus(true); } else { foreach (OdePrim prm in childrenPrim) { if (prm.m_isSelected) return; } DoSelectedStatus(false); } } */ private void changeSelectedStatus(bool newval) { if (m_lastdoneSelected == newval) return; m_lastdoneSelected = newval; DoSelectedStatus(newval); } private void CheckDelaySelect() { if (m_delaySelect) { DoSelectedStatus(m_isSelected); } } private void DoSelectedStatus(bool newval) { if (m_isSelected == newval) { resetCollisionAccounting(); return; } m_isSelected = newval; Stop(); if (newval) { if (!childPrim && Body != IntPtr.Zero) d.BodyDisable(Body); if (m_delaySelect || m_isphysical) { m_collisionCategories = CollisionCategories.Selected; m_collisionFlags = 0; if (!childPrim) { foreach (OdePrim prm in childrenPrim) { prm.m_collisionCategories = m_collisionCategories; prm.m_collisionFlags = m_collisionFlags; if (prm.prim_geom != null) { if (prm.m_NoColide) { d.GeomSetCategoryBits(prm.prim_geom, 0); d.GeomSetCollideBits(prm.prim_geom, 0); } else { d.GeomSetCategoryBits(prm.prim_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(prm.prim_geom, (uint)m_collisionFlags); } } prm.m_delaySelect = false; } } // else if (_parent != null) // ((OdePrim)_parent).ChildSelectedChange(true); if (prim_geom != null) { if (m_NoColide) { d.GeomSetCategoryBits(prim_geom, 0); d.GeomSetCollideBits(prim_geom, 0); if (collide_geom != prim_geom && collide_geom != IntPtr.Zero) { d.GeomSetCategoryBits(collide_geom, 0); d.GeomSetCollideBits(collide_geom, 0); } } else { d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags); if (collide_geom != prim_geom && collide_geom != IntPtr.Zero) { d.GeomSetCategoryBits(collide_geom, (uint)m_collisionCategories); d.GeomSetCollideBits(collide_geom, (uint)m_collisionFlags); } } } m_delaySelect = false; } else if(!m_isphysical) { m_delaySelect = true; } } else { if (!childPrim) { if (Body != IntPtr.Zero && !m_disabled) d.BodyEnable(Body); } // else if (_parent != null) // ((OdePrim)_parent).ChildSelectedChange(false); UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); m_delaySelect = false; } resetCollisionAccounting(); } private void changePosition(Vector3 newPos) { CheckDelaySelect(); if (m_isphysical) { if (childPrim) // inertia is messed, must rebuild { if (m_building) { _position = newPos; } else if (m_forcePosOrRotation && _position != newPos && Body != IntPtr.Zero) { FixInertia(newPos); if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } else { if (_position != newPos) { d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z); _position = newPos; } if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } else { if (prim_geom != IntPtr.Zero) { if (newPos != _position) { d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z); _position = newPos; m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace); } } } givefakepos--; if (givefakepos < 0) givefakepos = 0; // changeSelectedStatus(); resetCollisionAccounting(); } private void changeOrientation(Quaternion newOri) { CheckDelaySelect(); if (m_isphysical) { if (childPrim) // inertia is messed, must rebuild { if (m_building) { _orientation = newOri; } /* else if (m_forcePosOrRotation && _orientation != newOri && Body != IntPtr.Zero) { FixInertia(_position, newOri); if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); } */ } else { if (newOri != _orientation) { d.Quaternion myrot = new d.Quaternion(); myrot.X = newOri.X; myrot.Y = newOri.Y; myrot.Z = newOri.Z; myrot.W = newOri.W; d.GeomSetQuaternion(prim_geom, ref myrot); _orientation = newOri; if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f)) createAMotor(m_angularlock); } if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } else { if (prim_geom != IntPtr.Zero) { if (newOri != _orientation) { d.Quaternion myrot = new d.Quaternion(); myrot.X = newOri.X; myrot.Y = newOri.Y; myrot.Z = newOri.Z; myrot.W = newOri.W; d.GeomSetQuaternion(prim_geom, ref myrot); _orientation = newOri; } } } givefakeori--; if (givefakeori < 0) givefakeori = 0; resetCollisionAccounting(); } private void changePositionAndOrientation(Vector3 newPos, Quaternion newOri) { CheckDelaySelect(); if (m_isphysical) { if (childPrim && m_building) // inertia is messed, must rebuild { _position = newPos; _orientation = newOri; } else { if (newOri != _orientation) { d.Quaternion myrot = new d.Quaternion(); myrot.X = newOri.X; myrot.Y = newOri.Y; myrot.Z = newOri.Z; myrot.W = newOri.W; d.GeomSetQuaternion(prim_geom, ref myrot); _orientation = newOri; if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f)) createAMotor(m_angularlock); } if (_position != newPos) { d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z); _position = newPos; } if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } else { // string primScenAvatarIn = _parent_scene.whichspaceamIin(_position); // int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position); if (prim_geom != IntPtr.Zero) { if (newOri != _orientation) { d.Quaternion myrot = new d.Quaternion(); myrot.X = newOri.X; myrot.Y = newOri.Y; myrot.Z = newOri.Z; myrot.W = newOri.W; d.GeomSetQuaternion(prim_geom, ref myrot); _orientation = newOri; } if (newPos != _position) { d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z); _position = newPos; m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace); } } } givefakepos--; if (givefakepos < 0) givefakepos = 0; givefakeori--; if (givefakeori < 0) givefakeori = 0; resetCollisionAccounting(); } private void changeDisable(bool disable) { if (disable) { if (!m_disabled) disableBodySoft(); } else { if (m_disabled) enableBodySoft(); } } private void changePhysicsStatus(bool NewStatus) { CheckDelaySelect(); m_isphysical = NewStatus; if (!childPrim) { if (NewStatus) { if (Body == IntPtr.Zero) MakeBody(); } else { if (Body != IntPtr.Zero) { DestroyBody(); } Stop(); } } resetCollisionAccounting(); } private void changeprimsizeshape() { CheckDelaySelect(); OdePrim parent = (OdePrim)_parent; bool chp = childPrim; if (chp) { if (parent != null) { parent.DestroyBody(); } } else { DestroyBody(); } RemoveGeom(); // we don't need to do space calculation because the client sends a position update also. if (_size.X <= 0) _size.X = 0.01f; if (_size.Y <= 0) _size.Y = 0.01f; if (_size.Z <= 0) _size.Z = 0.01f; // Construction of new prim CreateGeom(); if (prim_geom != IntPtr.Zero) { d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); d.Quaternion myrot = new d.Quaternion(); myrot.X = _orientation.X; myrot.Y = _orientation.Y; myrot.Z = _orientation.Z; myrot.W = _orientation.W; d.GeomSetQuaternion(prim_geom, ref myrot); } if (m_isphysical) { if (chp) { if (parent != null) { parent.MakeBody(); } } else MakeBody(); } else { UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); } resetCollisionAccounting(); } private void changeSize(Vector3 newSize) { _size = newSize; changeprimsizeshape(); } private void changeShape(PrimitiveBaseShape newShape) { if(newShape != null) _pbs = newShape; changeprimsizeshape(); } private void changeFloatOnWater(bool newval) { m_collidesWater = newval; UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); } private void changeSetTorque(Vector3 newtorque) { if (!m_isSelected) { if (m_isphysical && Body != IntPtr.Zero) { if (m_disabled) enableBodySoft(); else if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); } _torque = newtorque; } } private void changeForce(Vector3 force) { m_force = force; if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body)) d.BodyEnable(Body); } private void changeAddForce(Vector3 force) { m_forceacc += force; if (!m_isSelected) { lock (this) { //m_log.Info("[PHYSICS]: dequeing forcelist"); if (m_isphysical && Body != IntPtr.Zero) { if (m_disabled) enableBodySoft(); else if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } m_collisionscore = 0; } } private void changeAddAngularForce(Vector3 aforce) { m_angularForceacc += aforce; if (!m_isSelected) { lock (this) { if (m_isphysical && Body != IntPtr.Zero) { if (m_disabled) enableBodySoft(); else if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); } } m_collisionscore = 0; } } private void changevelocity(Vector3 newVel) { if (!m_isSelected) { if (Body != IntPtr.Zero) { if (m_disabled) enableBodySoft(); else if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); d.BodySetLinearVel(Body, newVel.X, newVel.Y, newVel.Z); } //resetCollisionAccounting(); } _velocity = newVel; } private void changeVolumedetetion(bool newVolDtc) { m_isVolumeDetect = newVolDtc; m_fakeisVolumeDetect = newVolDtc; UpdateCollisionCatFlags(); ApplyCollisionCatFlags(); } protected void changeBuilding(bool newbuilding) { if ((bool)newbuilding) { m_building = true; if (!childPrim) DestroyBody(); } else { m_building = false; CheckDelaySelect(); if (!childPrim) MakeBody(); } if (!childPrim && childrenPrim.Count > 0) { foreach (OdePrim prm in childrenPrim) prm.changeBuilding(m_building); // call directly } } public void changeSetVehicle(VehicleData vdata) { if (m_vehicle == null) m_vehicle = new ODEDynamics(this); m_vehicle.DoSetVehicle(vdata); } private void changeVehicleType(int value) { if (value == (int)Vehicle.TYPE_NONE) { if (m_vehicle != null) m_vehicle = null; } else { if (m_vehicle == null) m_vehicle = new ODEDynamics(this); m_vehicle.ProcessTypeChange((Vehicle)value); } } private void changeVehicleFloatParam(strVehicleFloatParam fp) { if (m_vehicle == null) return; m_vehicle.ProcessFloatVehicleParam((Vehicle)fp.param, fp.value); } private void changeVehicleVectorParam(strVehicleVectorParam vp) { if (m_vehicle == null) return; m_vehicle.ProcessVectorVehicleParam((Vehicle)vp.param, vp.value); } private void changeVehicleRotationParam(strVehicleQuatParam qp) { if (m_vehicle == null) return; m_vehicle.ProcessRotationVehicleParam((Vehicle)qp.param, qp.value); } private void changeVehicleFlags(strVehicleBoolParam bp) { if (m_vehicle == null) return; m_vehicle.ProcessVehicleFlags(bp.param, bp.value); } #endregion public void Move() { if (!childPrim && m_isphysical && Body != IntPtr.Zero && !m_disabled && !m_isSelected && !m_building && !m_outbounds) { if (d.BodyIsEnabled(Body)) { float timestep = _parent_scene.ODE_STEPSIZE; // check outside region d.Vector3 lpos = d.GeomGetPosition(prim_geom); // root position that is seem by rest of simulator if (lpos.Z < -100 || lpos.Z > 100000f) { m_outbounds = true; lpos.Z = Util.Clip(lpos.Z, -100f, 100000f); _acceleration.X = 0; _acceleration.Y = 0; _acceleration.Z = 0; _velocity.X = 0; _velocity.Y = 0; _velocity.Z = 0; m_rotationalVelocity.X = 0; m_rotationalVelocity.Y = 0; m_rotationalVelocity.Z = 0; d.BodySetLinearVel(Body, 0, 0, 0); // stop it d.BodySetAngularVel(Body, 0, 0, 0); // stop it d.BodySetPosition(Body, lpos.X, lpos.Y, lpos.Z); // put it somewhere m_lastposition = _position; m_lastorientation = _orientation; base.RequestPhysicsterseUpdate(); m_throttleUpdates = false; throttleCounter = 0; _zeroFlag = true; disableBodySoft(); // disable it and colisions base.RaiseOutOfBounds(_position); return; } if (lpos.X < 0f) { _position.X = Util.Clip(lpos.X, -2f, -0.1f); m_outbounds = true; } else if (lpos.X > _parent_scene.WorldExtents.X) { _position.X = Util.Clip(lpos.X, _parent_scene.WorldExtents.X + 0.1f, _parent_scene.WorldExtents.X + 2f); m_outbounds = true; } if (lpos.Y < 0f) { _position.Y = Util.Clip(lpos.Y, -2f, -0.1f); m_outbounds = true; } else if (lpos.Y > _parent_scene.WorldExtents.Y) { _position.Y = Util.Clip(lpos.Y, _parent_scene.WorldExtents.Y + 0.1f, _parent_scene.WorldExtents.Y + 2f); m_outbounds = true; } if (m_outbounds) { m_lastposition = _position; m_lastorientation = _orientation; d.Vector3 dtmp = d.BodyGetAngularVel(Body); m_rotationalVelocity.X = dtmp.X; m_rotationalVelocity.Y = dtmp.Y; m_rotationalVelocity.Z = dtmp.Z; dtmp = d.BodyGetLinearVel(Body); _velocity.X = dtmp.X; _velocity.Y = dtmp.Y; _velocity.Z = dtmp.Z; d.BodySetLinearVel(Body, 0, 0, 0); // stop it d.BodySetAngularVel(Body, 0, 0, 0); d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z); disableBodySoft(); // stop collisions base.RequestPhysicsterseUpdate(); return; } if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE) { // 'VEHICLES' are dealt with in ODEDynamics.cs m_vehicle.Step(); } else { float fx = 0; float fy = 0; float fz = 0; float m_mass = _mass; // fz = 0f; //m_log.Info(m_collisionFlags.ToString()); if (m_usePID) { // If the PID Controller isn't active then we set our force // calculating base velocity to the current position if ((m_PIDTau < 1) && (m_PIDTau != 0)) { //PID_G = PID_G / m_PIDTau; m_PIDTau = 1; } if ((PID_G - m_PIDTau) <= 0) { PID_G = m_PIDTau + 1; } d.Vector3 vel = d.BodyGetLinearVel(Body); d.Vector3 pos = d.BodyGetPosition(Body); _target_velocity = new Vector3( (m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep), (m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep), (m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep) ); // if velocity is zero, use position control; otherwise, velocity control if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f)) { // keep track of where we stopped. No more slippin' & slidin' // We only want to deactivate the PID Controller if we think we want to have our surrogate // react to the physics scene by moving it's position. // Avatar to Avatar collisions // Prim to avatar collisions //fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2); //fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2); //fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P; d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z); d.BodySetLinearVel(Body, 0, 0, 0); // d.BodyAddForce(Body, 0, 0, fz); return; } else { _zeroFlag = false; // We're flying and colliding with something fx = ((_target_velocity.X) - vel.X) * (PID_D); fy = ((_target_velocity.Y) - vel.Y) * (PID_D); // vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P; fz = ((_target_velocity.Z - vel.Z) * (PID_D)); } } // end if (m_usePID) // Hover PID Controller needs to be mutually exlusive to MoveTo PID controller else if (m_useHoverPID) { //Console.WriteLine("Hover " + Name); // If we're using the PID controller, then we have no gravity // no lock; for now it's only called from within Simulate() // If the PID Controller isn't active then we set our force // calculating base velocity to the current position if ((m_PIDTau < 1)) { PID_G = PID_G / m_PIDTau; } if ((PID_G - m_PIDTau) <= 0) { PID_G = m_PIDTau + 1; } // Where are we, and where are we headed? d.Vector3 pos = d.BodyGetPosition(Body); d.Vector3 vel = d.BodyGetLinearVel(Body); // Non-Vehicles have a limited set of Hover options. // determine what our target height really is based on HoverType switch (m_PIDHoverType) { case PIDHoverType.Ground: m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); break; case PIDHoverType.GroundAndWater: m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y); m_waterHeight = _parent_scene.GetWaterLevel(); if (m_groundHeight > m_waterHeight) { if (m_PIDHoverHeight > 0 || m_isVolumeDetect) m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight; else m_targetHoverHeight = m_groundHeight; } else { m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight; } break; } // end switch (m_PIDHoverType) // don't go underground unless volumedetector if (m_targetHoverHeight > m_groundHeight || m_isVolumeDetect) { fz = (m_targetHoverHeight - pos.Z) * (PID_G - m_PIDHoverTau) * timestep; // if velocity is zero, use position control; otherwise, velocity control if (Math.Abs(fz) < 0.1f) { // keep track of where we stopped. No more slippin' & slidin' // We only want to deactivate the PID Controller if we think we want to have our surrogate // react to the physics scene by moving it's position. // Avatar to Avatar collisions // Prim to avatar collisions d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight); d.BodySetLinearVel(Body, vel.X, vel.Y, 0); // ? d.BodyAddForce(Body, 0, 0, fz); return; } else { _zeroFlag = false; // We're flying and colliding with something fz = ((fz - vel.Z) * (PID_D)); } } } else { float b = (1.0f - m_buoyancy); fx = _parent_scene.gravityx * b; fy = _parent_scene.gravityy * b; fz = _parent_scene.gravityz * b; } fx *= m_mass; fy *= m_mass; fz *= m_mass; // constant force fx += m_force.X; fy += m_force.Y; fz += m_force.Z; fx += m_forceacc.X; fy += m_forceacc.Y; fz += m_forceacc.Z; m_forceacc = Vector3.Zero; //m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString()); if (fx != 0 || fy != 0 || fz != 0) { d.BodyAddForce(Body, fx, fy, fz); //Console.WriteLine("AddForce " + fx + "," + fy + "," + fz); } Vector3 trq; trq = _torque; trq += m_angularForceacc; m_angularForceacc = Vector3.Zero; if (trq.X != 0 || trq.Y != 0 || trq.Z != 0) { d.BodyAddTorque(Body, trq.X, trq.Y, trq.Z); } } // update our ideia of velocities and acelerations d.Quaternion ori; d.Vector3 dtmpu; _position.X = lpos.X; _position.Y = lpos.Y; _position.Z = lpos.Z; d.GeomCopyQuaternion(prim_geom, out ori); _orientation.X = ori.X; _orientation.Y = ori.Y; _orientation.Z = ori.Z; _orientation.W = ori.W; _acceleration = _velocity; dtmpu = d.BodyGetLinearVel(Body); _velocity.X = dtmpu.X; _velocity.Y = dtmpu.Y; _velocity.Z = dtmpu.Z; float invts = 1 / timestep; _acceleration = (_velocity - _acceleration) * invts; dtmpu = d.BodyGetAngularVel(Body); m_rotationalVelocity.X = dtmpu.X; m_rotationalVelocity.Y = dtmpu.Y; m_rotationalVelocity.Z = dtmpu.Z; } else // body disabled/sleeping { // let vehicles sleep if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE) return; if (++bodydisablecontrol < 20) return; bodydisablecontrol = 0; d.BodyEnable(Body); return; } } else { // is not physical, or is not a body or is selected // _zeroPosition = d.BodyGetPosition(Body); return; //Console.WriteLine("Nothing " + Name); } } public void UpdatePositionAndVelocity(float simulatedtime) { // no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit! if (_parent == null && !m_disabled && !m_building && !m_outbounds) { if (Body != IntPtr.Zero) { bool lastZeroFlag = _zeroFlag; if ((Math.Abs(m_lastposition.X - _position.X) < 0.01) && (Math.Abs(m_lastposition.Y - _position.Y) < 0.01) && (Math.Abs(m_lastposition.Z - _position.Z) < 0.01) && (Math.Abs(m_lastorientation.X - _orientation.X) < 0.0001) && (Math.Abs(m_lastorientation.Y - _orientation.Y) < 0.0001) && (Math.Abs(m_lastorientation.Z - _orientation.Z) < 0.0001) ) { _zeroFlag = true; m_throttleUpdates = false; } else { _zeroFlag = false; m_lastUpdateSent = false; } if (_zeroFlag) { m_lastposition = _position; m_lastorientation = _orientation; _velocity = Vector3.Zero; _acceleration = Vector3.Zero; m_rotationalVelocity = Vector3.Zero; if (!m_lastUpdateSent) { m_throttleUpdates = false; throttleCounter = 0; base.RequestPhysicsterseUpdate(); m_lastUpdateSent = true; } } else { if (lastZeroFlag != _zeroFlag) { base.RequestPhysicsterseUpdate(); } m_lastUpdateSent = false; if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate) { m_lastposition = _position; m_lastorientation = _orientation; m_lastVelocity = _velocity; base.RequestPhysicsterseUpdate(); } else { throttleCounter++; } } } else if (!m_lastUpdateSent || !_zeroFlag) { // Not a body.. so Make sure the client isn't interpolating _velocity = Vector3.Zero; _acceleration = Vector3.Zero; m_rotationalVelocity = Vector3.Zero; m_lastVelocity = Vector3.Zero; _zeroFlag = true; if (!m_lastUpdateSent) { m_throttleUpdates = false; throttleCounter = 0; base.RequestPhysicsterseUpdate(); m_lastUpdateSent = true; } } } } internal static bool QuaternionIsFinite(Quaternion q) { if (Single.IsNaN(q.X) || Single.IsInfinity(q.X)) return false; if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y)) return false; if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z)) return false; if (Single.IsNaN(q.W) || Single.IsInfinity(q.W)) return false; return true; } internal static void DMassCopy(ref d.Mass src, ref d.Mass dst) { dst.c.W = src.c.W; dst.c.X = src.c.X; dst.c.Y = src.c.Y; dst.c.Z = src.c.Z; dst.mass = src.mass; dst.I.M00 = src.I.M00; dst.I.M01 = src.I.M01; dst.I.M02 = src.I.M02; dst.I.M10 = src.I.M10; dst.I.M11 = src.I.M11; dst.I.M12 = src.I.M12; dst.I.M20 = src.I.M20; dst.I.M21 = src.I.M21; dst.I.M22 = src.I.M22; } internal static void DMassSubPartFromObj(ref d.Mass part, ref d.Mass theobj) { // assumes object center of mass is zero float smass = part.mass; theobj.mass -= smass; smass *= 1.0f / (theobj.mass); ; theobj.c.X -= part.c.X * smass; theobj.c.Y -= part.c.Y * smass; theobj.c.Z -= part.c.Z * smass; theobj.I.M00 -= part.I.M00; theobj.I.M01 -= part.I.M01; theobj.I.M02 -= part.I.M02; theobj.I.M10 -= part.I.M10; theobj.I.M11 -= part.I.M11; theobj.I.M12 -= part.I.M12; theobj.I.M20 -= part.I.M20; theobj.I.M21 -= part.I.M21; theobj.I.M22 -= part.I.M22; } private static void DMassDup(ref d.Mass src, out d.Mass dst) { dst = new d.Mass { }; dst.c.W = src.c.W; dst.c.X = src.c.X; dst.c.Y = src.c.Y; dst.c.Z = src.c.Z; dst.mass = src.mass; dst.I.M00 = src.I.M00; dst.I.M01 = src.I.M01; dst.I.M02 = src.I.M02; dst.I.M10 = src.I.M10; dst.I.M11 = src.I.M11; dst.I.M12 = src.I.M12; dst.I.M20 = src.I.M20; dst.I.M21 = src.I.M21; dst.I.M22 = src.I.M22; } private void donullchange() { } public bool DoAChange(changes what, object arg) { if (prim_geom == IntPtr.Zero && what != changes.Add && what != changes.Remove) { return false; } // nasty switch switch (what) { case changes.Add: changeadd(); break; case changes.Remove: //If its being removed, we don't want to rebuild the physical rep at all, so ignore this stuff... //When we return true, it destroys all of the prims in the linkset anyway if (_parent != null) { OdePrim parent = (OdePrim)_parent; parent.ChildRemove(this, false); } else ChildRemove(this, false); m_vehicle = null; RemoveGeom(); m_targetSpace = IntPtr.Zero; if (m_eventsubscription > 0) UnSubscribeEvents(); return true; case changes.Link: OdePrim tmp = (OdePrim)arg; changeLink(tmp); break; case changes.DeLink: changeLink(null); break; case changes.Position: changePosition((Vector3)arg); break; case changes.Orientation: changeOrientation((Quaternion)arg); break; case changes.PosOffset: donullchange(); break; case changes.OriOffset: donullchange(); break; case changes.Velocity: changevelocity((Vector3)arg); break; // case changes.Acceleration: // changeacceleration((Vector3)arg); // break; // case changes.AngVelocity: // changeangvelocity((Vector3)arg); // break; case changes.Force: changeForce((Vector3)arg); break; case changes.Torque: changeSetTorque((Vector3)arg); break; case changes.AddForce: changeAddForce((Vector3)arg); break; case changes.AddAngForce: changeAddAngularForce((Vector3)arg); break; case changes.AngLock: changeAngularLock((Vector3)arg); break; case changes.Size: changeSize((Vector3)arg); break; case changes.Shape: changeShape((PrimitiveBaseShape)arg); break; case changes.CollidesWater: changeFloatOnWater((bool)arg); break; case changes.VolumeDtc: changeVolumedetetion((bool)arg); break; case changes.Phantom: changePhantomStatus((bool)arg); break; case changes.Physical: changePhysicsStatus((bool)arg); break; case changes.Selected: changeSelectedStatus((bool)arg); break; case changes.disabled: changeDisable((bool)arg); break; case changes.building: changeBuilding((bool)arg); break; case changes.VehicleType: changeVehicleType((int)arg); break; case changes.VehicleFlags: changeVehicleFlags((strVehicleBoolParam) arg); break; case changes.VehicleFloatParam: changeVehicleFloatParam((strVehicleFloatParam) arg); break; case changes.VehicleVectorParam: changeVehicleVectorParam((strVehicleVectorParam) arg); break; case changes.VehicleRotationParam: changeVehicleRotationParam((strVehicleQuatParam) arg); break; case changes.SetVehicle: changeSetVehicle((VehicleData) arg); break; case changes.Null: donullchange(); break; default: donullchange(); break; } return false; } public void AddChange(changes what, object arg) { _parent_scene.AddChange((PhysicsActor) this, what, arg); } private struct strVehicleBoolParam { public int param; public bool value; } private struct strVehicleFloatParam { public int param; public float value; } private struct strVehicleQuatParam { public int param; public Quaternion value; } private struct strVehicleVectorParam { public int param; public Vector3 value; } } }