/*
* AJLDuarte 2012
*/
using System;
using System.Threading;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
using OdeAPI;
using log4net;
using Nini.Config;
using OpenMetaverse;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEMeshWorker
{
private ILog m_log;
private OdeScene m_scene;
private IMesher m_mesher;
public bool meshSculptedPrim = true;
public bool forceSimplePrimMeshing = false;
public float meshSculptLOD = 32;
public float MeshSculptphysicalLOD = 32;
private IntPtr m_workODEspace = IntPtr.Zero;
public ODEMeshWorker(OdeScene pScene, ILog pLog, IMesher pMesher, IntPtr pWorkSpace, IConfig pConfig)
{
m_scene = pScene;
m_log = pLog;
m_mesher = pMesher;
m_workODEspace = pWorkSpace;
if (pConfig != null)
{
forceSimplePrimMeshing = pConfig.GetBoolean("force_simple_prim_meshing", forceSimplePrimMeshing);
meshSculptedPrim = pConfig.GetBoolean("mesh_sculpted_prim", meshSculptedPrim);
meshSculptLOD = pConfig.GetFloat("mesh_lod", meshSculptLOD);
MeshSculptphysicalLOD = pConfig.GetFloat("mesh_physical_lod", MeshSculptphysicalLOD);
}
}
///
/// Routine to figure out if we need to mesh this prim with our mesher
///
///
///
public bool needsMeshing(PrimitiveBaseShape pbs)
{
// check sculpts or meshs
if (pbs.SculptEntry)
{
if (meshSculptedPrim)
return true;
if (pbs.SculptType == (byte)SculptType.Mesh) // always do meshs
return true;
return false;
}
if (forceSimplePrimMeshing)
return true;
// if it's a standard box or sphere with no cuts, hollows, twist or top shear, return false since ODE can use an internal representation for the prim
if ((pbs.ProfileShape == ProfileShape.Square && pbs.PathCurve == (byte)Extrusion.Straight)
|| (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1
&& pbs.Scale.X == pbs.Scale.Y && pbs.Scale.Y == pbs.Scale.Z))
{
if (pbs.ProfileBegin == 0 && pbs.ProfileEnd == 0
&& pbs.ProfileHollow == 0
&& pbs.PathTwist == 0 && pbs.PathTwistBegin == 0
&& pbs.PathBegin == 0 && pbs.PathEnd == 0
&& pbs.PathTaperX == 0 && pbs.PathTaperY == 0
&& pbs.PathScaleX == 100 && pbs.PathScaleY == 100
&& pbs.PathShearX == 0 && pbs.PathShearY == 0)
{
return false;
}
}
// following code doesn't give meshs to boxes and spheres ever
// and it's odd.. so for now just return true if asked to force meshs
// hopefully mesher will fail if doesn't suport so things still get basic boxes
int iPropertiesNotSupportedDefault = 0;
if (pbs.ProfileHollow != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathBegin != 0) || pbs.PathEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathTwistBegin != 0) || (pbs.PathTwist != 0))
iPropertiesNotSupportedDefault++;
if ((pbs.ProfileBegin != 0) || pbs.ProfileEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathScaleX != 100) || (pbs.PathScaleY != 100))
iPropertiesNotSupportedDefault++;
if ((pbs.PathShearX != 0) || (pbs.PathShearY != 0))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1 && (pbs.Scale.X != pbs.Scale.Y || pbs.Scale.Y != pbs.Scale.Z || pbs.Scale.Z != pbs.Scale.X))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1)
iPropertiesNotSupportedDefault++;
// test for torus
if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Square)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
// ProfileCurve seems to combine hole shape and profile curve so we need to only compare against the lower 3 bits
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1 || pbs.PathCurve == (byte)Extrusion.Curve2)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
if (iPropertiesNotSupportedDefault == 0)
{
return false;
}
return true;
}
public IMesh getMesh(PhysicsActor actor, PrimitiveBaseShape ppbs, Vector3 psize, byte pshapetype)
{
if (!(actor is OdePrim))
return null;
IMesh mesh = null;
PrimitiveBaseShape pbs = ppbs;
Vector3 size = psize;
byte shapetype = pshapetype;
if (needsMeshing(pbs))
{
bool convex;
int clod = (int)LevelOfDetail.High;
if (shapetype == 0)
convex = false;
else
{
convex = true;
if (pbs.SculptType != (byte)SculptType.Mesh)
clod = (int)LevelOfDetail.Low;
}
mesh = m_mesher.GetMesh(actor.Name, pbs, size, clod, true, convex);
if (mesh == null)
{
if (!pbs.SculptEntry)
return m_mesher.CreateMesh(actor.Name, pbs, size, clod, true, convex);
if (pbs.SculptTexture == UUID.Zero)
return null;
if (pbs.SculptType != (byte)SculptType.Mesh)
{ // check for sculpt decoded image on cache)
if (File.Exists(System.IO.Path.Combine("j2kDecodeCache", "smap_" + pbs.SculptTexture.ToString())))
return m_mesher.CreateMesh(actor.Name, pbs, size, clod, true, convex);
}
if (pbs.SculptData != null && pbs.SculptData.Length > 0)
return m_mesher.CreateMesh(actor.Name, pbs, size, clod, true, convex);
ODEAssetRequest asr;
RequestAssetDelegate assetProvider = m_scene.RequestAssetMethod;
if (assetProvider != null)
asr = new ODEAssetRequest(this, assetProvider, actor, pbs, m_log);
return null;
}
}
return mesh;
}
private bool GetTriMeshGeo(ODEPhysRepData repData)
{
IntPtr vertices, indices;
IntPtr triMeshData = IntPtr.Zero;
IntPtr geo = IntPtr.Zero;
int vertexCount, indexCount;
int vertexStride, triStride;
PhysicsActor actor = repData.actor;
IMesh mesh = repData.mesh;
if (mesh == null)
{
mesh = getMesh(repData.actor, repData.pbs, repData.size, repData.shapetype);
}
if (mesh == null)
return false;
mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount); // Note, that vertices are fixed in unmanaged heap
mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount); // Also fixed, needs release after usage
if (vertexCount == 0 || indexCount == 0)
{
m_log.WarnFormat("[PHYSICS]: Invalid mesh data on prim {0} mesh UUID {1}",
actor.Name, repData.pbs.SculptTexture.ToString());
mesh.releaseSourceMeshData();
return false;
}
repData.OBBOffset = mesh.GetCentroid();
repData.OBB = mesh.GetOBB();
repData.hasOBB = true;
repData.physCost = 0.0013f * (float)indexCount;
mesh.releaseSourceMeshData();
try
{
triMeshData = d.GeomTriMeshDataCreate();
d.GeomTriMeshDataBuildSimple(triMeshData, vertices, vertexStride, vertexCount, indices, indexCount, triStride);
d.GeomTriMeshDataPreprocess(triMeshData);
m_scene.waitForSpaceUnlock(m_workODEspace);
geo = d.CreateTriMesh(m_workODEspace, triMeshData, null, null, null);
}
catch (Exception e)
{
m_log.ErrorFormat("[PHYSICS]: SetGeom Mesh failed for {0} exception: {1}", actor.Name, e);
if (triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(triMeshData);
repData.triMeshData = IntPtr.Zero;
}
repData.geo = IntPtr.Zero;
return false;
}
repData.geo = geo;
repData.triMeshData = triMeshData;
repData.curSpace = m_workODEspace;
return true;
}
public ODEPhysRepData CreateActorPhysRep(PhysicsActor actor, PrimitiveBaseShape pbs, IMesh pMesh, Vector3 size, byte shapetype)
{
ODEPhysRepData repData = new ODEPhysRepData();
repData.actor = actor;
repData.pbs = pbs;
repData.mesh = pMesh;
repData.size = size;
repData.shapetype = shapetype;
IntPtr geo = IntPtr.Zero;
bool hasMesh = false;
if (needsMeshing(pbs))
{
if (GetTriMeshGeo(repData))
hasMesh = true;
else
repData.canColide = false;
}
if (!hasMesh)
{
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1
&& size.X == size.Y && size.Y == size.Z)
{ // it's a sphere
m_scene.waitForSpaceUnlock(m_workODEspace);
try
{
geo = d.CreateSphere(m_workODEspace, size.X * 0.5f);
}
catch (Exception e)
{
m_log.WarnFormat("[PHYSICS]: Create sphere failed: {0}", e);
return null;
}
}
else
{// do it as a box
m_scene.waitForSpaceUnlock(m_workODEspace);
try
{
//Console.WriteLine(" CreateGeom 4");
geo = d.CreateBox(m_workODEspace, size.X, size.Y, size.Z);
}
catch (Exception e)
{
m_log.Warn("[PHYSICS]: Create box failed: {0}", e);
return null;
}
}
repData.physCost = 0.1f;
repData.streamCost = 1.0f;
repData.geo = geo;
}
repData.curSpace = m_workODEspace;
CalcVolumeData(repData);
return repData;
}
private void CalculateBasicPrimVolume(ODEPhysRepData repData)
{
PrimitiveBaseShape _pbs = repData.pbs;
Vector3 _size = repData.size;
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume * tmp * tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.5236f;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Circle:
case HollowShape.Triangle: // diference in sl is minor and odd
case HollowShape.Same:
break;
case HollowShape.Square:
hollowVolume *= 0.909f;
break;
// case HollowShape.Triangle:
// hollowVolume *= .827f;
// break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
repData.volume = volume;
}
private void CalcVolumeData(ODEPhysRepData repData)
{
float volume;
Vector3 OBB = repData.size;
Vector3 OBBoffset;
IntPtr geo = repData.geo;
if (geo == IntPtr.Zero || repData.triMeshData == IntPtr.Zero)
{
OBB.X *= 0.5f;
OBB.Y *= 0.5f;
OBB.Z *= 0.5f;
repData.OBB = OBB;
repData.OBBOffset = Vector3.Zero;
}
else if (!repData.hasOBB) // should this happen?
{
d.AABB AABB;
d.GeomGetAABB(geo, out AABB); // get the AABB from engine geom
OBB.X = (AABB.MaxX - AABB.MinX) * 0.5f;
OBB.Y = (AABB.MaxY - AABB.MinY) * 0.5f;
OBB.Z = (AABB.MaxZ - AABB.MinZ) * 0.5f;
repData.OBB = OBB;
OBBoffset.X = (AABB.MaxX + AABB.MinX) * 0.5f;
OBBoffset.Y = (AABB.MaxY + AABB.MinY) * 0.5f;
OBBoffset.Z = (AABB.MaxZ + AABB.MinZ) * 0.5f;
repData.OBBOffset = Vector3.Zero;
}
// also its own inertia and mass
// keep using basic shape mass for now
CalculateBasicPrimVolume(repData);
if (repData.hasOBB)
{
OBB = repData.OBB;
float pc = repData.physCost;
float psf = OBB.X * (OBB.Y + OBB.Z) + OBB.Y * OBB.Z;
psf *= 1.33f * .2f;
pc *= psf;
if (pc < 0.1f)
pc = 0.1f;
repData.physCost = pc;
}
else
repData.physCost = 0.1f;
}
}
public class ODEAssetRequest
{
PhysicsActor m_actor;
ODEMeshWorker m_worker;
PrimitiveBaseShape m_pbs;
private ILog m_log;
public ODEAssetRequest(ODEMeshWorker pWorker, RequestAssetDelegate provider,
PhysicsActor pActor, PrimitiveBaseShape ppbs, ILog plog)
{
m_actor = pActor;
m_worker = pWorker;
m_pbs = ppbs;
m_log = plog;
if (provider == null)
return;
UUID assetID = m_pbs.SculptTexture;
if (assetID == UUID.Zero)
return;
provider(assetID, ODEassetReceived);
}
void ODEassetReceived(AssetBase asset)
{
if (m_actor != null && m_pbs != null)
{
if (asset != null)
{
if (asset.Data != null && asset.Data.Length > 0)
{
m_pbs.SculptData = asset.Data;
m_actor.Shape = m_pbs;
}
else
m_log.WarnFormat("[PHYSICS]: asset provider returned invalid mesh data for prim {0} asset UUID {1}.",
m_actor.Name, asset.ID.ToString());
}
else
m_log.WarnFormat("[PHYSICS]: asset provider returned null asset fo mesh of prim {0}.",
m_actor.Name);
}
}
}
}