/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//#define USE_DRAWSTUFF
//#define SPAM
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using System.IO;
using System.Diagnostics;
using log4net;
using Nini.Config;
using Ode.NET;
#if USE_DRAWSTUFF
using Drawstuff.NET;
#endif
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
using OpenMetaverse;
namespace OpenSim.Region.Physics.OdePlugin
{
public enum StatusIndicators : int
{
Generic = 0,
Start = 1,
End = 2
}
public struct sCollisionData
{
public uint ColliderLocalId;
public uint CollidedWithLocalId;
public int NumberOfCollisions;
public int CollisionType;
public int StatusIndicator;
public int lastframe;
}
[Flags]
public enum CollisionCategories : int
{
Disabled = 0,
Geom = 0x00000001,
Body = 0x00000002,
Space = 0x00000004,
Character = 0x00000008,
Land = 0x00000010,
Water = 0x00000020,
Wind = 0x00000040,
Sensor = 0x00000080,
Selected = 0x00000100
}
///
/// Material type for a primitive
///
public enum Material : int
{
///
Stone = 0,
///
Metal = 1,
///
Glass = 2,
///
Wood = 3,
///
Flesh = 4,
///
Plastic = 5,
///
Rubber = 6
}
public class OdeScene : PhysicsScene
{
private readonly ILog m_log;
// private Dictionary m_storedCollisions = new Dictionary();
private Random fluidRandomizer = new Random(Environment.TickCount);
private const uint m_regionWidth = Constants.RegionSize;
private const uint m_regionHeight = Constants.RegionSize;
private float ODE_STEPSIZE = 0.020f;
private float metersInSpace = 29.9f;
private float m_timeDilation = 1.0f;
public float gravityx = 0f;
public float gravityy = 0f;
public float gravityz = -9.8f;
private float contactsurfacelayer = 0.001f;
private int worldHashspaceLow = -4;
private int worldHashspaceHigh = 128;
private int smallHashspaceLow = -4;
private int smallHashspaceHigh = 66;
private float waterlevel = 0f;
private int framecount = 0;
//private int m_returncollisions = 10;
private readonly IntPtr contactgroup;
internal IntPtr LandGeom;
internal IntPtr WaterGeom;
private float nmTerrainContactFriction = 255.0f;
private float nmTerrainContactBounce = 0.1f;
private float nmTerrainContactERP = 0.1025f;
private float mTerrainContactFriction = 75f;
private float mTerrainContactBounce = 0.1f;
private float mTerrainContactERP = 0.05025f;
private float nmAvatarObjectContactFriction = 250f;
private float nmAvatarObjectContactBounce = 0.1f;
private float mAvatarObjectContactFriction = 75f;
private float mAvatarObjectContactBounce = 0.1f;
private float avPIDD = 3200f;
private float avPIDP = 1400f;
private float avCapRadius = 0.37f;
private float avStandupTensor = 2000000f;
private bool avCapsuleTilted = true; // true = old compatibility mode with leaning capsule; false = new corrected mode
public bool IsAvCapsuleTilted { get { return avCapsuleTilted; } set { avCapsuleTilted = value; } }
private float avDensity = 80f;
// private float avHeightFudgeFactor = 0.52f;
private float avMovementDivisorWalk = 1.3f;
private float avMovementDivisorRun = 0.8f;
private float minimumGroundFlightOffset = 3f;
public float maximumMassObject = 10000.01f;
public bool meshSculptedPrim = true;
public bool forceSimplePrimMeshing = false;
public float meshSculptLOD = 32;
public float MeshSculptphysicalLOD = 16;
public float geomDefaultDensity = 10.000006836f;
public int geomContactPointsStartthrottle = 3;
public int geomUpdatesPerThrottledUpdate = 15;
public float bodyPIDD = 35f;
public float bodyPIDG = 25;
public int geomCrossingFailuresBeforeOutofbounds = 5;
public float bodyMotorJointMaxforceTensor = 2;
public int bodyFramesAutoDisable = 20;
private float[] _watermap;
private bool m_filterCollisions = true;
private d.NearCallback nearCallback;
public d.TriCallback triCallback;
public d.TriArrayCallback triArrayCallback;
///
/// Avatars in the physics scene.
///
private readonly HashSet _characters = new HashSet();
///
/// Prims in the physics scene.
///
private readonly HashSet _prims = new HashSet();
///
/// Prims in the physics scene that are subject to physics, not just collisions.
///
private readonly HashSet _activeprims = new HashSet();
///
/// Used to lock on manipulation of _taintedPrimL and _taintedPrimH
///
private readonly Object _taintedPrimLock = new Object();
///
/// List of tainted prims.
///
///
/// A tainted prim is one that has taints to process before performing any other operations. The list is
/// cleared after processing.
///
private readonly List _taintedPrimL = new List();
///
/// HashSet of tainted prims.
///
///
/// A tainted prim is one that has taints to process before performing any other operations. The hashset is
/// cleared after processing.
///
private readonly HashSet _taintedPrimH = new HashSet();
///
/// Record a character that has taints to be processed.
///
private readonly HashSet _taintedActors = new HashSet();
///
/// Keep record of contacts in the physics loop so that we can remove duplicates.
///
private readonly List _perloopContact = new List();
///
/// A dictionary of actors that should receive collision events.
///
private readonly Dictionary _collisionEventPrim = new Dictionary();
///
/// A dictionary of collision event changes that are waiting to be processed.
///
private readonly Dictionary _collisionEventPrimChanges = new Dictionary();
///
/// Maps a unique geometry id (a memory location) to a physics actor name.
///
///
/// Only actors participating in collisions have geometries. This has to be maintained separately from
/// actor_name_map because terrain and water currently don't conceptually have a physics actor of their own
/// apart from the singleton PANull
///
public Dictionary geom_name_map = new Dictionary();
///
/// Maps a unique geometry id (a memory location) to a physics actor.
///
///
/// Only actors participating in collisions have geometries.
///
public Dictionary actor_name_map = new Dictionary();
///
/// Defects list to remove characters that no longer have finite positions due to some other bug.
///
///
/// Used repeatedly in Simulate() but initialized once here.
///
private readonly List defects = new List();
private bool m_NINJA_physics_joints_enabled = false;
//private Dictionary jointpart_name_map = new Dictionary();
private readonly Dictionary> joints_connecting_actor = new Dictionary>();
private d.ContactGeom[] contacts;
///
/// Lock only briefly. accessed by external code (to request new joints) and by OdeScene.Simulate() to move those joints into pending/active
///
private readonly List requestedJointsToBeCreated = new List();
///
/// can lock for longer. accessed only by OdeScene.
///
private readonly List pendingJoints = new List();
///
/// can lock for longer. accessed only by OdeScene.
///
private readonly List activeJoints = new List();
///
/// lock only briefly. accessed by external code (to request deletion of joints) and by OdeScene.Simulate() to move those joints out of pending/active
///
private readonly List requestedJointsToBeDeleted = new List();
private Object externalJointRequestsLock = new Object();
private readonly Dictionary SOPName_to_activeJoint = new Dictionary();
private readonly Dictionary SOPName_to_pendingJoint = new Dictionary();
private readonly DoubleDictionary RegionTerrain = new DoubleDictionary();
private readonly Dictionary TerrainHeightFieldHeights = new Dictionary();
private d.Contact contact;
private d.Contact TerrainContact;
private d.Contact AvatarMovementprimContact;
private d.Contact AvatarMovementTerrainContact;
private d.Contact WaterContact;
private d.Contact[,] m_materialContacts;
//Ckrinke: Comment out until used. We declare it, initialize it, but do not use it
//Ckrinke private int m_randomizeWater = 200;
private int m_physicsiterations = 10;
private const float m_SkipFramesAtms = 0.40f; // Drop frames gracefully at a 400 ms lag
private readonly PhysicsActor PANull = new NullPhysicsActor();
// private float step_time = 0.0f;
//Ckrinke: Comment out until used. We declare it, initialize it, but do not use it
//Ckrinke private int ms = 0;
public IntPtr world;
//private bool returncollisions = false;
// private uint obj1LocalID = 0;
private uint obj2LocalID = 0;
//private int ctype = 0;
private OdeCharacter cc1;
private OdePrim cp1;
private OdeCharacter cc2;
private OdePrim cp2;
private int tickCountFrameRun;
private int latertickcount=0;
//private int cStartStop = 0;
//private string cDictKey = "";
public IntPtr space;
//private IntPtr tmpSpace;
// split static geometry collision handling into spaces of 30 meters
public IntPtr[,] staticPrimspace;
///
/// Used to lock the entire physics scene. Locked during the main part of Simulate()
///
internal Object OdeLock = new Object();
public IMesher mesher;
private IConfigSource m_config;
public bool physics_logging = false;
public int physics_logging_interval = 0;
public bool physics_logging_append_existing_logfile = false;
public d.Vector3 xyz = new d.Vector3(128.1640f, 128.3079f, 25.7600f);
public d.Vector3 hpr = new d.Vector3(125.5000f, -17.0000f, 0.0000f);
// TODO: unused: private uint heightmapWidth = m_regionWidth + 1;
// TODO: unused: private uint heightmapHeight = m_regionHeight + 1;
// TODO: unused: private uint heightmapWidthSamples;
// TODO: unused: private uint heightmapHeightSamples;
private volatile int m_global_contactcount = 0;
private Vector3 m_worldOffset = Vector3.Zero;
public Vector2 WorldExtents = new Vector2((int)Constants.RegionSize, (int)Constants.RegionSize);
private PhysicsScene m_parentScene = null;
private ODERayCastRequestManager m_rayCastManager;
///
/// Initiailizes the scene
/// Sets many properties that ODE requires to be stable
/// These settings need to be tweaked 'exactly' right or weird stuff happens.
///
/// Name of the scene. Useful in debug messages.
public OdeScene(string name)
{
m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType.ToString() + "." + name);
Name = name;
nearCallback = near;
triCallback = TriCallback;
triArrayCallback = TriArrayCallback;
m_rayCastManager = new ODERayCastRequestManager(this);
// Create the world and the first space
world = d.WorldCreate();
space = d.HashSpaceCreate(IntPtr.Zero);
contactgroup = d.JointGroupCreate(0);
d.WorldSetAutoDisableFlag(world, false);
#if USE_DRAWSTUFF
Thread viewthread = new Thread(new ParameterizedThreadStart(startvisualization));
viewthread.Start();
#endif
_watermap = new float[258 * 258];
// Zero out the prim spaces array (we split our space into smaller spaces so
// we can hit test less.
}
#if USE_DRAWSTUFF
public void startvisualization(object o)
{
ds.Functions fn;
fn.version = ds.VERSION;
fn.start = new ds.CallbackFunction(start);
fn.step = new ds.CallbackFunction(step);
fn.command = new ds.CallbackFunction(command);
fn.stop = null;
fn.path_to_textures = "./textures";
string[] args = new string[0];
ds.SimulationLoop(args.Length, args, 352, 288, ref fn);
}
#endif
// Initialize the mesh plugin
public override void Initialise(IMesher meshmerizer, IConfigSource config)
{
mesher = meshmerizer;
m_config = config;
// Defaults
if (Environment.OSVersion.Platform == PlatformID.Unix)
{
avPIDD = 3200.0f;
avPIDP = 1400.0f;
avStandupTensor = 2000000f;
}
else
{
avPIDD = 2200.0f;
avPIDP = 900.0f;
avStandupTensor = 550000f;
}
int contactsPerCollision = 80;
if (m_config != null)
{
IConfig physicsconfig = m_config.Configs["ODEPhysicsSettings"];
if (physicsconfig != null)
{
gravityx = physicsconfig.GetFloat("world_gravityx", 0f);
gravityy = physicsconfig.GetFloat("world_gravityy", 0f);
gravityz = physicsconfig.GetFloat("world_gravityz", -9.8f);
worldHashspaceLow = physicsconfig.GetInt("world_hashspace_size_low", -4);
worldHashspaceHigh = physicsconfig.GetInt("world_hashspace_size_high", 128);
metersInSpace = physicsconfig.GetFloat("meters_in_small_space", 29.9f);
smallHashspaceLow = physicsconfig.GetInt("small_hashspace_size_low", -4);
smallHashspaceHigh = physicsconfig.GetInt("small_hashspace_size_high", 66);
contactsurfacelayer = physicsconfig.GetFloat("world_contact_surface_layer", 0.001f);
nmTerrainContactFriction = physicsconfig.GetFloat("nm_terraincontact_friction", 255.0f);
nmTerrainContactBounce = physicsconfig.GetFloat("nm_terraincontact_bounce", 0.1f);
nmTerrainContactERP = physicsconfig.GetFloat("nm_terraincontact_erp", 0.1025f);
mTerrainContactFriction = physicsconfig.GetFloat("m_terraincontact_friction", 75f);
mTerrainContactBounce = physicsconfig.GetFloat("m_terraincontact_bounce", 0.05f);
mTerrainContactERP = physicsconfig.GetFloat("m_terraincontact_erp", 0.05025f);
nmAvatarObjectContactFriction = physicsconfig.GetFloat("objectcontact_friction", 250f);
nmAvatarObjectContactBounce = physicsconfig.GetFloat("objectcontact_bounce", 0.2f);
mAvatarObjectContactFriction = physicsconfig.GetFloat("m_avatarobjectcontact_friction", 75f);
mAvatarObjectContactBounce = physicsconfig.GetFloat("m_avatarobjectcontact_bounce", 0.1f);
ODE_STEPSIZE = physicsconfig.GetFloat("world_stepsize", 0.020f);
m_physicsiterations = physicsconfig.GetInt("world_internal_steps_without_collisions", 10);
avDensity = physicsconfig.GetFloat("av_density", 80f);
// avHeightFudgeFactor = physicsconfig.GetFloat("av_height_fudge_factor", 0.52f);
avMovementDivisorWalk = physicsconfig.GetFloat("av_movement_divisor_walk", 1.3f);
avMovementDivisorRun = physicsconfig.GetFloat("av_movement_divisor_run", 0.8f);
avCapRadius = physicsconfig.GetFloat("av_capsule_radius", 0.37f);
avCapsuleTilted = physicsconfig.GetBoolean("av_capsule_tilted", false);
contactsPerCollision = physicsconfig.GetInt("contacts_per_collision", 80);
geomContactPointsStartthrottle = physicsconfig.GetInt("geom_contactpoints_start_throttling", 3);
geomUpdatesPerThrottledUpdate = physicsconfig.GetInt("geom_updates_before_throttled_update", 15);
geomCrossingFailuresBeforeOutofbounds = physicsconfig.GetInt("geom_crossing_failures_before_outofbounds", 5);
geomDefaultDensity = physicsconfig.GetFloat("geometry_default_density", 10.000006836f);
bodyFramesAutoDisable = physicsconfig.GetInt("body_frames_auto_disable", 20);
bodyPIDD = physicsconfig.GetFloat("body_pid_derivative", 35f);
bodyPIDG = physicsconfig.GetFloat("body_pid_gain", 25f);
forceSimplePrimMeshing = physicsconfig.GetBoolean("force_simple_prim_meshing", forceSimplePrimMeshing);
meshSculptedPrim = physicsconfig.GetBoolean("mesh_sculpted_prim", true);
meshSculptLOD = physicsconfig.GetFloat("mesh_lod", 32f);
MeshSculptphysicalLOD = physicsconfig.GetFloat("mesh_physical_lod", 16f);
m_filterCollisions = physicsconfig.GetBoolean("filter_collisions", false);
if (Environment.OSVersion.Platform == PlatformID.Unix)
{
avPIDD = physicsconfig.GetFloat("av_pid_derivative_linux", 2200.0f);
avPIDP = physicsconfig.GetFloat("av_pid_proportional_linux", 900.0f);
avStandupTensor = physicsconfig.GetFloat("av_capsule_standup_tensor_linux", 550000f);
bodyMotorJointMaxforceTensor = physicsconfig.GetFloat("body_motor_joint_maxforce_tensor_linux", 5f);
}
else
{
avPIDD = physicsconfig.GetFloat("av_pid_derivative_win", 2200.0f);
avPIDP = physicsconfig.GetFloat("av_pid_proportional_win", 900.0f);
avStandupTensor = physicsconfig.GetFloat("av_capsule_standup_tensor_win", 550000f);
bodyMotorJointMaxforceTensor = physicsconfig.GetFloat("body_motor_joint_maxforce_tensor_win", 5f);
}
physics_logging = physicsconfig.GetBoolean("physics_logging", false);
physics_logging_interval = physicsconfig.GetInt("physics_logging_interval", 0);
physics_logging_append_existing_logfile = physicsconfig.GetBoolean("physics_logging_append_existing_logfile", false);
m_NINJA_physics_joints_enabled = physicsconfig.GetBoolean("use_NINJA_physics_joints", false);
minimumGroundFlightOffset = physicsconfig.GetFloat("minimum_ground_flight_offset", 3f);
maximumMassObject = physicsconfig.GetFloat("maximum_mass_object", 10000.01f);
}
}
contacts = new d.ContactGeom[contactsPerCollision];
staticPrimspace = new IntPtr[(int)(300 / metersInSpace), (int)(300 / metersInSpace)];
// Centeral contact friction and bounce
// ckrinke 11/10/08 Enabling soft_erp but not soft_cfm until I figure out why
// an avatar falls through in Z but not in X or Y when walking on a prim.
contact.surface.mode |= d.ContactFlags.SoftERP;
contact.surface.mu = nmAvatarObjectContactFriction;
contact.surface.bounce = nmAvatarObjectContactBounce;
contact.surface.soft_cfm = 0.010f;
contact.surface.soft_erp = 0.010f;
// Terrain contact friction and Bounce
// This is the *non* moving version. Use this when an avatar
// isn't moving to keep it in place better
TerrainContact.surface.mode |= d.ContactFlags.SoftERP;
TerrainContact.surface.mu = nmTerrainContactFriction;
TerrainContact.surface.bounce = nmTerrainContactBounce;
TerrainContact.surface.soft_erp = nmTerrainContactERP;
WaterContact.surface.mode |= (d.ContactFlags.SoftERP | d.ContactFlags.SoftCFM);
WaterContact.surface.mu = 0f; // No friction
WaterContact.surface.bounce = 0.0f; // No bounce
WaterContact.surface.soft_cfm = 0.010f;
WaterContact.surface.soft_erp = 0.010f;
// Prim contact friction and bounce
// THis is the *non* moving version of friction and bounce
// Use this when an avatar comes in contact with a prim
// and is moving
AvatarMovementprimContact.surface.mu = mAvatarObjectContactFriction;
AvatarMovementprimContact.surface.bounce = mAvatarObjectContactBounce;
// Terrain contact friction bounce and various error correcting calculations
// Use this when an avatar is in contact with the terrain and moving.
AvatarMovementTerrainContact.surface.mode |= d.ContactFlags.SoftERP;
AvatarMovementTerrainContact.surface.mu = mTerrainContactFriction;
AvatarMovementTerrainContact.surface.bounce = mTerrainContactBounce;
AvatarMovementTerrainContact.surface.soft_erp = mTerrainContactERP;
/*
Stone = 0,
///
Metal = 1,
///
Glass = 2,
///
Wood = 3,
///
Flesh = 4,
///
Plastic = 5,
///
Rubber = 6
*/
m_materialContacts = new d.Contact[7,2];
m_materialContacts[(int)Material.Stone, 0] = new d.Contact();
m_materialContacts[(int)Material.Stone, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Stone, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Stone, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Stone, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Stone, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Stone, 1] = new d.Contact();
m_materialContacts[(int)Material.Stone, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Stone, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Stone, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Stone, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Stone, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Metal, 0] = new d.Contact();
m_materialContacts[(int)Material.Metal, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Metal, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Metal, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Metal, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Metal, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Metal, 1] = new d.Contact();
m_materialContacts[(int)Material.Metal, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Metal, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Metal, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Metal, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Metal, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Glass, 0] = new d.Contact();
m_materialContacts[(int)Material.Glass, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Glass, 0].surface.mu = 1f;
m_materialContacts[(int)Material.Glass, 0].surface.bounce = 0.5f;
m_materialContacts[(int)Material.Glass, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Glass, 0].surface.soft_erp = 0.010f;
/*
private float nmAvatarObjectContactFriction = 250f;
private float nmAvatarObjectContactBounce = 0.1f;
private float mAvatarObjectContactFriction = 75f;
private float mAvatarObjectContactBounce = 0.1f;
*/
m_materialContacts[(int)Material.Glass, 1] = new d.Contact();
m_materialContacts[(int)Material.Glass, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Glass, 1].surface.mu = 1f;
m_materialContacts[(int)Material.Glass, 1].surface.bounce = 0.5f;
m_materialContacts[(int)Material.Glass, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Glass, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Wood, 0] = new d.Contact();
m_materialContacts[(int)Material.Wood, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Wood, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Wood, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Wood, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Wood, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Wood, 1] = new d.Contact();
m_materialContacts[(int)Material.Wood, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Wood, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Wood, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Wood, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Wood, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Flesh, 0] = new d.Contact();
m_materialContacts[(int)Material.Flesh, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Flesh, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Flesh, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Flesh, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Flesh, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Flesh, 1] = new d.Contact();
m_materialContacts[(int)Material.Flesh, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Flesh, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Flesh, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Flesh, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Flesh, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Plastic, 0] = new d.Contact();
m_materialContacts[(int)Material.Plastic, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Plastic, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Plastic, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Plastic, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Plastic, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Plastic, 1] = new d.Contact();
m_materialContacts[(int)Material.Plastic, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Plastic, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Plastic, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Plastic, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Plastic, 1].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Rubber, 0] = new d.Contact();
m_materialContacts[(int)Material.Rubber, 0].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Rubber, 0].surface.mu = nmAvatarObjectContactFriction;
m_materialContacts[(int)Material.Rubber, 0].surface.bounce = nmAvatarObjectContactBounce;
m_materialContacts[(int)Material.Rubber, 0].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Rubber, 0].surface.soft_erp = 0.010f;
m_materialContacts[(int)Material.Rubber, 1] = new d.Contact();
m_materialContacts[(int)Material.Rubber, 1].surface.mode |= d.ContactFlags.SoftERP;
m_materialContacts[(int)Material.Rubber, 1].surface.mu = mAvatarObjectContactFriction;
m_materialContacts[(int)Material.Rubber, 1].surface.bounce = mAvatarObjectContactBounce;
m_materialContacts[(int)Material.Rubber, 1].surface.soft_cfm = 0.010f;
m_materialContacts[(int)Material.Rubber, 1].surface.soft_erp = 0.010f;
d.HashSpaceSetLevels(space, worldHashspaceLow, worldHashspaceHigh);
// Set the gravity,, don't disable things automatically (we set it explicitly on some things)
d.WorldSetGravity(world, gravityx, gravityy, gravityz);
d.WorldSetContactSurfaceLayer(world, contactsurfacelayer);
d.WorldSetLinearDamping(world, 256f);
d.WorldSetAngularDamping(world, 256f);
d.WorldSetAngularDampingThreshold(world, 256f);
d.WorldSetLinearDampingThreshold(world, 256f);
d.WorldSetMaxAngularSpeed(world, 256f);
// Set how many steps we go without running collision testing
// This is in addition to the step size.
// Essentially Steps * m_physicsiterations
d.WorldSetQuickStepNumIterations(world, m_physicsiterations);
//d.WorldSetContactMaxCorrectingVel(world, 1000.0f);
for (int i = 0; i < staticPrimspace.GetLength(0); i++)
{
for (int j = 0; j < staticPrimspace.GetLength(1); j++)
{
staticPrimspace[i, j] = IntPtr.Zero;
}
}
}
// internal void waitForSpaceUnlock(IntPtr space)
// {
// //if (space != IntPtr.Zero)
// //while (d.SpaceLockQuery(space)) { } // Wait and do nothing
// }
// ///
// /// Debug space message for printing the space that a prim/avatar is in.
// ///
// ///
// /// Returns which split up space the given position is in.
// public string whichspaceamIin(Vector3 pos)
// {
// return calculateSpaceForGeom(pos).ToString();
// }
#region Collision Detection
///
/// This is our near callback. A geometry is near a body
///
/// The space that contains the geoms. Remember, spaces are also geoms
/// a geometry or space
/// another geometry or space
private void near(IntPtr space, IntPtr g1, IntPtr g2)
{
// m_log.DebugFormat("[PHYSICS]: Colliding {0} and {1} in {2}", g1, g2, space);
// no lock here! It's invoked from within Simulate(), which is thread-locked
// Test if we're colliding a geom with a space.
// If so we have to drill down into the space recursively
if (d.GeomIsSpace(g1) || d.GeomIsSpace(g2))
{
if (g1 == IntPtr.Zero || g2 == IntPtr.Zero)
return;
// Separating static prim geometry spaces.
// We'll be calling near recursivly if one
// of them is a space to find all of the
// contact points in the space
try
{
d.SpaceCollide2(g1, g2, IntPtr.Zero, nearCallback);
}
catch (AccessViolationException)
{
m_log.Warn("[ODE SCENE]: Unable to collide test a space");
return;
}
//Colliding a space or a geom with a space or a geom. so drill down
//Collide all geoms in each space..
//if (d.GeomIsSpace(g1)) d.SpaceCollide(g1, IntPtr.Zero, nearCallback);
//if (d.GeomIsSpace(g2)) d.SpaceCollide(g2, IntPtr.Zero, nearCallback);
return;
}
if (g1 == IntPtr.Zero || g2 == IntPtr.Zero)
return;
IntPtr b1 = d.GeomGetBody(g1);
IntPtr b2 = d.GeomGetBody(g2);
// d.GeomClassID id = d.GeomGetClass(g1);
String name1 = null;
String name2 = null;
if (!geom_name_map.TryGetValue(g1, out name1))
{
name1 = "null";
}
if (!geom_name_map.TryGetValue(g2, out name2))
{
name2 = "null";
}
//if (id == d.GeomClassId.TriMeshClass)
//{
// m_log.InfoFormat("near: A collision was detected between {1} and {2}", 0, name1, name2);
//m_log.Debug("near: A collision was detected between {1} and {2}", 0, name1, name2);
//}
// Figure out how many contact points we have
int count = 0;
try
{
// Colliding Geom To Geom
// This portion of the function 'was' blatantly ripped off from BoxStack.cs
if (g1 == g2)
return; // Can't collide with yourself
if (b1 != IntPtr.Zero && b2 != IntPtr.Zero && d.AreConnectedExcluding(b1, b2, d.JointType.Contact))
return;
count = d.Collide(g1, g2, contacts.Length, contacts, d.ContactGeom.SizeOf);
if (count > contacts.Length)
m_log.Error("[ODE SCENE]: Got " + count + " contacts when we asked for a maximum of " + contacts.Length);
}
catch (SEHException)
{
m_log.Error(
"[ODE SCENE]: The Operating system shut down ODE because of corrupt memory. This could be a result of really irregular terrain. If this repeats continuously, restart using Basic Physics and terrain fill your terrain. Restarting the sim.");
base.TriggerPhysicsBasedRestart();
}
catch (Exception e)
{
m_log.WarnFormat("[ODE SCENE]: Unable to collide test an object: {0}", e.Message);
return;
}
PhysicsActor p1;
PhysicsActor p2;
if (!actor_name_map.TryGetValue(g1, out p1))
{
p1 = PANull;
}
if (!actor_name_map.TryGetValue(g2, out p2))
{
p2 = PANull;
}
ContactPoint maxDepthContact = new ContactPoint();
if (p1.CollisionScore + count >= float.MaxValue)
p1.CollisionScore = 0;
p1.CollisionScore += count;
if (p2.CollisionScore + count >= float.MaxValue)
p2.CollisionScore = 0;
p2.CollisionScore += count;
for (int i = 0; i < count; i++)
{
d.ContactGeom curContact = contacts[i];
if (curContact.depth > maxDepthContact.PenetrationDepth)
{
maxDepthContact = new ContactPoint(
new Vector3(curContact.pos.X, curContact.pos.Y, curContact.pos.Z),
new Vector3(curContact.normal.X, curContact.normal.Y, curContact.normal.Z),
curContact.depth
);
}
//m_log.Warn("[CCOUNT]: " + count);
IntPtr joint;
// If we're colliding with terrain, use 'TerrainContact' instead of contact.
// allows us to have different settings
// We only need to test p2 for 'jump crouch purposes'
if (p2 is OdeCharacter && p1.PhysicsActorType == (int)ActorTypes.Prim)
{
// Testing if the collision is at the feet of the avatar
//m_log.DebugFormat("[PHYSICS]: {0} - {1} - {2} - {3}", curContact.pos.Z, p2.Position.Z, (p2.Position.Z - curContact.pos.Z), (p2.Size.Z * 0.6f));
if ((p2.Position.Z - curContact.pos.Z) > (p2.Size.Z * 0.6f))
p2.IsColliding = true;
}
else
{
p2.IsColliding = true;
}
//if ((framecount % m_returncollisions) == 0)
switch (p1.PhysicsActorType)
{
case (int)ActorTypes.Agent:
p2.CollidingObj = true;
break;
case (int)ActorTypes.Prim:
if (p2.Velocity.LengthSquared() > 0.0f)
p2.CollidingObj = true;
break;
case (int)ActorTypes.Unknown:
p2.CollidingGround = true;
break;
default:
p2.CollidingGround = true;
break;
}
// we don't want prim or avatar to explode
#region InterPenetration Handling - Unintended physics explosions
# region disabled code1
if (curContact.depth >= 0.08f)
{
//This is disabled at the moment only because it needs more tweaking
//It will eventually be uncommented
/*
if (contact.depth >= 1.00f)
{
//m_log.Debug("[PHYSICS]: " + contact.depth.ToString());
}
//If you interpenetrate a prim with an agent
if ((p2.PhysicsActorType == (int) ActorTypes.Agent &&
p1.PhysicsActorType == (int) ActorTypes.Prim) ||
(p1.PhysicsActorType == (int) ActorTypes.Agent &&
p2.PhysicsActorType == (int) ActorTypes.Prim))
{
//contact.depth = contact.depth * 4.15f;
/*
if (p2.PhysicsActorType == (int) ActorTypes.Agent)
{
p2.CollidingObj = true;
contact.depth = 0.003f;
p2.Velocity = p2.Velocity + new PhysicsVector(0, 0, 2.5f);
OdeCharacter character = (OdeCharacter) p2;
character.SetPidStatus(true);
contact.pos = new d.Vector3(contact.pos.X + (p1.Size.X / 2), contact.pos.Y + (p1.Size.Y / 2), contact.pos.Z + (p1.Size.Z / 2));
}
else
{
//contact.depth = 0.0000000f;
}
if (p1.PhysicsActorType == (int) ActorTypes.Agent)
{
p1.CollidingObj = true;
contact.depth = 0.003f;
p1.Velocity = p1.Velocity + new PhysicsVector(0, 0, 2.5f);
contact.pos = new d.Vector3(contact.pos.X + (p2.Size.X / 2), contact.pos.Y + (p2.Size.Y / 2), contact.pos.Z + (p2.Size.Z / 2));
OdeCharacter character = (OdeCharacter)p1;
character.SetPidStatus(true);
}
else
{
//contact.depth = 0.0000000f;
}
}
*/
// If you interpenetrate a prim with another prim
/*
if (p1.PhysicsActorType == (int) ActorTypes.Prim && p2.PhysicsActorType == (int) ActorTypes.Prim)
{
#region disabledcode2
//OdePrim op1 = (OdePrim)p1;
//OdePrim op2 = (OdePrim)p2;
//op1.m_collisionscore++;
//op2.m_collisionscore++;
//if (op1.m_collisionscore > 8000 || op2.m_collisionscore > 8000)
//{
//op1.m_taintdisable = true;
//AddPhysicsActorTaint(p1);
//op2.m_taintdisable = true;
//AddPhysicsActorTaint(p2);
//}
//if (contact.depth >= 0.25f)
//{
// Don't collide, one or both prim will expld.
//op1.m_interpenetrationcount++;
//op2.m_interpenetrationcount++;
//interpenetrations_before_disable = 200;
//if (op1.m_interpenetrationcount >= interpenetrations_before_disable)
//{
//op1.m_taintdisable = true;
//AddPhysicsActorTaint(p1);
//}
//if (op2.m_interpenetrationcount >= interpenetrations_before_disable)
//{
// op2.m_taintdisable = true;
//AddPhysicsActorTaint(p2);
//}
//contact.depth = contact.depth / 8f;
//contact.normal = new d.Vector3(0, 0, 1);
//}
//if (op1.m_disabled || op2.m_disabled)
//{
//Manually disabled objects stay disabled
//contact.depth = 0f;
//}
#endregion
}
*/
#endregion
if (curContact.depth >= 1.00f)
{
//m_log.Info("[P]: " + contact.depth.ToString());
if ((p2.PhysicsActorType == (int) ActorTypes.Agent &&
p1.PhysicsActorType == (int) ActorTypes.Unknown) ||
(p1.PhysicsActorType == (int) ActorTypes.Agent &&
p2.PhysicsActorType == (int) ActorTypes.Unknown))
{
if (p2.PhysicsActorType == (int) ActorTypes.Agent)
{
if (p2 is OdeCharacter)
{
OdeCharacter character = (OdeCharacter) p2;
//p2.CollidingObj = true;
curContact.depth = 0.00000003f;
p2.Velocity = p2.Velocity + new Vector3(0f, 0f, 0.5f);
curContact.pos =
new d.Vector3(curContact.pos.X + (p1.Size.X/2),
curContact.pos.Y + (p1.Size.Y/2),
curContact.pos.Z + (p1.Size.Z/2));
character.SetPidStatus(true);
}
}
if (p1.PhysicsActorType == (int) ActorTypes.Agent)
{
if (p1 is OdeCharacter)
{
OdeCharacter character = (OdeCharacter) p1;
//p2.CollidingObj = true;
curContact.depth = 0.00000003f;
p1.Velocity = p1.Velocity + new Vector3(0f, 0f, 0.5f);
curContact.pos =
new d.Vector3(curContact.pos.X + (p1.Size.X/2),
curContact.pos.Y + (p1.Size.Y/2),
curContact.pos.Z + (p1.Size.Z/2));
character.SetPidStatus(true);
}
}
}
}
}
#endregion
// Logic for collision handling
// Note, that if *all* contacts are skipped (VolumeDetect)
// The prim still detects (and forwards) collision events but
// appears to be phantom for the world
Boolean skipThisContact = false;
if ((p1 is OdePrim) && (((OdePrim)p1).m_isVolumeDetect))
skipThisContact = true; // No collision on volume detect prims
if (!skipThisContact && (p2 is OdePrim) && (((OdePrim)p2).m_isVolumeDetect))
skipThisContact = true; // No collision on volume detect prims
if (!skipThisContact && curContact.depth < 0f)
skipThisContact = true;
if (!skipThisContact && checkDupe(curContact, p2.PhysicsActorType))
skipThisContact = true;
const int maxContactsbeforedeath = 4000;
joint = IntPtr.Zero;
if (!skipThisContact)
{
_perloopContact.Add(curContact);
// If we're colliding against terrain
if (name1 == "Terrain" || name2 == "Terrain")
{
// If we're moving
if ((p2.PhysicsActorType == (int) ActorTypes.Agent) &&
(Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f))
{
// Use the movement terrain contact
AvatarMovementTerrainContact.geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref AvatarMovementTerrainContact);
m_global_contactcount++;
}
}
else
{
if (p2.PhysicsActorType == (int)ActorTypes.Agent)
{
// Use the non moving terrain contact
TerrainContact.geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref TerrainContact);
m_global_contactcount++;
}
}
else
{
if (p2.PhysicsActorType == (int)ActorTypes.Prim && p1.PhysicsActorType == (int)ActorTypes.Prim)
{
// prim prim contact
// int pj294950 = 0;
int movintYN = 0;
int material = (int) Material.Wood;
// prim terrain contact
if (Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f)
{
movintYN = 1;
}
if (p2 is OdePrim)
material = ((OdePrim)p2).m_material;
//m_log.DebugFormat("Material: {0}", material);
m_materialContacts[material, movintYN].geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref m_materialContacts[material, movintYN]);
m_global_contactcount++;
}
}
else
{
int movintYN = 0;
// prim terrain contact
if (Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f)
{
movintYN = 1;
}
int material = (int)Material.Wood;
if (p2 is OdePrim)
material = ((OdePrim)p2).m_material;
//m_log.DebugFormat("Material: {0}", material);
m_materialContacts[material, movintYN].geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref m_materialContacts[material, movintYN]);
m_global_contactcount++;
}
}
}
}
//if (p2.PhysicsActorType == (int)ActorTypes.Prim)
//{
//m_log.Debug("[PHYSICS]: prim contacting with ground");
//}
}
else if (name1 == "Water" || name2 == "Water")
{
/*
if ((p2.PhysicsActorType == (int) ActorTypes.Prim))
{
}
else
{
}
*/
//WaterContact.surface.soft_cfm = 0.0000f;
//WaterContact.surface.soft_erp = 0.00000f;
if (curContact.depth > 0.1f)
{
curContact.depth *= 52;
//contact.normal = new d.Vector3(0, 0, 1);
//contact.pos = new d.Vector3(0, 0, contact.pos.Z - 5f);
}
WaterContact.geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref WaterContact);
m_global_contactcount++;
}
//m_log.Info("[PHYSICS]: Prim Water Contact" + contact.depth);
}
else
{
// we're colliding with prim or avatar
// check if we're moving
if ((p2.PhysicsActorType == (int)ActorTypes.Agent))
{
if ((Math.Abs(p2.Velocity.X) > 0.01f || Math.Abs(p2.Velocity.Y) > 0.01f))
{
// Use the Movement prim contact
AvatarMovementprimContact.geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref AvatarMovementprimContact);
m_global_contactcount++;
}
}
else
{
// Use the non movement contact
contact.geom = curContact;
_perloopContact.Add(curContact);
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref contact);
m_global_contactcount++;
}
}
}
else if (p2.PhysicsActorType == (int)ActorTypes.Prim)
{
//p1.PhysicsActorType
int material = (int)Material.Wood;
if (p2 is OdePrim)
material = ((OdePrim)p2).m_material;
//m_log.DebugFormat("Material: {0}", material);
m_materialContacts[material, 0].geom = curContact;
if (m_global_contactcount < maxContactsbeforedeath)
{
joint = d.JointCreateContact(world, contactgroup, ref m_materialContacts[material, 0]);
m_global_contactcount++;
}
}
}
if (m_global_contactcount < maxContactsbeforedeath && joint != IntPtr.Zero) // stack collide!
{
d.JointAttach(joint, b1, b2);
m_global_contactcount++;
}
}
collision_accounting_events(p1, p2, maxDepthContact);
if (count > geomContactPointsStartthrottle)
{
// If there are more then 3 contact points, it's likely
// that we've got a pile of objects, so ...
// We don't want to send out hundreds of terse updates over and over again
// so lets throttle them and send them again after it's somewhat sorted out.
p2.ThrottleUpdates = true;
}
//m_log.Debug(count.ToString());
//m_log.Debug("near: A collision was detected between {1} and {2}", 0, name1, name2);
}
}
private bool checkDupe(d.ContactGeom contactGeom, int atype)
{
if (!m_filterCollisions)
return false;
bool result = false;
ActorTypes at = (ActorTypes)atype;
foreach (d.ContactGeom contact in _perloopContact)
{
//if ((contact.g1 == contactGeom.g1 && contact.g2 == contactGeom.g2))
//{
// || (contact.g2 == contactGeom.g1 && contact.g1 == contactGeom.g2)
if (at == ActorTypes.Agent)
{
if (((Math.Abs(contactGeom.normal.X - contact.normal.X) < 1.026f)
&& (Math.Abs(contactGeom.normal.Y - contact.normal.Y) < 0.303f)
&& (Math.Abs(contactGeom.normal.Z - contact.normal.Z) < 0.065f))
&& contactGeom.g1 != LandGeom && contactGeom.g2 != LandGeom)
{
if (Math.Abs(contact.depth - contactGeom.depth) < 0.052f)
{
//contactGeom.depth *= .00005f;
//m_log.DebugFormat("[Collsion]: Depth {0}", Math.Abs(contact.depth - contactGeom.depth));
// m_log.DebugFormat("[Collision]: <{0},{1},{2}>", Math.Abs(contactGeom.normal.X - contact.normal.X), Math.Abs(contactGeom.normal.Y - contact.normal.Y), Math.Abs(contactGeom.normal.Z - contact.normal.Z));
result = true;
break;
}
// else
// {
// //m_log.DebugFormat("[Collsion]: Depth {0}", Math.Abs(contact.depth - contactGeom.depth));
// }
}
// else
// {
// //m_log.DebugFormat("[Collision]: <{0},{1},{2}>", Math.Abs(contactGeom.normal.X - contact.normal.X), Math.Abs(contactGeom.normal.Y - contact.normal.Y), Math.Abs(contactGeom.normal.Z - contact.normal.Z));
// //int i = 0;
// }
}
else if (at == ActorTypes.Prim)
{
//d.AABB aabb1 = new d.AABB();
//d.AABB aabb2 = new d.AABB();
//d.GeomGetAABB(contactGeom.g2, out aabb2);
//d.GeomGetAABB(contactGeom.g1, out aabb1);
//aabb1.
if (((Math.Abs(contactGeom.normal.X - contact.normal.X) < 1.026f) && (Math.Abs(contactGeom.normal.Y - contact.normal.Y) < 0.303f) && (Math.Abs(contactGeom.normal.Z - contact.normal.Z) < 0.065f)) && contactGeom.g1 != LandGeom && contactGeom.g2 != LandGeom)
{
if (contactGeom.normal.X == contact.normal.X && contactGeom.normal.Y == contact.normal.Y && contactGeom.normal.Z == contact.normal.Z)
{
if (Math.Abs(contact.depth - contactGeom.depth) < 0.272f)
{
result = true;
break;
}
}
//m_log.DebugFormat("[Collsion]: Depth {0}", Math.Abs(contact.depth - contactGeom.depth));
//m_log.DebugFormat("[Collision]: <{0},{1},{2}>", Math.Abs(contactGeom.normal.X - contact.normal.X), Math.Abs(contactGeom.normal.Y - contact.normal.Y), Math.Abs(contactGeom.normal.Z - contact.normal.Z));
}
}
}
return result;
}
private void collision_accounting_events(PhysicsActor p1, PhysicsActor p2, ContactPoint contact)
{
// obj1LocalID = 0;
//returncollisions = false;
obj2LocalID = 0;
//ctype = 0;
//cStartStop = 0;
if (!p2.SubscribedEvents() && !p1.SubscribedEvents())
return;
switch ((ActorTypes)p2.PhysicsActorType)
{
case ActorTypes.Agent:
cc2 = (OdeCharacter)p2;
// obj1LocalID = cc2.m_localID;
switch ((ActorTypes)p1.PhysicsActorType)
{
case ActorTypes.Agent:
cc1 = (OdeCharacter)p1;
obj2LocalID = cc1.LocalID;
cc1.AddCollisionEvent(cc2.LocalID, contact);
//ctype = (int)CollisionCategories.Character;
//if (cc1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Prim:
if (p1 is OdePrim)
{
cp1 = (OdePrim) p1;
obj2LocalID = cp1.LocalID;
cp1.AddCollisionEvent(cc2.LocalID, contact);
}
//ctype = (int)CollisionCategories.Geom;
//if (cp1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
break;
case ActorTypes.Ground:
case ActorTypes.Unknown:
obj2LocalID = 0;
//ctype = (int)CollisionCategories.Land;
//returncollisions = true;
break;
}
cc2.AddCollisionEvent(obj2LocalID, contact);
break;
case ActorTypes.Prim:
if (p2 is OdePrim)
{
cp2 = (OdePrim) p2;
// obj1LocalID = cp2.m_localID;
switch ((ActorTypes) p1.PhysicsActorType)
{
case ActorTypes.Agent:
if (p1 is OdeCharacter)
{
cc1 = (OdeCharacter) p1;
obj2LocalID = cc1.LocalID;
cc1.AddCollisionEvent(cp2.LocalID, contact);
//ctype = (int)CollisionCategories.Character;
//if (cc1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
}
break;
case ActorTypes.Prim:
if (p1 is OdePrim)
{
cp1 = (OdePrim) p1;
obj2LocalID = cp1.LocalID;
cp1.AddCollisionEvent(cp2.LocalID, contact);
//ctype = (int)CollisionCategories.Geom;
//if (cp1.CollidingObj)
//cStartStop = (int)StatusIndicators.Generic;
//else
//cStartStop = (int)StatusIndicators.Start;
//returncollisions = true;
}
break;
case ActorTypes.Ground:
case ActorTypes.Unknown:
obj2LocalID = 0;
//ctype = (int)CollisionCategories.Land;
//returncollisions = true;
break;
}
cp2.AddCollisionEvent(obj2LocalID, contact);
}
break;
}
//if (returncollisions)
//{
//lock (m_storedCollisions)
//{
//cDictKey = obj1LocalID.ToString() + obj2LocalID.ToString() + cStartStop.ToString() + ctype.ToString();
//if (m_storedCollisions.ContainsKey(cDictKey))
//{
//sCollisionData objd = m_storedCollisions[cDictKey];
//objd.NumberOfCollisions += 1;
//objd.lastframe = framecount;
//m_storedCollisions[cDictKey] = objd;
//}
//else
//{
//sCollisionData objd = new sCollisionData();
//objd.ColliderLocalId = obj1LocalID;
//objd.CollidedWithLocalId = obj2LocalID;
//objd.CollisionType = ctype;
//objd.NumberOfCollisions = 1;
//objd.lastframe = framecount;
//objd.StatusIndicator = cStartStop;
//m_storedCollisions.Add(cDictKey, objd);
//}
//}
// }
}
private int TriArrayCallback(IntPtr trimesh, IntPtr refObject, int[] triangleIndex, int triCount)
{
/* String name1 = null;
String name2 = null;
if (!geom_name_map.TryGetValue(trimesh, out name1))
{
name1 = "null";
}
if (!geom_name_map.TryGetValue(refObject, out name2))
{
name2 = "null";
}
m_log.InfoFormat("TriArrayCallback: A collision was detected between {1} and {2}", 0, name1, name2);
*/
return 1;
}
private int TriCallback(IntPtr trimesh, IntPtr refObject, int triangleIndex)
{
// String name1 = null;
// String name2 = null;
//
// if (!geom_name_map.TryGetValue(trimesh, out name1))
// {
// name1 = "null";
// }
//
// if (!geom_name_map.TryGetValue(refObject, out name2))
// {
// name2 = "null";
// }
// m_log.InfoFormat("TriCallback: A collision was detected between {1} and {2}. Index was {3}", 0, name1, name2, triangleIndex);
d.Vector3 v0 = new d.Vector3();
d.Vector3 v1 = new d.Vector3();
d.Vector3 v2 = new d.Vector3();
d.GeomTriMeshGetTriangle(trimesh, 0, ref v0, ref v1, ref v2);
// m_log.DebugFormat("Triangle {0} is <{1},{2},{3}>, <{4},{5},{6}>, <{7},{8},{9}>", triangleIndex, v0.X, v0.Y, v0.Z, v1.X, v1.Y, v1.Z, v2.X, v2.Y, v2.Z);
return 1;
}
///
/// This is our collision testing routine in ODE
///
private void collision_optimized()
{
_perloopContact.Clear();
foreach (OdeCharacter chr in _characters)
{
// Reset the collision values to false
// since we don't know if we're colliding yet
if (chr.Shell == IntPtr.Zero || chr.Body == IntPtr.Zero)
continue;
chr.IsColliding = false;
chr.CollidingGround = false;
chr.CollidingObj = false;
// test the avatar's geometry for collision with the space
// This will return near and the space that they are the closest to
// And we'll run this again against the avatar and the space segment
// This will return with a bunch of possible objects in the space segment
// and we'll run it again on all of them.
try
{
d.SpaceCollide2(space, chr.Shell, IntPtr.Zero, nearCallback);
}
catch (AccessViolationException)
{
m_log.WarnFormat("[ODE SCENE]: Unable to space collide {0}", Name);
}
//float terrainheight = GetTerrainHeightAtXY(chr.Position.X, chr.Position.Y);
//if (chr.Position.Z + (chr.Velocity.Z * timeStep) < terrainheight + 10)
//{
//chr.Position.Z = terrainheight + 10.0f;
//forcedZ = true;
//}
}
List removeprims = null;
foreach (OdePrim chr in _activeprims)
{
if (chr.Body != IntPtr.Zero && d.BodyIsEnabled(chr.Body) && (!chr.m_disabled))
{
try
{
lock (chr)
{
if (space != IntPtr.Zero && chr.prim_geom != IntPtr.Zero && chr.m_taintremove == false)
{
d.SpaceCollide2(space, chr.prim_geom, IntPtr.Zero, nearCallback);
}
else
{
if (removeprims == null)
{
removeprims = new List();
}
removeprims.Add(chr);
m_log.Debug("[ODE SCENE]: unable to collide test active prim against space. The space was zero, the geom was zero or it was in the process of being removed. Removed it from the active prim list. This needs to be fixed!");
}
}
}
catch (AccessViolationException)
{
m_log.Warn("[ODE SCENE]: Unable to space collide");
}
}
}
if (removeprims != null)
{
foreach (OdePrim chr in removeprims)
{
_activeprims.Remove(chr);
}
}
}
#endregion
public override void Combine(PhysicsScene pScene, Vector3 offset, Vector3 extents)
{
m_worldOffset = offset;
WorldExtents = new Vector2(extents.X, extents.Y);
m_parentScene = pScene;
}
// Recovered for use by fly height. Kitto Flora
internal float GetTerrainHeightAtXY(float x, float y)
{
int offsetX = ((int)(x / (int)Constants.RegionSize)) * (int)Constants.RegionSize;
int offsetY = ((int)(y / (int)Constants.RegionSize)) * (int)Constants.RegionSize;
IntPtr heightFieldGeom = IntPtr.Zero;
if (RegionTerrain.TryGetValue(new Vector3(offsetX,offsetY,0), out heightFieldGeom))
{
if (heightFieldGeom != IntPtr.Zero)
{
if (TerrainHeightFieldHeights.ContainsKey(heightFieldGeom))
{
int index;
if ((int)x > WorldExtents.X || (int)y > WorldExtents.Y ||
(int)x < 0.001f || (int)y < 0.001f)
return 0;
x = x - offsetX;
y = y - offsetY;
index = (int)((int)x * ((int)Constants.RegionSize + 2) + (int)y);
if (index < TerrainHeightFieldHeights[heightFieldGeom].Length)
{
//m_log.DebugFormat("x{0} y{1} = {2}", x, y, (float)TerrainHeightFieldHeights[heightFieldGeom][index]);
return (float)TerrainHeightFieldHeights[heightFieldGeom][index];
}
else
return 0f;
}
else
{
return 0f;
}
}
else
{
return 0f;
}
}
else
{
return 0f;
}
}
// End recovered. Kitto Flora
///
/// Add actor to the list that should receive collision events in the simulate loop.
///
///
internal void AddCollisionEventReporting(PhysicsActor obj)
{
// m_log.DebugFormat("[PHYSICS]: Adding {0} {1} to collision event reporting", obj.SOPName, obj.LocalID);
lock (_collisionEventPrimChanges)
_collisionEventPrimChanges[obj.LocalID] = obj;
}
///
/// Remove actor from the list that should receive collision events in the simulate loop.
///
///
internal void RemoveCollisionEventReporting(PhysicsActor obj)
{
// m_log.DebugFormat("[PHYSICS]: Removing {0} {1} from collision event reporting", obj.SOPName, obj.LocalID);
lock (_collisionEventPrimChanges)
_collisionEventPrimChanges[obj.LocalID] = null;
}
#region Add/Remove Entities
public override PhysicsActor AddAvatar(string avName, Vector3 position, Vector3 size, bool isFlying)
{
Vector3 pos;
pos.X = position.X;
pos.Y = position.Y;
pos.Z = position.Z;
OdeCharacter newAv
= new OdeCharacter(
avName, this, pos, size, avPIDD, avPIDP,
avCapRadius, avStandupTensor, avDensity,
avMovementDivisorWalk, avMovementDivisorRun);
newAv.Flying = isFlying;
newAv.MinimumGroundFlightOffset = minimumGroundFlightOffset;
return newAv;
}
public override void RemoveAvatar(PhysicsActor actor)
{
//m_log.Debug("[PHYSICS]:ODELOCK");
((OdeCharacter) actor).Destroy();
}
internal void AddCharacter(OdeCharacter chr)
{
if (!_characters.Contains(chr))
{
_characters.Add(chr);
if (chr.bad)
m_log.ErrorFormat("[ODE SCENE]: Added BAD actor {0} to characters list", chr.m_uuid);
}
else
{
m_log.ErrorFormat(
"[ODE SCENE]: Tried to add character {0} {1} but they are already in the set!",
chr.Name, chr.LocalID);
}
}
internal void RemoveCharacter(OdeCharacter chr)
{
if (_characters.Contains(chr))
_characters.Remove(chr);
else
m_log.ErrorFormat(
"[ODE SCENE]: Tried to remove character {0} {1} but they are not in the list!",
chr.Name, chr.LocalID);
}
private PhysicsActor AddPrim(String name, Vector3 position, Vector3 size, Quaternion rotation,
PrimitiveBaseShape pbs, bool isphysical, uint localID)
{
Vector3 pos = position;
Vector3 siz = size;
Quaternion rot = rotation;
OdePrim newPrim;
lock (OdeLock)
{
newPrim = new OdePrim(name, this, pos, siz, rot, pbs, isphysical);
lock (_prims)
_prims.Add(newPrim);
}
newPrim.LocalID = localID;
return newPrim;
}
///
/// Make this prim subject to physics.
///
///
internal void ActivatePrim(OdePrim prim)
{
// adds active prim.. (ones that should be iterated over in collisions_optimized
if (!_activeprims.Contains(prim))
_activeprims.Add(prim);
//else
// m_log.Warn("[PHYSICS]: Double Entry in _activeprims detected, potential crash immenent");
}
public override PhysicsActor AddPrimShape(string primName, PrimitiveBaseShape pbs, Vector3 position,
Vector3 size, Quaternion rotation, bool isPhysical, uint localid)
{
// m_log.DebugFormat("[ODE SCENE]: Adding physics actor to {0} {1}", primName, localid);
return AddPrim(primName, position, size, rotation, pbs, isPhysical, localid);
}
public override float TimeDilation
{
get { return m_timeDilation; }
}
public override bool SupportsNINJAJoints
{
get { return m_NINJA_physics_joints_enabled; }
}
// internal utility function: must be called within a lock (OdeLock)
private void InternalAddActiveJoint(PhysicsJoint joint)
{
activeJoints.Add(joint);
SOPName_to_activeJoint.Add(joint.ObjectNameInScene, joint);
}
// internal utility function: must be called within a lock (OdeLock)
private void InternalAddPendingJoint(OdePhysicsJoint joint)
{
pendingJoints.Add(joint);
SOPName_to_pendingJoint.Add(joint.ObjectNameInScene, joint);
}
// internal utility function: must be called within a lock (OdeLock)
private void InternalRemovePendingJoint(PhysicsJoint joint)
{
pendingJoints.Remove(joint);
SOPName_to_pendingJoint.Remove(joint.ObjectNameInScene);
}
// internal utility function: must be called within a lock (OdeLock)
private void InternalRemoveActiveJoint(PhysicsJoint joint)
{
activeJoints.Remove(joint);
SOPName_to_activeJoint.Remove(joint.ObjectNameInScene);
}
public override void DumpJointInfo()
{
string hdr = "[NINJA] JOINTINFO: ";
foreach (PhysicsJoint j in pendingJoints)
{
m_log.Debug(hdr + " pending joint, Name: " + j.ObjectNameInScene + " raw parms:" + j.RawParams);
}
m_log.Debug(hdr + pendingJoints.Count + " total pending joints");
foreach (string jointName in SOPName_to_pendingJoint.Keys)
{
m_log.Debug(hdr + " pending joints dict contains Name: " + jointName);
}
m_log.Debug(hdr + SOPName_to_pendingJoint.Keys.Count + " total pending joints dict entries");
foreach (PhysicsJoint j in activeJoints)
{
m_log.Debug(hdr + " active joint, Name: " + j.ObjectNameInScene + " raw parms:" + j.RawParams);
}
m_log.Debug(hdr + activeJoints.Count + " total active joints");
foreach (string jointName in SOPName_to_activeJoint.Keys)
{
m_log.Debug(hdr + " active joints dict contains Name: " + jointName);
}
m_log.Debug(hdr + SOPName_to_activeJoint.Keys.Count + " total active joints dict entries");
m_log.Debug(hdr + " Per-body joint connectivity information follows.");
m_log.Debug(hdr + joints_connecting_actor.Keys.Count + " bodies are connected by joints.");
foreach (string actorName in joints_connecting_actor.Keys)
{
m_log.Debug(hdr + " Actor " + actorName + " has the following joints connecting it");
foreach (PhysicsJoint j in joints_connecting_actor[actorName])
{
m_log.Debug(hdr + " * joint Name: " + j.ObjectNameInScene + " raw parms:" + j.RawParams);
}
m_log.Debug(hdr + joints_connecting_actor[actorName].Count + " connecting joints total for this actor");
}
}
public override void RequestJointDeletion(string ObjectNameInScene)
{
lock (externalJointRequestsLock)
{
if (!requestedJointsToBeDeleted.Contains(ObjectNameInScene)) // forbid same deletion request from entering twice to prevent spurious deletions processed asynchronously
{
requestedJointsToBeDeleted.Add(ObjectNameInScene);
}
}
}
private void DeleteRequestedJoints()
{
List myRequestedJointsToBeDeleted;
lock (externalJointRequestsLock)
{
// make a local copy of the shared list for processing (threading issues)
myRequestedJointsToBeDeleted = new List(requestedJointsToBeDeleted);
}
foreach (string jointName in myRequestedJointsToBeDeleted)
{
lock (OdeLock)
{
//m_log.Debug("[NINJA] trying to deleting requested joint " + jointName);
if (SOPName_to_activeJoint.ContainsKey(jointName) || SOPName_to_pendingJoint.ContainsKey(jointName))
{
OdePhysicsJoint joint = null;
if (SOPName_to_activeJoint.ContainsKey(jointName))
{
joint = SOPName_to_activeJoint[jointName] as OdePhysicsJoint;
InternalRemoveActiveJoint(joint);
}
else if (SOPName_to_pendingJoint.ContainsKey(jointName))
{
joint = SOPName_to_pendingJoint[jointName] as OdePhysicsJoint;
InternalRemovePendingJoint(joint);
}
if (joint != null)
{
//m_log.Debug("joint.BodyNames.Count is " + joint.BodyNames.Count + " and contents " + joint.BodyNames);
for (int iBodyName = 0; iBodyName < 2; iBodyName++)
{
string bodyName = joint.BodyNames[iBodyName];
if (bodyName != "NULL")
{
joints_connecting_actor[bodyName].Remove(joint);
if (joints_connecting_actor[bodyName].Count == 0)
{
joints_connecting_actor.Remove(bodyName);
}
}
}
DoJointDeactivated(joint);
if (joint.jointID != IntPtr.Zero)
{
d.JointDestroy(joint.jointID);
joint.jointID = IntPtr.Zero;
//DoJointErrorMessage(joint, "successfully destroyed joint " + jointName);
}
else
{
//m_log.Warn("[NINJA] Ignoring re-request to destroy joint " + jointName);
}
}
else
{
// DoJointErrorMessage(joint, "coult not find joint to destroy based on name " + jointName);
}
}
else
{
// DoJointErrorMessage(joint, "WARNING - joint removal failed, joint " + jointName);
}
}
}
// remove processed joints from the shared list
lock (externalJointRequestsLock)
{
foreach (string jointName in myRequestedJointsToBeDeleted)
{
requestedJointsToBeDeleted.Remove(jointName);
}
}
}
// for pending joints we don't know if their associated bodies exist yet or not.
// the joint is actually created during processing of the taints
private void CreateRequestedJoints()
{
List myRequestedJointsToBeCreated;
lock (externalJointRequestsLock)
{
// make a local copy of the shared list for processing (threading issues)
myRequestedJointsToBeCreated = new List(requestedJointsToBeCreated);
}
foreach (PhysicsJoint joint in myRequestedJointsToBeCreated)
{
lock (OdeLock)
{
if (SOPName_to_pendingJoint.ContainsKey(joint.ObjectNameInScene) && SOPName_to_pendingJoint[joint.ObjectNameInScene] != null)
{
DoJointErrorMessage(joint, "WARNING: ignoring request to re-add already pending joint Name:" + joint.ObjectNameInScene + " type:" + joint.Type + " parms: " + joint.RawParams + " pos: " + joint.Position + " rot:" + joint.Rotation);
continue;
}
if (SOPName_to_activeJoint.ContainsKey(joint.ObjectNameInScene) && SOPName_to_activeJoint[joint.ObjectNameInScene] != null)
{
DoJointErrorMessage(joint, "WARNING: ignoring request to re-add already active joint Name:" + joint.ObjectNameInScene + " type:" + joint.Type + " parms: " + joint.RawParams + " pos: " + joint.Position + " rot:" + joint.Rotation);
continue;
}
InternalAddPendingJoint(joint as OdePhysicsJoint);
if (joint.BodyNames.Count >= 2)
{
for (int iBodyName = 0; iBodyName < 2; iBodyName++)
{
string bodyName = joint.BodyNames[iBodyName];
if (bodyName != "NULL")
{
if (!joints_connecting_actor.ContainsKey(bodyName))
{
joints_connecting_actor.Add(bodyName, new List());
}
joints_connecting_actor[bodyName].Add(joint);
}
}
}
}
}
// remove processed joints from shared list
lock (externalJointRequestsLock)
{
foreach (PhysicsJoint joint in myRequestedJointsToBeCreated)
{
requestedJointsToBeCreated.Remove(joint);
}
}
}
///
/// Add a request for joint creation.
///
///
/// this joint will just be added to a waiting list that is NOT processed during the main
/// Simulate() loop (to avoid deadlocks). After Simulate() is finished, we handle unprocessed joint requests.
///
///
///
///
///
///
///
///
///
///
public override PhysicsJoint RequestJointCreation(
string objectNameInScene, PhysicsJointType jointType, Vector3 position,
Quaternion rotation, string parms, List bodyNames, string trackedBodyName, Quaternion localRotation)
{
OdePhysicsJoint joint = new OdePhysicsJoint();
joint.ObjectNameInScene = objectNameInScene;
joint.Type = jointType;
joint.Position = position;
joint.Rotation = rotation;
joint.RawParams = parms;
joint.BodyNames = new List(bodyNames);
joint.TrackedBodyName = trackedBodyName;
joint.LocalRotation = localRotation;
joint.jointID = IntPtr.Zero;
joint.ErrorMessageCount = 0;
lock (externalJointRequestsLock)
{
if (!requestedJointsToBeCreated.Contains(joint)) // forbid same creation request from entering twice
{
requestedJointsToBeCreated.Add(joint);
}
}
return joint;
}
private void RemoveAllJointsConnectedToActor(PhysicsActor actor)
{
//m_log.Debug("RemoveAllJointsConnectedToActor: start");
if (actor.SOPName != null && joints_connecting_actor.ContainsKey(actor.SOPName) && joints_connecting_actor[actor.SOPName] != null)
{
List jointsToRemove = new List();
//TODO: merge these 2 loops (originally it was needed to avoid altering a list being iterated over, but it is no longer needed due to the joint request queue mechanism)
foreach (PhysicsJoint j in joints_connecting_actor[actor.SOPName])
{
jointsToRemove.Add(j);
}
foreach (PhysicsJoint j in jointsToRemove)
{
//m_log.Debug("RemoveAllJointsConnectedToActor: about to request deletion of " + j.ObjectNameInScene);
RequestJointDeletion(j.ObjectNameInScene);
//m_log.Debug("RemoveAllJointsConnectedToActor: done request deletion of " + j.ObjectNameInScene);
j.TrackedBodyName = null; // *IMMEDIATELY* prevent any further movement of this joint (else a deleted actor might cause spurious tracking motion of the joint for a few frames, leading to the joint proxy object disappearing)
}
}
}
public override void RemoveAllJointsConnectedToActorThreadLocked(PhysicsActor actor)
{
//m_log.Debug("RemoveAllJointsConnectedToActorThreadLocked: start");
lock (OdeLock)
{
//m_log.Debug("RemoveAllJointsConnectedToActorThreadLocked: got lock");
RemoveAllJointsConnectedToActor(actor);
}
}
// normally called from within OnJointMoved, which is called from within a lock (OdeLock)
public override Vector3 GetJointAnchor(PhysicsJoint joint)
{
Debug.Assert(joint.IsInPhysicsEngine);
d.Vector3 pos = new d.Vector3();
if (!(joint is OdePhysicsJoint))
{
DoJointErrorMessage(joint, "warning: non-ODE joint requesting anchor: " + joint.ObjectNameInScene);
}
else
{
OdePhysicsJoint odeJoint = (OdePhysicsJoint)joint;
switch (odeJoint.Type)
{
case PhysicsJointType.Ball:
d.JointGetBallAnchor(odeJoint.jointID, out pos);
break;
case PhysicsJointType.Hinge:
d.JointGetHingeAnchor(odeJoint.jointID, out pos);
break;
}
}
return new Vector3(pos.X, pos.Y, pos.Z);
}
///
/// Get joint axis.
///
///
/// normally called from within OnJointMoved, which is called from within a lock (OdeLock)
/// WARNING: ODE sometimes returns <0,0,0> as the joint axis! Therefore this function
/// appears to be unreliable. Fortunately we can compute the joint axis ourselves by
/// keeping track of the joint's original orientation relative to one of the involved bodies.
///
///
///
public override Vector3 GetJointAxis(PhysicsJoint joint)
{
Debug.Assert(joint.IsInPhysicsEngine);
d.Vector3 axis = new d.Vector3();
if (!(joint is OdePhysicsJoint))
{
DoJointErrorMessage(joint, "warning: non-ODE joint requesting anchor: " + joint.ObjectNameInScene);
}
else
{
OdePhysicsJoint odeJoint = (OdePhysicsJoint)joint;
switch (odeJoint.Type)
{
case PhysicsJointType.Ball:
DoJointErrorMessage(joint, "warning - axis requested for ball joint: " + joint.ObjectNameInScene);
break;
case PhysicsJointType.Hinge:
d.JointGetHingeAxis(odeJoint.jointID, out axis);
break;
}
}
return new Vector3(axis.X, axis.Y, axis.Z);
}
///
/// Stop this prim being subject to physics
///
///
internal void DeactivatePrim(OdePrim prim)
{
_activeprims.Remove(prim);
}
public override void RemovePrim(PhysicsActor prim)
{
// As with all ODE physics operations, we don't remove the prim immediately but signal that it should be
// removed in the next physics simulate pass.
if (prim is OdePrim)
{
lock (OdeLock)
{
OdePrim p = (OdePrim) prim;
p.setPrimForRemoval();
AddPhysicsActorTaint(prim);
}
}
}
///
/// This is called from within simulate but outside the locked portion
/// We need to do our own locking here
/// (Note: As of 20110801 this no longer appears to be true - this is being called within lock (odeLock) in
/// Simulate() -- justincc).
///
/// Essentially, we need to remove the prim from our space segment, whatever segment it's in.
///
/// If there are no more prim in the segment, we need to empty (spacedestroy)the segment and reclaim memory
/// that the space was using.
///
///
internal void RemovePrimThreadLocked(OdePrim prim)
{
//Console.WriteLine("RemovePrimThreadLocked " + prim.m_primName);
lock (prim)
{
RemoveCollisionEventReporting(prim);
if (prim.prim_geom != IntPtr.Zero)
{
prim.ResetTaints();
if (prim.IsPhysical)
{
prim.disableBody();
if (prim.childPrim)
{
prim.childPrim = false;
prim.Body = IntPtr.Zero;
prim.m_disabled = true;
prim.IsPhysical = false;
}
}
// we don't want to remove the main space
// If the geometry is in the targetspace, remove it from the target space
//m_log.Warn(prim.m_targetSpace);
//if (prim.m_targetSpace != IntPtr.Zero)
//{
//if (d.SpaceQuery(prim.m_targetSpace, prim.prim_geom))
//{
//if (d.GeomIsSpace(prim.m_targetSpace))
//{
//waitForSpaceUnlock(prim.m_targetSpace);
//d.SpaceRemove(prim.m_targetSpace, prim.prim_geom);
prim.m_targetSpace = IntPtr.Zero;
//}
//else
//{
// m_log.Info("[Physics]: Invalid Scene passed to 'removeprim from scene':" +
//((OdePrim)prim).m_targetSpace.ToString());
//}
//}
//}
//m_log.Warn(prim.prim_geom);
if (!prim.RemoveGeom())
m_log.Warn("[ODE SCENE]: Unable to remove prim from physics scene");
lock (_prims)
_prims.Remove(prim);
//If there are no more geometries in the sub-space, we don't need it in the main space anymore
//if (d.SpaceGetNumGeoms(prim.m_targetSpace) == 0)
//{
//if (prim.m_targetSpace != null)
//{
//if (d.GeomIsSpace(prim.m_targetSpace))
//{
//waitForSpaceUnlock(prim.m_targetSpace);
//d.SpaceRemove(space, prim.m_targetSpace);
// free up memory used by the space.
//d.SpaceDestroy(prim.m_targetSpace);
//int[] xyspace = calculateSpaceArrayItemFromPos(prim.Position);
//resetSpaceArrayItemToZero(xyspace[0], xyspace[1]);
//}
//else
//{
//m_log.Info("[Physics]: Invalid Scene passed to 'removeprim from scene':" +
//((OdePrim) prim).m_targetSpace.ToString());
//}
//}
//}
if (SupportsNINJAJoints)
RemoveAllJointsConnectedToActorThreadLocked(prim);
}
}
}
#endregion
#region Space Separation Calculation
///
/// Takes a space pointer and zeros out the array we're using to hold the spaces
///
///
private void resetSpaceArrayItemToZero(IntPtr pSpace)
{
for (int x = 0; x < staticPrimspace.GetLength(0); x++)
{
for (int y = 0; y < staticPrimspace.GetLength(1); y++)
{
if (staticPrimspace[x, y] == pSpace)
staticPrimspace[x, y] = IntPtr.Zero;
}
}
}
// private void resetSpaceArrayItemToZero(int arrayitemX, int arrayitemY)
// {
// staticPrimspace[arrayitemX, arrayitemY] = IntPtr.Zero;
// }
///
/// Called when a static prim moves. Allocates a space for the prim based on its position
///
/// the pointer to the geom that moved
/// the position that the geom moved to
/// a pointer to the space it was in before it was moved.
/// a pointer to the new space it's in
internal IntPtr recalculateSpaceForGeom(IntPtr geom, Vector3 pos, IntPtr currentspace)
{
// Called from setting the Position and Size of an ODEPrim so
// it's already in locked space.
// we don't want to remove the main space
// we don't need to test physical here because this function should
// never be called if the prim is physical(active)
// All physical prim end up in the root space
//Thread.Sleep(20);
if (currentspace != space)
{
//m_log.Info("[SPACE]: C:" + currentspace.ToString() + " g:" + geom.ToString());
//if (currentspace == IntPtr.Zero)
//{
//int adfadf = 0;
//}
if (d.SpaceQuery(currentspace, geom) && currentspace != IntPtr.Zero)
{
if (d.GeomIsSpace(currentspace))
{
// waitForSpaceUnlock(currentspace);
d.SpaceRemove(currentspace, geom);
}
else
{
m_log.Info("[ODE SCENE]: Invalid Scene passed to 'recalculatespace':" + currentspace +
" Geom:" + geom);
}
}
else
{
IntPtr sGeomIsIn = d.GeomGetSpace(geom);
if (sGeomIsIn != IntPtr.Zero)
{
if (d.GeomIsSpace(currentspace))
{
// waitForSpaceUnlock(sGeomIsIn);
d.SpaceRemove(sGeomIsIn, geom);
}
else
{
m_log.Info("[ODE SCENE]: Invalid Scene passed to 'recalculatespace':" +
sGeomIsIn + " Geom:" + geom);
}
}
}
//If there are no more geometries in the sub-space, we don't need it in the main space anymore
if (d.SpaceGetNumGeoms(currentspace) == 0)
{
if (currentspace != IntPtr.Zero)
{
if (d.GeomIsSpace(currentspace))
{
// waitForSpaceUnlock(currentspace);
// waitForSpaceUnlock(space);
d.SpaceRemove(space, currentspace);
// free up memory used by the space.
//d.SpaceDestroy(currentspace);
resetSpaceArrayItemToZero(currentspace);
}
else
{
m_log.Info("[ODE SCENE]: Invalid Scene passed to 'recalculatespace':" +
currentspace + " Geom:" + geom);
}
}
}
}
else
{
// this is a physical object that got disabled. ;.;
if (currentspace != IntPtr.Zero && geom != IntPtr.Zero)
{
if (d.SpaceQuery(currentspace, geom))
{
if (d.GeomIsSpace(currentspace))
{
// waitForSpaceUnlock(currentspace);
d.SpaceRemove(currentspace, geom);
}
else
{
m_log.Info("[ODE SCENE]: Invalid Scene passed to 'recalculatespace':" +
currentspace + " Geom:" + geom);
}
}
else
{
IntPtr sGeomIsIn = d.GeomGetSpace(geom);
if (sGeomIsIn != IntPtr.Zero)
{
if (d.GeomIsSpace(sGeomIsIn))
{
// waitForSpaceUnlock(sGeomIsIn);
d.SpaceRemove(sGeomIsIn, geom);
}
else
{
m_log.Info("[ODE SCENE]: Invalid Scene passed to 'recalculatespace':" +
sGeomIsIn + " Geom:" + geom);
}
}
}
}
}
// The routines in the Position and Size sections do the 'inserting' into the space,
// so all we have to do is make sure that the space that we're putting the prim into
// is in the 'main' space.
int[] iprimspaceArrItem = calculateSpaceArrayItemFromPos(pos);
IntPtr newspace = calculateSpaceForGeom(pos);
if (newspace == IntPtr.Zero)
{
newspace = createprimspace(iprimspaceArrItem[0], iprimspaceArrItem[1]);
d.HashSpaceSetLevels(newspace, smallHashspaceLow, smallHashspaceHigh);
}
return newspace;
}
///
/// Creates a new space at X Y
///
///
///
/// A pointer to the created space
internal IntPtr createprimspace(int iprimspaceArrItemX, int iprimspaceArrItemY)
{
// creating a new space for prim and inserting it into main space.
staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY] = d.HashSpaceCreate(IntPtr.Zero);
d.GeomSetCategoryBits(staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY], (int)CollisionCategories.Space);
// waitForSpaceUnlock(space);
d.SpaceSetSublevel(space, 1);
d.SpaceAdd(space, staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY]);
return staticPrimspace[iprimspaceArrItemX, iprimspaceArrItemY];
}
///
/// Calculates the space the prim should be in by its position
///
///
/// a pointer to the space. This could be a new space or reused space.
internal IntPtr calculateSpaceForGeom(Vector3 pos)
{
int[] xyspace = calculateSpaceArrayItemFromPos(pos);
//m_log.Info("[Physics]: Attempting to use arrayItem: " + xyspace[0].ToString() + "," + xyspace[1].ToString());
return staticPrimspace[xyspace[0], xyspace[1]];
}
///
/// Holds the space allocation logic
///
///
/// an array item based on the position
internal int[] calculateSpaceArrayItemFromPos(Vector3 pos)
{
int[] returnint = new int[2];
returnint[0] = (int) (pos.X/metersInSpace);
if (returnint[0] > ((int) (259f/metersInSpace)))
returnint[0] = ((int) (259f/metersInSpace));
if (returnint[0] < 0)
returnint[0] = 0;
returnint[1] = (int) (pos.Y/metersInSpace);
if (returnint[1] > ((int) (259f/metersInSpace)))
returnint[1] = ((int) (259f/metersInSpace));
if (returnint[1] < 0)
returnint[1] = 0;
return returnint;
}
#endregion
///
/// Routine to figure out if we need to mesh this prim with our mesher
///
///
///
internal bool needsMeshing(PrimitiveBaseShape pbs)
{
// most of this is redundant now as the mesher will return null if it cant mesh a prim
// but we still need to check for sculptie meshing being enabled so this is the most
// convenient place to do it for now...
// //if (pbs.PathCurve == (byte)Primitive.PathCurve.Circle && pbs.ProfileCurve == (byte)Primitive.ProfileCurve.Circle && pbs.PathScaleY <= 0.75f)
// //m_log.Debug("needsMeshing: " + " pathCurve: " + pbs.PathCurve.ToString() + " profileCurve: " + pbs.ProfileCurve.ToString() + " pathScaleY: " + Primitive.UnpackPathScale(pbs.PathScaleY).ToString());
int iPropertiesNotSupportedDefault = 0;
if (pbs.SculptEntry && !meshSculptedPrim)
{
#if SPAM
m_log.Warn("NonMesh");
#endif
return false;
}
// if it's a standard box or sphere with no cuts, hollows, twist or top shear, return false since ODE can use an internal representation for the prim
if (!forceSimplePrimMeshing && !pbs.SculptEntry)
{
if ((pbs.ProfileShape == ProfileShape.Square && pbs.PathCurve == (byte)Extrusion.Straight)
|| (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1
&& pbs.Scale.X == pbs.Scale.Y && pbs.Scale.Y == pbs.Scale.Z))
{
if (pbs.ProfileBegin == 0 && pbs.ProfileEnd == 0
&& pbs.ProfileHollow == 0
&& pbs.PathTwist == 0 && pbs.PathTwistBegin == 0
&& pbs.PathBegin == 0 && pbs.PathEnd == 0
&& pbs.PathTaperX == 0 && pbs.PathTaperY == 0
&& pbs.PathScaleX == 100 && pbs.PathScaleY == 100
&& pbs.PathShearX == 0 && pbs.PathShearY == 0)
{
#if SPAM
m_log.Warn("NonMesh");
#endif
return false;
}
}
}
if (pbs.ProfileHollow != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathBegin != 0) || pbs.PathEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathTwistBegin != 0) || (pbs.PathTwist != 0))
iPropertiesNotSupportedDefault++;
if ((pbs.ProfileBegin != 0) || pbs.ProfileEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathScaleX != 100) || (pbs.PathScaleY != 100))
iPropertiesNotSupportedDefault++;
if ((pbs.PathShearX != 0) || (pbs.PathShearY != 0))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1 && (pbs.Scale.X != pbs.Scale.Y || pbs.Scale.Y != pbs.Scale.Z || pbs.Scale.Z != pbs.Scale.X))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte) Extrusion.Curve1)
iPropertiesNotSupportedDefault++;
// test for torus
if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Square)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
// ProfileCurve seems to combine hole shape and profile curve so we need to only compare against the lower 3 bits
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1 || pbs.PathCurve == (byte)Extrusion.Curve2)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
if (pbs.SculptEntry && meshSculptedPrim)
iPropertiesNotSupportedDefault++;
if (iPropertiesNotSupportedDefault == 0)
{
#if SPAM
m_log.Warn("NonMesh");
#endif
return false;
}
#if SPAM
m_log.Debug("Mesh");
#endif
return true;
}
///
/// Called after our prim properties are set Scale, position etc.
///
///
/// We use this event queue like method to keep changes to the physical scene occuring in the threadlocked mutex
/// This assures us that we have no race conditions
///
///
public override void AddPhysicsActorTaint(PhysicsActor actor)
{
if (actor is OdePrim)
{
OdePrim taintedprim = ((OdePrim)actor);
lock (_taintedPrimLock)
{
if (!(_taintedPrimH.Contains(taintedprim)))
{
#if SPAM
Console.WriteLine("AddPhysicsActorTaint to " + taintedprim.Name);
#endif
_taintedPrimH.Add(taintedprim); // HashSet for searching
_taintedPrimL.Add(taintedprim); // List for ordered readout
}
}
}
else if (actor is OdeCharacter)
{
OdeCharacter taintedchar = ((OdeCharacter)actor);
lock (_taintedActors)
{
if (!(_taintedActors.Contains(taintedchar)))
{
_taintedActors.Add(taintedchar);
if (taintedchar.bad)
m_log.DebugFormat("[ODE SCENE]: Added BAD actor {0} to tainted actors", taintedchar.m_uuid);
}
}
}
}
///
/// This is our main simulate loop
/// It's thread locked by a Mutex in the scene.
/// It holds Collisions, it instructs ODE to step through the physical reactions
/// It moves the objects around in memory
/// It calls the methods that report back to the object owners.. (scenepresence, SceneObjectGroup)
///
///
///
public override float Simulate(float timeStep)
{
if (framecount >= int.MaxValue)
framecount = 0;
//if (m_worldOffset != Vector3.Zero)
// return 0;
framecount++;
float fps = 0;
float timeLeft = timeStep;
//m_log.Info(timeStep.ToString());
// step_time += timeStep;
//
// // If We're loaded down by something else,
// // or debugging with the Visual Studio project on pause
// // skip a few frames to catch up gracefully.
// // without shooting the physicsactors all over the place
//
// if (step_time >= m_SkipFramesAtms)
// {
// // Instead of trying to catch up, it'll do 5 physics frames only
// step_time = ODE_STEPSIZE;
// m_physicsiterations = 5;
// }
// else
// {
// m_physicsiterations = 10;
// }
// We change _collisionEventPrimChanges to avoid locking _collisionEventPrim itself and causing potential
// deadlock if the collision event tries to lock something else later on which is already locked by a
// caller that is adding or removing the collision event.
lock (_collisionEventPrimChanges)
{
foreach (KeyValuePair kvp in _collisionEventPrimChanges)
{
if (kvp.Value == null)
_collisionEventPrim.Remove(kvp.Key);
else
_collisionEventPrim[kvp.Key] = kvp.Value;
}
_collisionEventPrimChanges.Clear();
}
if (SupportsNINJAJoints)
{
DeleteRequestedJoints(); // this must be outside of the lock (OdeLock) to avoid deadlocks
CreateRequestedJoints(); // this must be outside of the lock (OdeLock) to avoid deadlocks
}
lock (OdeLock)
{
// Process 10 frames if the sim is running normal..
// process 5 frames if the sim is running slow
//try
//{
//d.WorldSetQuickStepNumIterations(world, m_physicsiterations);
//}
//catch (StackOverflowException)
//{
// m_log.Error("[PHYSICS]: The operating system wasn't able to allocate enough memory for the simulation. Restarting the sim.");
// ode.drelease(world);
//base.TriggerPhysicsBasedRestart();
//}
// Figure out the Frames Per Second we're going at.
//(step_time == 0.004f, there's 250 of those per second. Times the step time/step size
fps = (timeStep / ODE_STEPSIZE) * 1000;
// HACK: Using a time dilation of 1.0 to debug rubberbanding issues
//m_timeDilation = Math.Min((step_time / ODE_STEPSIZE) / (0.09375f / ODE_STEPSIZE), 1.0f);
while (timeLeft > 0.0f)
{
try
{
lock (_taintedActors)
{
if (_taintedActors.Count > 0)
{
foreach (OdeCharacter character in _taintedActors)
character.ProcessTaints();
if (_taintedActors.Count > 0)
_taintedActors.Clear();
}
}
lock (_taintedPrimLock)
{
foreach (OdePrim prim in _taintedPrimL)
{
if (prim.m_taintremove)
{
// Console.WriteLine("Simulate calls RemovePrimThreadLocked for {0}", prim.Name);
RemovePrimThreadLocked(prim);
}
else
{
// Console.WriteLine("Simulate calls ProcessTaints for {0}", prim.Name);
prim.ProcessTaints();
}
prim.m_collisionscore = 0;
// This loop can block up the Heartbeat for a very long time on large regions.
// We need to let the Watchdog know that the Heartbeat is not dead
// NOTE: This is currently commented out, but if things like OAR loading are
// timing the heartbeat out we will need to uncomment it
//Watchdog.UpdateThread();
}
if (SupportsNINJAJoints)
SimulatePendingNINJAJoints();
if (_taintedPrimL.Count > 0)
{
//Console.WriteLine("Simulate calls Clear of _taintedPrim list");
_taintedPrimH.Clear();
_taintedPrimL.Clear();
}
}
// Move characters
foreach (OdeCharacter actor in _characters)
actor.Move(defects);
if (defects.Count != 0)
{
foreach (OdeCharacter actor in defects)
{
RemoveCharacter(actor);
actor.DestroyOdeStructures();
}
defects.Clear();
}
// Move other active objects
foreach (OdePrim prim in _activeprims)
{
prim.m_collisionscore = 0;
prim.Move(timeStep);
}
//if ((framecount % m_randomizeWater) == 0)
// randomizeWater(waterlevel);
//int RayCastTimeMS = m_rayCastManager.ProcessQueuedRequests();
m_rayCastManager.ProcessQueuedRequests();
collision_optimized();
foreach (PhysicsActor obj in _collisionEventPrim.Values)
{
// m_log.DebugFormat("[PHYSICS]: Assessing {0} {1} for collision events", obj.SOPName, obj.LocalID);
switch ((ActorTypes)obj.PhysicsActorType)
{
case ActorTypes.Agent:
OdeCharacter cobj = (OdeCharacter)obj;
cobj.AddCollisionFrameTime(100);
cobj.SendCollisions();
break;
case ActorTypes.Prim:
OdePrim pobj = (OdePrim)obj;
pobj.SendCollisions();
break;
}
}
// if (m_global_contactcount > 0)
// m_log.DebugFormat(
// "[PHYSICS]: Collision contacts to process this frame = {0}", m_global_contactcount);
m_global_contactcount = 0;
d.WorldQuickStep(world, ODE_STEPSIZE);
d.JointGroupEmpty(contactgroup);
}
catch (Exception e)
{
m_log.ErrorFormat("[ODE SCENE]: {0}, {1}, {2}", e.Message, e.TargetSite, e);
}
timeLeft -= ODE_STEPSIZE;
}
foreach (OdeCharacter actor in _characters)
{
if (actor.bad)
m_log.WarnFormat("[ODE SCENE]: BAD Actor {0} in _characters list was not removed?", actor.m_uuid);
actor.UpdatePositionAndVelocity(defects);
}
if (defects.Count != 0)
{
foreach (OdeCharacter actor in defects)
{
RemoveCharacter(actor);
actor.DestroyOdeStructures();
}
defects.Clear();
}
//if (timeStep < 0.2f)
foreach (OdePrim prim in _activeprims)
{
if (prim.IsPhysical && (d.BodyIsEnabled(prim.Body) || !prim._zeroFlag))
{
prim.UpdatePositionAndVelocity();
if (SupportsNINJAJoints)
SimulateActorPendingJoints(prim);
}
}
//DumpJointInfo();
// Finished with all sim stepping. If requested, dump world state to file for debugging.
// TODO: This call to the export function is already inside lock (OdeLock) - but is an extra lock needed?
// TODO: This overwrites all dump files in-place. Should this be a growing logfile, or separate snapshots?
if (physics_logging && (physics_logging_interval > 0) && (framecount % physics_logging_interval == 0))
{
string fname = "state-" + world.ToString() + ".DIF"; // give each physics world a separate filename
string prefix = "world" + world.ToString(); // prefix for variable names in exported .DIF file
if (physics_logging_append_existing_logfile)
{
string header = "-------------- START OF PHYSICS FRAME " + framecount.ToString() + " --------------";
TextWriter fwriter = File.AppendText(fname);
fwriter.WriteLine(header);
fwriter.Close();
}
d.WorldExportDIF(world, fname, physics_logging_append_existing_logfile, prefix);
}
latertickcount = Util.EnvironmentTickCount() - tickCountFrameRun;
// OpenSimulator above does 10 fps. 10 fps = means that the main thread loop and physics
// has a max of 100 ms to run theoretically.
// If the main loop stalls, it calls Simulate later which makes the tick count ms larger.
// If Physics stalls, it takes longer which makes the tick count ms larger.
if (latertickcount < 100)
{
m_timeDilation = 1.0f;
}
else
{
m_timeDilation = 100f / latertickcount;
//m_timeDilation = Math.Min((Math.Max(100 - (Util.EnvironmentTickCount() - tickCountFrameRun), 1) / 100f), 1.0f);
}
tickCountFrameRun = Util.EnvironmentTickCount();
}
return fps;
}
///
/// Simulate pending NINJA joints.
///
///
/// Called by the main Simulate() loop if NINJA joints are active. Should not be called from anywhere else.
///
private void SimulatePendingNINJAJoints()
{
// Create pending joints, if possible
// joints can only be processed after ALL bodies are processed (and exist in ODE), since creating
// a joint requires specifying the body id of both involved bodies
if (pendingJoints.Count > 0)
{
List successfullyProcessedPendingJoints = new List();
//DoJointErrorMessage(joints_connecting_actor, "taint: " + pendingJoints.Count + " pending joints");
foreach (PhysicsJoint joint in pendingJoints)
{
//DoJointErrorMessage(joint, "taint: time to create joint with parms: " + joint.RawParams);
string[] jointParams = joint.RawParams.Split(" ".ToCharArray(), System.StringSplitOptions.RemoveEmptyEntries);
List jointBodies = new List();
bool allJointBodiesAreReady = true;
foreach (string jointParam in jointParams)
{
if (jointParam == "NULL")
{
//DoJointErrorMessage(joint, "attaching NULL joint to world");
jointBodies.Add(IntPtr.Zero);
}
else
{
//DoJointErrorMessage(joint, "looking for prim name: " + jointParam);
bool foundPrim = false;
lock (_prims)
{
foreach (OdePrim prim in _prims) // FIXME: inefficient
{
if (prim.SOPName == jointParam)
{
//DoJointErrorMessage(joint, "found for prim name: " + jointParam);
if (prim.IsPhysical && prim.Body != IntPtr.Zero)
{
jointBodies.Add(prim.Body);
foundPrim = true;
break;
}
else
{
DoJointErrorMessage(joint, "prim name " + jointParam +
" exists but is not (yet) physical; deferring joint creation. " +
"IsPhysical property is " + prim.IsPhysical +
" and body is " + prim.Body);
foundPrim = false;
break;
}
}
}
}
if (foundPrim)
{
// all is fine
}
else
{
allJointBodiesAreReady = false;
break;
}
}
}
if (allJointBodiesAreReady)
{
//DoJointErrorMessage(joint, "allJointBodiesAreReady for " + joint.ObjectNameInScene + " with parms " + joint.RawParams);
if (jointBodies[0] == jointBodies[1])
{
DoJointErrorMessage(joint, "ERROR: joint cannot be created; the joint bodies are the same, body1==body2. Raw body is " + jointBodies[0] + ". raw parms: " + joint.RawParams);
}
else
{
switch (joint.Type)
{
case PhysicsJointType.Ball:
{
IntPtr odeJoint;
//DoJointErrorMessage(joint, "ODE creating ball joint ");
odeJoint = d.JointCreateBall(world, IntPtr.Zero);
//DoJointErrorMessage(joint, "ODE attaching ball joint: " + odeJoint + " with b1:" + jointBodies[0] + " b2:" + jointBodies[1]);
d.JointAttach(odeJoint, jointBodies[0], jointBodies[1]);
//DoJointErrorMessage(joint, "ODE setting ball anchor: " + odeJoint + " to vec:" + joint.Position);
d.JointSetBallAnchor(odeJoint,
joint.Position.X,
joint.Position.Y,
joint.Position.Z);
//DoJointErrorMessage(joint, "ODE joint setting OK");
//DoJointErrorMessage(joint, "The ball joint's bodies are here: b0: ");
//DoJointErrorMessage(joint, "" + (jointBodies[0] != IntPtr.Zero ? "" + d.BodyGetPosition(jointBodies[0]) : "fixed environment"));
//DoJointErrorMessage(joint, "The ball joint's bodies are here: b1: ");
//DoJointErrorMessage(joint, "" + (jointBodies[1] != IntPtr.Zero ? "" + d.BodyGetPosition(jointBodies[1]) : "fixed environment"));
if (joint is OdePhysicsJoint)
{
((OdePhysicsJoint)joint).jointID = odeJoint;
}
else
{
DoJointErrorMessage(joint, "WARNING: non-ode joint in ODE!");
}
}
break;
case PhysicsJointType.Hinge:
{
IntPtr odeJoint;
//DoJointErrorMessage(joint, "ODE creating hinge joint ");
odeJoint = d.JointCreateHinge(world, IntPtr.Zero);
//DoJointErrorMessage(joint, "ODE attaching hinge joint: " + odeJoint + " with b1:" + jointBodies[0] + " b2:" + jointBodies[1]);
d.JointAttach(odeJoint, jointBodies[0], jointBodies[1]);
//DoJointErrorMessage(joint, "ODE setting hinge anchor: " + odeJoint + " to vec:" + joint.Position);
d.JointSetHingeAnchor(odeJoint,
joint.Position.X,
joint.Position.Y,
joint.Position.Z);
// We use the orientation of the x-axis of the joint's coordinate frame
// as the axis for the hinge.
// Therefore, we must get the joint's coordinate frame based on the
// joint.Rotation field, which originates from the orientation of the
// joint's proxy object in the scene.
// The joint's coordinate frame is defined as the transformation matrix
// that converts a vector from joint-local coordinates into world coordinates.
// World coordinates are defined as the XYZ coordinate system of the sim,
// as shown in the top status-bar of the viewer.
// Once we have the joint's coordinate frame, we extract its X axis (AtAxis)
// and use that as the hinge axis.
//joint.Rotation.Normalize();
Matrix4 proxyFrame = Matrix4.CreateFromQuaternion(joint.Rotation);
// Now extract the X axis of the joint's coordinate frame.
// Do not try to use proxyFrame.AtAxis or you will become mired in the
// tar pit of transposed, inverted, and generally messed-up orientations.
// (In other words, Matrix4.AtAxis() is borked.)
// Vector3 jointAxis = proxyFrame.AtAxis; <--- this path leadeth to madness
// Instead, compute the X axis of the coordinate frame by transforming
// the (1,0,0) vector. At least that works.
//m_log.Debug("PHY: making axis: complete matrix is " + proxyFrame);
Vector3 jointAxis = Vector3.Transform(Vector3.UnitX, proxyFrame);
//m_log.Debug("PHY: making axis: hinge joint axis is " + jointAxis);
//DoJointErrorMessage(joint, "ODE setting hinge axis: " + odeJoint + " to vec:" + jointAxis);
d.JointSetHingeAxis(odeJoint,
jointAxis.X,
jointAxis.Y,
jointAxis.Z);
//d.JointSetHingeParam(odeJoint, (int)dParam.CFM, 0.1f);
if (joint is OdePhysicsJoint)
{
((OdePhysicsJoint)joint).jointID = odeJoint;
}
else
{
DoJointErrorMessage(joint, "WARNING: non-ode joint in ODE!");
}
}
break;
}
successfullyProcessedPendingJoints.Add(joint);
}
}
else
{
DoJointErrorMessage(joint, "joint could not yet be created; still pending");
}
}
foreach (PhysicsJoint successfullyProcessedJoint in successfullyProcessedPendingJoints)
{
//DoJointErrorMessage(successfullyProcessedJoint, "finalizing succesfully procsssed joint " + successfullyProcessedJoint.ObjectNameInScene + " parms " + successfullyProcessedJoint.RawParams);
//DoJointErrorMessage(successfullyProcessedJoint, "removing from pending");
InternalRemovePendingJoint(successfullyProcessedJoint);
//DoJointErrorMessage(successfullyProcessedJoint, "adding to active");
InternalAddActiveJoint(successfullyProcessedJoint);
//DoJointErrorMessage(successfullyProcessedJoint, "done");
}
}
}
///
/// Simulate the joint proxies of a NINJA actor.
///
///
/// Called as part of the Simulate() loop if NINJA physics is active. Must only be called from there.
///
///
private void SimulateActorPendingJoints(OdePrim actor)
{
// If an actor moved, move its joint proxy objects as well.
// There seems to be an event PhysicsActor.OnPositionUpdate that could be used
// for this purpose but it is never called! So we just do the joint
// movement code here.
if (actor.SOPName != null &&
joints_connecting_actor.ContainsKey(actor.SOPName) &&
joints_connecting_actor[actor.SOPName] != null &&
joints_connecting_actor[actor.SOPName].Count > 0)
{
foreach (PhysicsJoint affectedJoint in joints_connecting_actor[actor.SOPName])
{
if (affectedJoint.IsInPhysicsEngine)
{
DoJointMoved(affectedJoint);
}
else
{
DoJointErrorMessage(affectedJoint, "a body connected to a joint was moved, but the joint doesn't exist yet! this will lead to joint error. joint was: " + affectedJoint.ObjectNameInScene + " parms:" + affectedJoint.RawParams);
}
}
}
}
public override void GetResults()
{
}
public override bool IsThreaded
{
// for now we won't be multithreaded
get { return (false); }
}
#region ODE Specific Terrain Fixes
private float[] ResizeTerrain512NearestNeighbour(float[] heightMap)
{
float[] returnarr = new float[262144];
float[,] resultarr = new float[(int)WorldExtents.X, (int)WorldExtents.Y];
// Filling out the array into its multi-dimensional components
for (int y = 0; y < WorldExtents.Y; y++)
{
for (int x = 0; x < WorldExtents.X; x++)
{
resultarr[y, x] = heightMap[y * (int)WorldExtents.Y + x];
}
}
// Resize using Nearest Neighbour
// This particular way is quick but it only works on a multiple of the original
// The idea behind this method can be described with the following diagrams
// second pass and third pass happen in the same loop really.. just separated
// them to show what this does.
// First Pass
// ResultArr:
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// Second Pass
// ResultArr2:
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// Third pass fills in the blanks
// ResultArr2:
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// X,Y = .
// X+1,y = ^
// X,Y+1 = *
// X+1,Y+1 = #
// Filling in like this;
// .*
// ^#
// 1st .
// 2nd *
// 3rd ^
// 4th #
// on single loop.
float[,] resultarr2 = new float[512, 512];
for (int y = 0; y < WorldExtents.Y; y++)
{
for (int x = 0; x < WorldExtents.X; x++)
{
resultarr2[y * 2, x * 2] = resultarr[y, x];
if (y < WorldExtents.Y)
{
resultarr2[(y * 2) + 1, x * 2] = resultarr[y, x];
}
if (x < WorldExtents.X)
{
resultarr2[y * 2, (x * 2) + 1] = resultarr[y, x];
}
if (x < WorldExtents.X && y < WorldExtents.Y)
{
resultarr2[(y * 2) + 1, (x * 2) + 1] = resultarr[y, x];
}
}
}
//Flatten out the array
int i = 0;
for (int y = 0; y < 512; y++)
{
for (int x = 0; x < 512; x++)
{
if (resultarr2[y, x] <= 0)
returnarr[i] = 0.0000001f;
else
returnarr[i] = resultarr2[y, x];
i++;
}
}
return returnarr;
}
private float[] ResizeTerrain512Interpolation(float[] heightMap)
{
float[] returnarr = new float[262144];
float[,] resultarr = new float[512,512];
// Filling out the array into its multi-dimensional components
for (int y = 0; y < 256; y++)
{
for (int x = 0; x < 256; x++)
{
resultarr[y, x] = heightMap[y * 256 + x];
}
}
// Resize using interpolation
// This particular way is quick but it only works on a multiple of the original
// The idea behind this method can be described with the following diagrams
// second pass and third pass happen in the same loop really.. just separated
// them to show what this does.
// First Pass
// ResultArr:
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// 1,1,1,1,1,1
// Second Pass
// ResultArr2:
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// ,,,,,,,,,,
// 1,,1,,1,,1,,1,,1,
// Third pass fills in the blanks
// ResultArr2:
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// 1,1,1,1,1,1,1,1,1,1,1,1
// X,Y = .
// X+1,y = ^
// X,Y+1 = *
// X+1,Y+1 = #
// Filling in like this;
// .*
// ^#
// 1st .
// 2nd *
// 3rd ^
// 4th #
// on single loop.
float[,] resultarr2 = new float[512,512];
for (int y = 0; y < (int)Constants.RegionSize; y++)
{
for (int x = 0; x < (int)Constants.RegionSize; x++)
{
resultarr2[y*2, x*2] = resultarr[y, x];
if (y < (int)Constants.RegionSize)
{
if (y + 1 < (int)Constants.RegionSize)
{
if (x + 1 < (int)Constants.RegionSize)
{
resultarr2[(y*2) + 1, x*2] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[(y*2) + 1, x*2] = ((resultarr[y, x] + resultarr[y + 1, x])/2);
}
}
else
{
resultarr2[(y*2) + 1, x*2] = resultarr[y, x];
}
}
if (x < (int)Constants.RegionSize)
{
if (x + 1 < (int)Constants.RegionSize)
{
if (y + 1 < (int)Constants.RegionSize)
{
resultarr2[y*2, (x*2) + 1] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[y*2, (x*2) + 1] = ((resultarr[y, x] + resultarr[y, x + 1])/2);
}
}
else
{
resultarr2[y*2, (x*2) + 1] = resultarr[y, x];
}
}
if (x < (int)Constants.RegionSize && y < (int)Constants.RegionSize)
{
if ((x + 1 < (int)Constants.RegionSize) && (y + 1 < (int)Constants.RegionSize))
{
resultarr2[(y*2) + 1, (x*2) + 1] = ((resultarr[y, x] + resultarr[y + 1, x] +
resultarr[y, x + 1] + resultarr[y + 1, x + 1])/4);
}
else
{
resultarr2[(y*2) + 1, (x*2) + 1] = resultarr[y, x];
}
}
}
}
//Flatten out the array
int i = 0;
for (int y = 0; y < 512; y++)
{
for (int x = 0; x < 512; x++)
{
if (Single.IsNaN(resultarr2[y, x]) || Single.IsInfinity(resultarr2[y, x]))
{
m_log.Warn("[ODE SCENE]: Non finite heightfield element detected. Setting it to 0");
resultarr2[y, x] = 0;
}
returnarr[i] = resultarr2[y, x];
i++;
}
}
return returnarr;
}
#endregion
public override void SetTerrain(float[] heightMap)
{
if (m_worldOffset != Vector3.Zero && m_parentScene != null)
{
if (m_parentScene is OdeScene)
{
((OdeScene)m_parentScene).SetTerrain(heightMap, m_worldOffset);
}
}
else
{
SetTerrain(heightMap, m_worldOffset);
}
}
private void SetTerrain(float[] heightMap, Vector3 pOffset)
{
int startTime = Util.EnvironmentTickCount();
m_log.DebugFormat("[ODE SCENE]: Setting terrain for {0}", Name);
// this._heightmap[i] = (double)heightMap[i];
// dbm (danx0r) -- creating a buffer zone of one extra sample all around
//_origheightmap = heightMap;
float[] _heightmap;
// zero out a heightmap array float array (single dimension [flattened]))
//if ((int)Constants.RegionSize == 256)
// _heightmap = new float[514 * 514];
//else
_heightmap = new float[(((int)Constants.RegionSize + 2) * ((int)Constants.RegionSize + 2))];
uint heightmapWidth = Constants.RegionSize + 1;
uint heightmapHeight = Constants.RegionSize + 1;
uint heightmapWidthSamples;
uint heightmapHeightSamples;
//if (((int)Constants.RegionSize) == 256)
//{
// heightmapWidthSamples = 2 * (uint)Constants.RegionSize + 2;
// heightmapHeightSamples = 2 * (uint)Constants.RegionSize + 2;
// heightmapWidth++;
// heightmapHeight++;
//}
//else
//{
heightmapWidthSamples = (uint)Constants.RegionSize + 1;
heightmapHeightSamples = (uint)Constants.RegionSize + 1;
//}
const float scale = 1.0f;
const float offset = 0.0f;
const float thickness = 0.2f;
const int wrap = 0;
int regionsize = (int) Constants.RegionSize + 2;
//Double resolution
//if (((int)Constants.RegionSize) == 256)
// heightMap = ResizeTerrain512Interpolation(heightMap);
// if (((int)Constants.RegionSize) == 256 && (int)Constants.RegionSize == 256)
// regionsize = 512;
float hfmin = 2000;
float hfmax = -2000;
for (int x = 0; x < heightmapWidthSamples; x++)
{
for (int y = 0; y < heightmapHeightSamples; y++)
{
int xx = Util.Clip(x - 1, 0, regionsize - 1);
int yy = Util.Clip(y - 1, 0, regionsize - 1);
float val= heightMap[yy * (int)Constants.RegionSize + xx];
_heightmap[x * ((int)Constants.RegionSize + 2) + y] = val;
hfmin = (val < hfmin) ? val : hfmin;
hfmax = (val > hfmax) ? val : hfmax;
}
}
lock (OdeLock)
{
IntPtr GroundGeom = IntPtr.Zero;
if (RegionTerrain.TryGetValue(pOffset, out GroundGeom))
{
RegionTerrain.Remove(pOffset);
if (GroundGeom != IntPtr.Zero)
{
if (TerrainHeightFieldHeights.ContainsKey(GroundGeom))
{
TerrainHeightFieldHeights.Remove(GroundGeom);
}
d.SpaceRemove(space, GroundGeom);
d.GeomDestroy(GroundGeom);
}
}
IntPtr HeightmapData = d.GeomHeightfieldDataCreate();
d.GeomHeightfieldDataBuildSingle(HeightmapData, _heightmap, 0, heightmapWidth + 1, heightmapHeight + 1,
(int)heightmapWidthSamples + 1, (int)heightmapHeightSamples + 1, scale,
offset, thickness, wrap);
d.GeomHeightfieldDataSetBounds(HeightmapData, hfmin - 1, hfmax + 1);
GroundGeom = d.CreateHeightfield(space, HeightmapData, 1);
if (GroundGeom != IntPtr.Zero)
{
d.GeomSetCategoryBits(GroundGeom, (int)(CollisionCategories.Land));
d.GeomSetCollideBits(GroundGeom, (int)(CollisionCategories.Space));
}
geom_name_map[GroundGeom] = "Terrain";
d.Matrix3 R = new d.Matrix3();
Quaternion q1 = Quaternion.CreateFromAxisAngle(new Vector3(1, 0, 0), 1.5707f);
Quaternion q2 = Quaternion.CreateFromAxisAngle(new Vector3(0, 1, 0), 1.5707f);
//Axiom.Math.Quaternion q3 = Axiom.Math.Quaternion.FromAngleAxis(3.14f, new Axiom.Math.Vector3(0, 0, 1));
q1 = q1 * q2;
//q1 = q1 * q3;
Vector3 v3;
float angle;
q1.GetAxisAngle(out v3, out angle);
d.RFromAxisAndAngle(out R, v3.X, v3.Y, v3.Z, angle);
d.GeomSetRotation(GroundGeom, ref R);
d.GeomSetPosition(GroundGeom, (pOffset.X + ((int)Constants.RegionSize * 0.5f)) - 1, (pOffset.Y + ((int)Constants.RegionSize * 0.5f)) - 1, 0);
IntPtr testGround = IntPtr.Zero;
if (RegionTerrain.TryGetValue(pOffset, out testGround))
{
RegionTerrain.Remove(pOffset);
}
RegionTerrain.Add(pOffset, GroundGeom, GroundGeom);
TerrainHeightFieldHeights.Add(GroundGeom,_heightmap);
}
m_log.DebugFormat(
"[ODE SCENE]: Setting terrain for {0} took {1}ms", Name, Util.EnvironmentTickCountSubtract(startTime));
}
public override void DeleteTerrain()
{
}
internal float GetWaterLevel()
{
return waterlevel;
}
public override bool SupportsCombining()
{
return true;
}
// public override void UnCombine(PhysicsScene pScene)
// {
// IntPtr localGround = IntPtr.Zero;
//// float[] localHeightfield;
// bool proceed = false;
// List geomDestroyList = new List();
//
// lock (OdeLock)
// {
// if (RegionTerrain.TryGetValue(Vector3.Zero, out localGround))
// {
// foreach (IntPtr geom in TerrainHeightFieldHeights.Keys)
// {
// if (geom == localGround)
// {
//// localHeightfield = TerrainHeightFieldHeights[geom];
// proceed = true;
// }
// else
// {
// geomDestroyList.Add(geom);
// }
// }
//
// if (proceed)
// {
// m_worldOffset = Vector3.Zero;
// WorldExtents = new Vector2((int)Constants.RegionSize, (int)Constants.RegionSize);
// m_parentScene = null;
//
// foreach (IntPtr g in geomDestroyList)
// {
// // removingHeightField needs to be done or the garbage collector will
// // collect the terrain data before we tell ODE to destroy it causing
// // memory corruption
// if (TerrainHeightFieldHeights.ContainsKey(g))
// {
//// float[] removingHeightField = TerrainHeightFieldHeights[g];
// TerrainHeightFieldHeights.Remove(g);
//
// if (RegionTerrain.ContainsKey(g))
// {
// RegionTerrain.Remove(g);
// }
//
// d.GeomDestroy(g);
// //removingHeightField = new float[0];
// }
// }
//
// }
// else
// {
// m_log.Warn("[PHYSICS]: Couldn't proceed with UnCombine. Region has inconsistant data.");
// }
// }
// }
// }
public override void SetWaterLevel(float baseheight)
{
waterlevel = baseheight;
randomizeWater(waterlevel);
}
private void randomizeWater(float baseheight)
{
const uint heightmapWidth = m_regionWidth + 2;
const uint heightmapHeight = m_regionHeight + 2;
const uint heightmapWidthSamples = m_regionWidth + 2;
const uint heightmapHeightSamples = m_regionHeight + 2;
const float scale = 1.0f;
const float offset = 0.0f;
const float thickness = 2.9f;
const int wrap = 0;
for (int i = 0; i < (258 * 258); i++)
{
_watermap[i] = (baseheight-0.1f) + ((float)fluidRandomizer.Next(1,9) / 10f);
// m_log.Info((baseheight - 0.1f) + ((float)fluidRandomizer.Next(1, 9) / 10f));
}
lock (OdeLock)
{
if (WaterGeom != IntPtr.Zero)
{
d.SpaceRemove(space, WaterGeom);
}
IntPtr HeightmapData = d.GeomHeightfieldDataCreate();
d.GeomHeightfieldDataBuildSingle(HeightmapData, _watermap, 0, heightmapWidth, heightmapHeight,
(int)heightmapWidthSamples, (int)heightmapHeightSamples, scale,
offset, thickness, wrap);
d.GeomHeightfieldDataSetBounds(HeightmapData, m_regionWidth, m_regionHeight);
WaterGeom = d.CreateHeightfield(space, HeightmapData, 1);
if (WaterGeom != IntPtr.Zero)
{
d.GeomSetCategoryBits(WaterGeom, (int)(CollisionCategories.Water));
d.GeomSetCollideBits(WaterGeom, (int)(CollisionCategories.Space));
}
geom_name_map[WaterGeom] = "Water";
d.Matrix3 R = new d.Matrix3();
Quaternion q1 = Quaternion.CreateFromAxisAngle(new Vector3(1, 0, 0), 1.5707f);
Quaternion q2 = Quaternion.CreateFromAxisAngle(new Vector3(0, 1, 0), 1.5707f);
//Axiom.Math.Quaternion q3 = Axiom.Math.Quaternion.FromAngleAxis(3.14f, new Axiom.Math.Vector3(0, 0, 1));
q1 = q1 * q2;
//q1 = q1 * q3;
Vector3 v3;
float angle;
q1.GetAxisAngle(out v3, out angle);
d.RFromAxisAndAngle(out R, v3.X, v3.Y, v3.Z, angle);
d.GeomSetRotation(WaterGeom, ref R);
d.GeomSetPosition(WaterGeom, 128, 128, 0);
}
}
public override void Dispose()
{
m_rayCastManager.Dispose();
m_rayCastManager = null;
lock (OdeLock)
{
lock (_prims)
{
foreach (OdePrim prm in _prims)
{
RemovePrim(prm);
}
}
//foreach (OdeCharacter act in _characters)
//{
//RemoveAvatar(act);
//}
d.WorldDestroy(world);
//d.CloseODE();
}
}
public override Dictionary GetTopColliders()
{
Dictionary returncolliders = new Dictionary();
int cnt = 0;
lock (_prims)
{
foreach (OdePrim prm in _prims)
{
if (prm.CollisionScore > 0)
{
returncolliders.Add(prm.LocalID, prm.CollisionScore);
cnt++;
prm.CollisionScore = 0f;
if (cnt > 25)
{
break;
}
}
}
}
return returncolliders;
}
public override bool SupportsRayCast()
{
return true;
}
public override void RaycastWorld(Vector3 position, Vector3 direction, float length, RaycastCallback retMethod)
{
if (retMethod != null)
{
m_rayCastManager.QueueRequest(position, direction, length, retMethod);
}
}
public override void RaycastWorld(Vector3 position, Vector3 direction, float length, int Count, RayCallback retMethod)
{
if (retMethod != null)
{
m_rayCastManager.QueueRequest(position, direction, length, Count, retMethod);
}
}
public override List RaycastWorld(Vector3 position, Vector3 direction, float length, int Count)
{
ContactResult[] ourResults = null;
RayCallback retMethod = delegate(List results)
{
ourResults = new ContactResult[results.Count];
results.CopyTo(ourResults, 0);
};
int waitTime = 0;
m_rayCastManager.QueueRequest(position, direction, length, Count, retMethod);
while (ourResults == null && waitTime < 1000)
{
Thread.Sleep(1);
waitTime++;
}
if (ourResults == null)
return new List ();
return new List(ourResults);
}
#if USE_DRAWSTUFF
// Keyboard callback
public void command(int cmd)
{
IntPtr geom;
d.Mass mass;
d.Vector3 sides = new d.Vector3(d.RandReal() * 0.5f + 0.1f, d.RandReal() * 0.5f + 0.1f, d.RandReal() * 0.5f + 0.1f);
Char ch = Char.ToLower((Char)cmd);
switch ((Char)ch)
{
case 'w':
try
{
Vector3 rotate = (new Vector3(1, 0, 0) * Quaternion.CreateFromEulers(hpr.Z * Utils.DEG_TO_RAD, hpr.Y * Utils.DEG_TO_RAD, hpr.X * Utils.DEG_TO_RAD));
xyz.X += rotate.X; xyz.Y += rotate.Y; xyz.Z += rotate.Z;
ds.SetViewpoint(ref xyz, ref hpr);
}
catch (ArgumentException)
{ hpr.X = 0; }
break;
case 'a':
hpr.X++;
ds.SetViewpoint(ref xyz, ref hpr);
break;
case 's':
try
{
Vector3 rotate2 = (new Vector3(-1, 0, 0) * Quaternion.CreateFromEulers(hpr.Z * Utils.DEG_TO_RAD, hpr.Y * Utils.DEG_TO_RAD, hpr.X * Utils.DEG_TO_RAD));
xyz.X += rotate2.X; xyz.Y += rotate2.Y; xyz.Z += rotate2.Z;
ds.SetViewpoint(ref xyz, ref hpr);
}
catch (ArgumentException)
{ hpr.X = 0; }
break;
case 'd':
hpr.X--;
ds.SetViewpoint(ref xyz, ref hpr);
break;
case 'r':
xyz.Z++;
ds.SetViewpoint(ref xyz, ref hpr);
break;
case 'f':
xyz.Z--;
ds.SetViewpoint(ref xyz, ref hpr);
break;
case 'e':
xyz.Y++;
ds.SetViewpoint(ref xyz, ref hpr);
break;
case 'q':
xyz.Y--;
ds.SetViewpoint(ref xyz, ref hpr);
break;
}
}
public void step(int pause)
{
ds.SetColor(1.0f, 1.0f, 0.0f);
ds.SetTexture(ds.Texture.Wood);
lock (_prims)
{
foreach (OdePrim prm in _prims)
{
//IntPtr body = d.GeomGetBody(prm.prim_geom);
if (prm.prim_geom != IntPtr.Zero)
{
d.Vector3 pos;
d.GeomCopyPosition(prm.prim_geom, out pos);
//d.BodyCopyPosition(body, out pos);
d.Matrix3 R;
d.GeomCopyRotation(prm.prim_geom, out R);
//d.BodyCopyRotation(body, out R);
d.Vector3 sides = new d.Vector3();
sides.X = prm.Size.X;
sides.Y = prm.Size.Y;
sides.Z = prm.Size.Z;
ds.DrawBox(ref pos, ref R, ref sides);
}
}
}
ds.SetColor(1.0f, 0.0f, 0.0f);
foreach (OdeCharacter chr in _characters)
{
if (chr.Shell != IntPtr.Zero)
{
IntPtr body = d.GeomGetBody(chr.Shell);
d.Vector3 pos;
d.GeomCopyPosition(chr.Shell, out pos);
//d.BodyCopyPosition(body, out pos);
d.Matrix3 R;
d.GeomCopyRotation(chr.Shell, out R);
//d.BodyCopyRotation(body, out R);
ds.DrawCapsule(ref pos, ref R, chr.Size.Z, 0.35f);
d.Vector3 sides = new d.Vector3();
sides.X = 0.5f;
sides.Y = 0.5f;
sides.Z = 0.5f;
ds.DrawBox(ref pos, ref R, ref sides);
}
}
}
public void start(int unused)
{
ds.SetViewpoint(ref xyz, ref hpr);
}
#endif
}
}