/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //#define SPAM using System; using System.Collections.Generic; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenMetaverse; using OpenMetaverse.StructuredData; using System.Drawing; using System.Drawing.Imaging; using System.IO.Compression; using PrimMesher; using log4net; using Nini.Config; using System.Reflection; using System.IO; namespace OpenSim.Region.Physics.Meshing { public class MeshmerizerPlugin : IMeshingPlugin { public MeshmerizerPlugin() { } public string GetName() { return "Meshmerizer"; } public IMesher GetMesher(IConfigSource config) { return new Meshmerizer(config); } } public class Meshmerizer : IMesher { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static string LogHeader = "[MESH]"; // Setting baseDir to a path will enable the dumping of raw files // raw files can be imported by blender so a visual inspection of the results can be done #if SPAM const string baseDir = "rawFiles"; #else private const string baseDir = null; //"rawFiles"; #endif // If 'true', lots of DEBUG logging of asset parsing details private bool debugDetail = false; private bool cacheSculptMaps = true; private string decodedSculptMapPath = null; private bool useMeshiesPhysicsMesh = false; private float minSizeForComplexMesh = 0.2f; // prims with all dimensions smaller than this will have a bounding box mesh private List<List<Vector3>> mConvexHulls = null; private List<Vector3> mBoundingHull = null; // Mesh cache. Static so it can be shared across instances of this class private static Dictionary<ulong, Mesh> m_uniqueMeshes = new Dictionary<ulong, Mesh>(); public Meshmerizer(IConfigSource config) { IConfig start_config = config.Configs["Startup"]; IConfig mesh_config = config.Configs["Mesh"]; decodedSculptMapPath = start_config.GetString("DecodedSculptMapPath","j2kDecodeCache"); cacheSculptMaps = start_config.GetBoolean("CacheSculptMaps", cacheSculptMaps); if (mesh_config != null) { useMeshiesPhysicsMesh = mesh_config.GetBoolean("UseMeshiesPhysicsMesh", useMeshiesPhysicsMesh); debugDetail = mesh_config.GetBoolean("LogMeshDetails", debugDetail); } try { if (!Directory.Exists(decodedSculptMapPath)) Directory.CreateDirectory(decodedSculptMapPath); } catch (Exception e) { m_log.WarnFormat("[SCULPT]: Unable to create {0} directory: ", decodedSculptMapPath, e.Message); } } /// <summary> /// creates a simple box mesh of the specified size. This mesh is of very low vertex count and may /// be useful as a backup proxy when level of detail is not needed or when more complex meshes fail /// for some reason /// </summary> /// <param name="minX"></param> /// <param name="maxX"></param> /// <param name="minY"></param> /// <param name="maxY"></param> /// <param name="minZ"></param> /// <param name="maxZ"></param> /// <returns></returns> private static Mesh CreateSimpleBoxMesh(float minX, float maxX, float minY, float maxY, float minZ, float maxZ) { Mesh box = new Mesh(); List<Vertex> vertices = new List<Vertex>(); // bottom vertices.Add(new Vertex(minX, maxY, minZ)); vertices.Add(new Vertex(maxX, maxY, minZ)); vertices.Add(new Vertex(maxX, minY, minZ)); vertices.Add(new Vertex(minX, minY, minZ)); box.Add(new Triangle(vertices[0], vertices[1], vertices[2])); box.Add(new Triangle(vertices[0], vertices[2], vertices[3])); // top vertices.Add(new Vertex(maxX, maxY, maxZ)); vertices.Add(new Vertex(minX, maxY, maxZ)); vertices.Add(new Vertex(minX, minY, maxZ)); vertices.Add(new Vertex(maxX, minY, maxZ)); box.Add(new Triangle(vertices[4], vertices[5], vertices[6])); box.Add(new Triangle(vertices[4], vertices[6], vertices[7])); // sides box.Add(new Triangle(vertices[5], vertices[0], vertices[3])); box.Add(new Triangle(vertices[5], vertices[3], vertices[6])); box.Add(new Triangle(vertices[1], vertices[0], vertices[5])); box.Add(new Triangle(vertices[1], vertices[5], vertices[4])); box.Add(new Triangle(vertices[7], vertices[1], vertices[4])); box.Add(new Triangle(vertices[7], vertices[2], vertices[1])); box.Add(new Triangle(vertices[3], vertices[2], vertices[7])); box.Add(new Triangle(vertices[3], vertices[7], vertices[6])); return box; } /// <summary> /// Creates a simple bounding box mesh for a complex input mesh /// </summary> /// <param name="meshIn"></param> /// <returns></returns> private static Mesh CreateBoundingBoxMesh(Mesh meshIn) { float minX = float.MaxValue; float maxX = float.MinValue; float minY = float.MaxValue; float maxY = float.MinValue; float minZ = float.MaxValue; float maxZ = float.MinValue; foreach (Vector3 v in meshIn.getVertexList()) { if (v.X < minX) minX = v.X; if (v.Y < minY) minY = v.Y; if (v.Z < minZ) minZ = v.Z; if (v.X > maxX) maxX = v.X; if (v.Y > maxY) maxY = v.Y; if (v.Z > maxZ) maxZ = v.Z; } return CreateSimpleBoxMesh(minX, maxX, minY, maxY, minZ, maxZ); } private void ReportPrimError(string message, string primName, PrimMesh primMesh) { m_log.Error(message); m_log.Error("\nPrim Name: " + primName); m_log.Error("****** PrimMesh Parameters ******\n" + primMesh.ParamsToDisplayString()); } /// <summary> /// Add a submesh to an existing list of coords and faces. /// </summary> /// <param name="subMeshData"></param> /// <param name="size">Size of entire object</param> /// <param name="coords"></param> /// <param name="faces"></param> private void AddSubMesh(OSDMap subMeshData, Vector3 size, List<Coord> coords, List<Face> faces) { // Console.WriteLine("subMeshMap for {0} - {1}", primName, Util.GetFormattedXml((OSD)subMeshMap)); // As per http://wiki.secondlife.com/wiki/Mesh/Mesh_Asset_Format, some Mesh Level // of Detail Blocks (maps) contain just a NoGeometry key to signal there is no // geometry for this submesh. if (subMeshData.ContainsKey("NoGeometry") && ((OSDBoolean)subMeshData["NoGeometry"])) return; OpenMetaverse.Vector3 posMax = ((OSDMap)subMeshData["PositionDomain"])["Max"].AsVector3(); OpenMetaverse.Vector3 posMin = ((OSDMap)subMeshData["PositionDomain"])["Min"].AsVector3(); ushort faceIndexOffset = (ushort)coords.Count; byte[] posBytes = subMeshData["Position"].AsBinary(); for (int i = 0; i < posBytes.Length; i += 6) { ushort uX = Utils.BytesToUInt16(posBytes, i); ushort uY = Utils.BytesToUInt16(posBytes, i + 2); ushort uZ = Utils.BytesToUInt16(posBytes, i + 4); Coord c = new Coord( Utils.UInt16ToFloat(uX, posMin.X, posMax.X) * size.X, Utils.UInt16ToFloat(uY, posMin.Y, posMax.Y) * size.Y, Utils.UInt16ToFloat(uZ, posMin.Z, posMax.Z) * size.Z); coords.Add(c); } byte[] triangleBytes = subMeshData["TriangleList"].AsBinary(); for (int i = 0; i < triangleBytes.Length; i += 6) { ushort v1 = (ushort)(Utils.BytesToUInt16(triangleBytes, i) + faceIndexOffset); ushort v2 = (ushort)(Utils.BytesToUInt16(triangleBytes, i + 2) + faceIndexOffset); ushort v3 = (ushort)(Utils.BytesToUInt16(triangleBytes, i + 4) + faceIndexOffset); Face f = new Face(v1, v2, v3); faces.Add(f); } } /// <summary> /// Create a physics mesh from data that comes with the prim. The actual data used depends on the prim type. /// </summary> /// <param name="primName"></param> /// <param name="primShape"></param> /// <param name="size"></param> /// <param name="lod"></param> /// <returns></returns> private Mesh CreateMeshFromPrimMesher(string primName, PrimitiveBaseShape primShape, Vector3 size, float lod) { // m_log.DebugFormat( // "[MESH]: Creating physics proxy for {0}, shape {1}", // primName, (OpenMetaverse.SculptType)primShape.SculptType); List<Coord> coords; List<Face> faces; if (primShape.SculptEntry) { if (((OpenMetaverse.SculptType)primShape.SculptType) == SculptType.Mesh) { if (!useMeshiesPhysicsMesh) return null; if (!GenerateCoordsAndFacesFromPrimMeshData(primName, primShape, size, out coords, out faces)) return null; } else { if (!GenerateCoordsAndFacesFromPrimSculptData(primName, primShape, size, lod, out coords, out faces)) return null; } } else { if (!GenerateCoordsAndFacesFromPrimShapeData(primName, primShape, size, lod, out coords, out faces)) return null; } // Remove the reference to any JPEG2000 sculpt data so it can be GCed primShape.SculptData = Utils.EmptyBytes; int numCoords = coords.Count; int numFaces = faces.Count; // Create the list of vertices List<Vertex> vertices = new List<Vertex>(); for (int i = 0; i < numCoords; i++) { Coord c = coords[i]; vertices.Add(new Vertex(c.X, c.Y, c.Z)); } Mesh mesh = new Mesh(); // Add the corresponding triangles to the mesh for (int i = 0; i < numFaces; i++) { Face f = faces[i]; mesh.Add(new Triangle(vertices[f.v1], vertices[f.v2], vertices[f.v3])); } return mesh; } /// <summary> /// Generate the co-ords and faces necessary to construct a mesh from the mesh data the accompanies a prim. /// </summary> /// <param name="primName"></param> /// <param name="primShape"></param> /// <param name="size"></param> /// <param name="coords">Coords are added to this list by the method.</param> /// <param name="faces">Faces are added to this list by the method.</param> /// <returns>true if coords and faces were successfully generated, false if not</returns> private bool GenerateCoordsAndFacesFromPrimMeshData( string primName, PrimitiveBaseShape primShape, Vector3 size, out List<Coord> coords, out List<Face> faces) { // m_log.DebugFormat("[MESH]: experimental mesh proxy generation for {0}", primName); coords = new List<Coord>(); faces = new List<Face>(); OSD meshOsd = null; mConvexHulls = null; mBoundingHull = null; if (primShape.SculptData.Length <= 0) { // XXX: At the moment we can not log here since ODEPrim, for instance, ends up triggering this // method twice - once before it has loaded sculpt data from the asset service and once afterwards. // The first time will always call with unloaded SculptData if this needs to be uploaded. // m_log.ErrorFormat("[MESH]: asset data for {0} is zero length", primName); return false; } long start = 0; using (MemoryStream data = new MemoryStream(primShape.SculptData)) { try { OSD osd = OSDParser.DeserializeLLSDBinary(data); if (osd is OSDMap) meshOsd = (OSDMap)osd; else { m_log.Warn("[Mesh}: unable to cast mesh asset to OSDMap"); return false; } } catch (Exception e) { m_log.Error("[MESH]: Exception deserializing mesh asset header:" + e.ToString()); } start = data.Position; } if (meshOsd is OSDMap) { OSDMap physicsParms = null; OSDMap map = (OSDMap)meshOsd; if (map.ContainsKey("physics_shape")) { physicsParms = (OSDMap)map["physics_shape"]; // old asset format if (debugDetail) m_log.DebugFormat("{0} prim='{1}': using 'physics_shape' mesh data", LogHeader, primName); } else if (map.ContainsKey("physics_mesh")) { physicsParms = (OSDMap)map["physics_mesh"]; // new asset format if (debugDetail) m_log.DebugFormat("{0} prim='{1}':using 'physics_mesh' mesh data", LogHeader, primName); } else if (map.ContainsKey("medium_lod")) { physicsParms = (OSDMap)map["medium_lod"]; // if no physics mesh, try to fall back to medium LOD display mesh if (debugDetail) m_log.DebugFormat("{0} prim='{1}':using 'medium_lod' mesh data", LogHeader, primName); } else if (map.ContainsKey("high_lod")) { physicsParms = (OSDMap)map["high_lod"]; // if all else fails, use highest LOD display mesh and hope it works :) if (debugDetail) m_log.DebugFormat("{0} prim='{1}':using 'high_lod' mesh data", LogHeader, primName); } if (map.ContainsKey("physics_convex")) { // pull this out also in case physics engine can use it OSD convexBlockOsd = null; try { OSDMap convexBlock = (OSDMap)map["physics_convex"]; { int convexOffset = convexBlock["offset"].AsInteger() + (int)start; int convexSize = convexBlock["size"].AsInteger(); byte[] convexBytes = new byte[convexSize]; System.Buffer.BlockCopy(primShape.SculptData, convexOffset, convexBytes, 0, convexSize); try { convexBlockOsd = DecompressOsd(convexBytes); } catch (Exception e) { m_log.ErrorFormat("{0} prim='{1}': exception decoding convex block: {2}", LogHeader, primName, e); //return false; } } if (convexBlockOsd != null && convexBlockOsd is OSDMap) { convexBlock = convexBlockOsd as OSDMap; if (debugDetail) { string keys = LogHeader + " keys found in convexBlock: "; foreach (KeyValuePair<string, OSD> kvp in convexBlock) keys += "'" + kvp.Key + "' "; m_log.Debug(keys); } Vector3 min = new Vector3(-0.5f, -0.5f, -0.5f); if (convexBlock.ContainsKey("Min")) min = convexBlock["Min"].AsVector3(); Vector3 max = new Vector3(0.5f, 0.5f, 0.5f); if (convexBlock.ContainsKey("Max")) max = convexBlock["Max"].AsVector3(); List<Vector3> boundingHull = null; if (convexBlock.ContainsKey("BoundingVerts")) { byte[] boundingVertsBytes = convexBlock["BoundingVerts"].AsBinary(); boundingHull = new List<Vector3>(); for (int i = 0; i < boundingVertsBytes.Length; ) { ushort uX = Utils.BytesToUInt16(boundingVertsBytes, i); i += 2; ushort uY = Utils.BytesToUInt16(boundingVertsBytes, i); i += 2; ushort uZ = Utils.BytesToUInt16(boundingVertsBytes, i); i += 2; Vector3 pos = new Vector3( Utils.UInt16ToFloat(uX, min.X, max.X), Utils.UInt16ToFloat(uY, min.Y, max.Y), Utils.UInt16ToFloat(uZ, min.Z, max.Z) ); boundingHull.Add(pos); } mBoundingHull = boundingHull; if (debugDetail) m_log.DebugFormat("{0} prim='{1}': parsed bounding hull. nVerts={2}", LogHeader, primName, mBoundingHull.Count); } if (convexBlock.ContainsKey("HullList")) { byte[] hullList = convexBlock["HullList"].AsBinary(); byte[] posBytes = convexBlock["Positions"].AsBinary(); List<List<Vector3>> hulls = new List<List<Vector3>>(); int posNdx = 0; foreach (byte cnt in hullList) { int count = cnt == 0 ? 256 : cnt; List<Vector3> hull = new List<Vector3>(); for (int i = 0; i < count; i++) { ushort uX = Utils.BytesToUInt16(posBytes, posNdx); posNdx += 2; ushort uY = Utils.BytesToUInt16(posBytes, posNdx); posNdx += 2; ushort uZ = Utils.BytesToUInt16(posBytes, posNdx); posNdx += 2; Vector3 pos = new Vector3( Utils.UInt16ToFloat(uX, min.X, max.X), Utils.UInt16ToFloat(uY, min.Y, max.Y), Utils.UInt16ToFloat(uZ, min.Z, max.Z) ); hull.Add(pos); } hulls.Add(hull); } mConvexHulls = hulls; if (debugDetail) m_log.DebugFormat("{0} prim='{1}': parsed hulls. nHulls={2}", LogHeader, primName, mConvexHulls.Count); } else { if (debugDetail) m_log.DebugFormat("{0} prim='{1}' has physics_convex but no HullList", LogHeader, primName); } } } catch (Exception e) { m_log.WarnFormat("{0} exception decoding convex block: {1}", LogHeader, e); } } if (physicsParms == null) { m_log.WarnFormat("[MESH]: No recognized physics mesh found in mesh asset for {0}", primName); return false; } int physOffset = physicsParms["offset"].AsInteger() + (int)start; int physSize = physicsParms["size"].AsInteger(); if (physOffset < 0 || physSize == 0) return false; // no mesh data in asset OSD decodedMeshOsd = new OSD(); byte[] meshBytes = new byte[physSize]; System.Buffer.BlockCopy(primShape.SculptData, physOffset, meshBytes, 0, physSize); // byte[] decompressed = new byte[physSize * 5]; try { decodedMeshOsd = DecompressOsd(meshBytes); } catch (Exception e) { m_log.ErrorFormat("{0} prim='{1}': exception decoding physical mesh: {2}", LogHeader, primName, e); return false; } OSDArray decodedMeshOsdArray = null; // physics_shape is an array of OSDMaps, one for each submesh if (decodedMeshOsd is OSDArray) { // Console.WriteLine("decodedMeshOsd for {0} - {1}", primName, Util.GetFormattedXml(decodedMeshOsd)); decodedMeshOsdArray = (OSDArray)decodedMeshOsd; foreach (OSD subMeshOsd in decodedMeshOsdArray) { if (subMeshOsd is OSDMap) AddSubMesh(subMeshOsd as OSDMap, size, coords, faces); } if (debugDetail) m_log.DebugFormat("{0} {1}: mesh decoded. offset={2}, size={3}, nCoords={4}, nFaces={5}", LogHeader, primName, physOffset, physSize, coords.Count, faces.Count); } } return true; } /// <summary> /// decompresses a gzipped OSD object /// </summary> /// <param name="decodedOsd"></param> the OSD object /// <param name="meshBytes"></param> /// <returns></returns> private static OSD DecompressOsd(byte[] meshBytes) { OSD decodedOsd = null; using (MemoryStream inMs = new MemoryStream(meshBytes)) { using (MemoryStream outMs = new MemoryStream()) { using (DeflateStream decompressionStream = new DeflateStream(inMs, CompressionMode.Decompress)) { byte[] readBuffer = new byte[2048]; inMs.Read(readBuffer, 0, 2); // skip first 2 bytes in header int readLen = 0; while ((readLen = decompressionStream.Read(readBuffer, 0, readBuffer.Length)) > 0) outMs.Write(readBuffer, 0, readLen); outMs.Flush(); outMs.Seek(0, SeekOrigin.Begin); byte[] decompressedBuf = outMs.GetBuffer(); decodedOsd = OSDParser.DeserializeLLSDBinary(decompressedBuf); } } } return decodedOsd; } /// <summary> /// Generate the co-ords and faces necessary to construct a mesh from the sculpt data the accompanies a prim. /// </summary> /// <param name="primName"></param> /// <param name="primShape"></param> /// <param name="size"></param> /// <param name="lod"></param> /// <param name="coords">Coords are added to this list by the method.</param> /// <param name="faces">Faces are added to this list by the method.</param> /// <returns>true if coords and faces were successfully generated, false if not</returns> private bool GenerateCoordsAndFacesFromPrimSculptData( string primName, PrimitiveBaseShape primShape, Vector3 size, float lod, out List<Coord> coords, out List<Face> faces) { coords = new List<Coord>(); faces = new List<Face>(); PrimMesher.SculptMesh sculptMesh; Image idata = null; string decodedSculptFileName = ""; if (cacheSculptMaps && primShape.SculptTexture != UUID.Zero) { decodedSculptFileName = System.IO.Path.Combine(decodedSculptMapPath, "smap_" + primShape.SculptTexture.ToString()); try { if (File.Exists(decodedSculptFileName)) { idata = Image.FromFile(decodedSculptFileName); } } catch (Exception e) { m_log.Error("[SCULPT]: unable to load cached sculpt map " + decodedSculptFileName + " " + e.Message); } //if (idata != null) // m_log.Debug("[SCULPT]: loaded cached map asset for map ID: " + primShape.SculptTexture.ToString()); } if (idata == null) { if (primShape.SculptData == null || primShape.SculptData.Length == 0) return false; try { OpenMetaverse.Imaging.ManagedImage managedImage; OpenMetaverse.Imaging.OpenJPEG.DecodeToImage(primShape.SculptData, out managedImage); if (managedImage == null) { // In some cases it seems that the decode can return a null bitmap without throwing // an exception m_log.WarnFormat("[PHYSICS]: OpenJPEG decoded sculpt data for {0} to a null bitmap. Ignoring.", primName); return false; } if ((managedImage.Channels & OpenMetaverse.Imaging.ManagedImage.ImageChannels.Alpha) != 0) managedImage.ConvertChannels(managedImage.Channels & ~OpenMetaverse.Imaging.ManagedImage.ImageChannels.Alpha); Bitmap imgData = OpenMetaverse.Imaging.LoadTGAClass.LoadTGA(new MemoryStream(managedImage.ExportTGA())); idata = (Image)imgData; managedImage = null; if (cacheSculptMaps) { try { idata.Save(decodedSculptFileName, ImageFormat.MemoryBmp); } catch (Exception e) { m_log.Error("[SCULPT]: unable to cache sculpt map " + decodedSculptFileName + " " + e.Message); } } } catch (DllNotFoundException) { m_log.Error("[PHYSICS]: OpenJpeg is not installed correctly on this system. Physics Proxy generation failed. Often times this is because of an old version of GLIBC. You must have version 2.4 or above!"); return false; } catch (IndexOutOfRangeException) { m_log.Error("[PHYSICS]: OpenJpeg was unable to decode this. Physics Proxy generation failed"); return false; } catch (Exception ex) { m_log.Error("[PHYSICS]: Unable to generate a Sculpty physics proxy. Sculpty texture decode failed: " + ex.Message); return false; } } PrimMesher.SculptMesh.SculptType sculptType; switch ((OpenMetaverse.SculptType)primShape.SculptType) { case OpenMetaverse.SculptType.Cylinder: sculptType = PrimMesher.SculptMesh.SculptType.cylinder; break; case OpenMetaverse.SculptType.Plane: sculptType = PrimMesher.SculptMesh.SculptType.plane; break; case OpenMetaverse.SculptType.Torus: sculptType = PrimMesher.SculptMesh.SculptType.torus; break; case OpenMetaverse.SculptType.Sphere: sculptType = PrimMesher.SculptMesh.SculptType.sphere; break; default: sculptType = PrimMesher.SculptMesh.SculptType.plane; break; } bool mirror = ((primShape.SculptType & 128) != 0); bool invert = ((primShape.SculptType & 64) != 0); sculptMesh = new PrimMesher.SculptMesh((Bitmap)idata, sculptType, (int)lod, false, mirror, invert); idata.Dispose(); sculptMesh.DumpRaw(baseDir, primName, "primMesh"); sculptMesh.Scale(size.X, size.Y, size.Z); coords = sculptMesh.coords; faces = sculptMesh.faces; return true; } /// <summary> /// Generate the co-ords and faces necessary to construct a mesh from the shape data the accompanies a prim. /// </summary> /// <param name="primName"></param> /// <param name="primShape"></param> /// <param name="size"></param> /// <param name="coords">Coords are added to this list by the method.</param> /// <param name="faces">Faces are added to this list by the method.</param> /// <returns>true if coords and faces were successfully generated, false if not</returns> private bool GenerateCoordsAndFacesFromPrimShapeData( string primName, PrimitiveBaseShape primShape, Vector3 size, float lod, out List<Coord> coords, out List<Face> faces) { PrimMesh primMesh; coords = new List<Coord>(); faces = new List<Face>(); float pathShearX = primShape.PathShearX < 128 ? (float)primShape.PathShearX * 0.01f : (float)(primShape.PathShearX - 256) * 0.01f; float pathShearY = primShape.PathShearY < 128 ? (float)primShape.PathShearY * 0.01f : (float)(primShape.PathShearY - 256) * 0.01f; float pathBegin = (float)primShape.PathBegin * 2.0e-5f; float pathEnd = 1.0f - (float)primShape.PathEnd * 2.0e-5f; float pathScaleX = (float)(primShape.PathScaleX - 100) * 0.01f; float pathScaleY = (float)(primShape.PathScaleY - 100) * 0.01f; float profileBegin = (float)primShape.ProfileBegin * 2.0e-5f; float profileEnd = 1.0f - (float)primShape.ProfileEnd * 2.0e-5f; float profileHollow = (float)primShape.ProfileHollow * 2.0e-5f; if (profileHollow > 0.95f) profileHollow = 0.95f; int sides = 4; LevelOfDetail iLOD = (LevelOfDetail)lod; if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle) sides = 3; else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle) { switch (iLOD) { case LevelOfDetail.High: sides = 24; break; case LevelOfDetail.Medium: sides = 12; break; case LevelOfDetail.Low: sides = 6; break; case LevelOfDetail.VeryLow: sides = 3; break; default: sides = 24; break; } } else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle) { // half circle, prim is a sphere switch (iLOD) { case LevelOfDetail.High: sides = 24; break; case LevelOfDetail.Medium: sides = 12; break; case LevelOfDetail.Low: sides = 6; break; case LevelOfDetail.VeryLow: sides = 3; break; default: sides = 24; break; } profileBegin = 0.5f * profileBegin + 0.5f; profileEnd = 0.5f * profileEnd + 0.5f; } int hollowSides = sides; if (primShape.HollowShape == HollowShape.Circle) { switch (iLOD) { case LevelOfDetail.High: hollowSides = 24; break; case LevelOfDetail.Medium: hollowSides = 12; break; case LevelOfDetail.Low: hollowSides = 6; break; case LevelOfDetail.VeryLow: hollowSides = 3; break; default: hollowSides = 24; break; } } else if (primShape.HollowShape == HollowShape.Square) hollowSides = 4; else if (primShape.HollowShape == HollowShape.Triangle) hollowSides = 3; primMesh = new PrimMesh(sides, profileBegin, profileEnd, profileHollow, hollowSides); if (primMesh.errorMessage != null) if (primMesh.errorMessage.Length > 0) m_log.Error("[ERROR] " + primMesh.errorMessage); primMesh.topShearX = pathShearX; primMesh.topShearY = pathShearY; primMesh.pathCutBegin = pathBegin; primMesh.pathCutEnd = pathEnd; if (primShape.PathCurve == (byte)Extrusion.Straight || primShape.PathCurve == (byte) Extrusion.Flexible) { primMesh.twistBegin = primShape.PathTwistBegin * 18 / 10; primMesh.twistEnd = primShape.PathTwist * 18 / 10; primMesh.taperX = pathScaleX; primMesh.taperY = pathScaleY; if (profileBegin < 0.0f || profileBegin >= profileEnd || profileEnd > 1.0f) { ReportPrimError("*** CORRUPT PRIM!! ***", primName, primMesh); if (profileBegin < 0.0f) profileBegin = 0.0f; if (profileEnd > 1.0f) profileEnd = 1.0f; } #if SPAM m_log.Debug("****** PrimMesh Parameters (Linear) ******\n" + primMesh.ParamsToDisplayString()); #endif try { primMesh.ExtrudeLinear(); } catch (Exception ex) { ReportPrimError("Extrusion failure: exception: " + ex.ToString(), primName, primMesh); return false; } } else { primMesh.holeSizeX = (200 - primShape.PathScaleX) * 0.01f; primMesh.holeSizeY = (200 - primShape.PathScaleY) * 0.01f; primMesh.radius = 0.01f * primShape.PathRadiusOffset; primMesh.revolutions = 1.0f + 0.015f * primShape.PathRevolutions; primMesh.skew = 0.01f * primShape.PathSkew; primMesh.twistBegin = primShape.PathTwistBegin * 36 / 10; primMesh.twistEnd = primShape.PathTwist * 36 / 10; primMesh.taperX = primShape.PathTaperX * 0.01f; primMesh.taperY = primShape.PathTaperY * 0.01f; if (profileBegin < 0.0f || profileBegin >= profileEnd || profileEnd > 1.0f) { ReportPrimError("*** CORRUPT PRIM!! ***", primName, primMesh); if (profileBegin < 0.0f) profileBegin = 0.0f; if (profileEnd > 1.0f) profileEnd = 1.0f; } #if SPAM m_log.Debug("****** PrimMesh Parameters (Circular) ******\n" + primMesh.ParamsToDisplayString()); #endif try { primMesh.ExtrudeCircular(); } catch (Exception ex) { ReportPrimError("Extrusion failure: exception: " + ex.ToString(), primName, primMesh); return false; } } primMesh.DumpRaw(baseDir, primName, "primMesh"); primMesh.Scale(size.X, size.Y, size.Z); coords = primMesh.coords; faces = primMesh.faces; return true; } /// <summary> /// temporary prototype code - please do not use until the interface has been finalized! /// </summary> /// <param name="size">value to scale the hull points by</param> /// <returns>a list of vertices in the bounding hull if it exists and has been successfully decoded, otherwise null</returns> public List<Vector3> GetBoundingHull(Vector3 size) { if (mBoundingHull == null) return null; List<Vector3> verts = new List<Vector3>(); foreach (var vert in mBoundingHull) verts.Add(vert * size); return verts; } /// <summary> /// temporary prototype code - please do not use until the interface has been finalized! /// </summary> /// <param name="size">value to scale the hull points by</param> /// <returns>a list of hulls if they exist and have been successfully decoded, otherwise null</returns> public List<List<Vector3>> GetConvexHulls(Vector3 size) { if (mConvexHulls == null) return null; List<List<Vector3>> hulls = new List<List<Vector3>>(); foreach (var hull in mConvexHulls) { List<Vector3> verts = new List<Vector3>(); foreach (var vert in hull) verts.Add(vert * size); hulls.Add(verts); } return hulls; } public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod) { return CreateMesh(primName, primShape, size, lod, false, true); } public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod, bool isPhysical) { return CreateMesh(primName, primShape, size, lod, isPhysical, true); } public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, Vector3 size, float lod, bool isPhysical, bool shouldCache) { #if SPAM m_log.DebugFormat("[MESH]: Creating mesh for {0}", primName); #endif Mesh mesh = null; ulong key = 0; // If this mesh has been created already, return it instead of creating another copy // For large regions with 100k+ prims and hundreds of copies of each, this can save a GB or more of memory if (shouldCache) { key = primShape.GetMeshKey(size, lod); lock (m_uniqueMeshes) { if (m_uniqueMeshes.TryGetValue(key, out mesh)) return mesh; } } if (size.X < 0.01f) size.X = 0.01f; if (size.Y < 0.01f) size.Y = 0.01f; if (size.Z < 0.01f) size.Z = 0.01f; mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod); if (mesh != null) { if ((!isPhysical) && size.X < minSizeForComplexMesh && size.Y < minSizeForComplexMesh && size.Z < minSizeForComplexMesh) { #if SPAM m_log.Debug("Meshmerizer: prim " + primName + " has a size of " + size.ToString() + " which is below threshold of " + minSizeForComplexMesh.ToString() + " - creating simple bounding box"); #endif mesh = CreateBoundingBoxMesh(mesh); mesh.DumpRaw(baseDir, primName, "Z extruded"); } // trim the vertex and triangle lists to free up memory mesh.TrimExcess(); if (shouldCache) { lock (m_uniqueMeshes) { m_uniqueMeshes.Add(key, mesh); } } } return mesh; } } }