/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSim Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //#define SPAM using OpenMetaverse; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.Meshing { internal class Extruder { //public float startParameter; //public float stopParameter; public PhysicsVector size; public float taperTopFactorX = 1f; public float taperTopFactorY = 1f; public float taperBotFactorX = 1f; public float taperBotFactorY = 1f; public float pushX = 0f; public float pushY = 0f; // twist amount in radians. NOT DEGREES. public float twistTop = 0; public float twistBot = 0; public float twistMid = 0; public float pathScaleX = 1.0f; public float pathScaleY = 0.5f; public float skew = 0.0f; public float radius = 0.0f; public float revolutions = 1.0f; public float pathCutBegin = 0.0f; public float pathCutEnd = 1.0f; public ushort pathBegin = 0; public ushort pathEnd = 0; public float pathTaperX = 0.0f; public float pathTaperY = 0.0f; /// <summary> /// Creates an extrusion of a profile along a linear path. Used to create prim types box, cylinder, and prism. /// </summary> /// <param name="m"></param> /// <returns>A mesh of the extruded shape</returns> public Mesh ExtrudeLinearPath(Mesh m) { Mesh result = new Mesh(); Mesh newLayer; Mesh lastLayer = null; int step = 0; int steps = 1; float twistTotal = twistTop - twistBot; // if the profile has a lot of twist, add more layers otherwise the layers may overlap // and the resulting mesh may be quite inaccurate. This method is arbitrary and may not // accurately match the viewer float twistTotalAbs = System.Math.Abs(twistTotal); if (twistTotalAbs > 0.01) steps += (int)(twistTotalAbs * 3.66f); // dahlia's magic number ;) #if SPAM System.Console.WriteLine("ExtrudeLinearPath: twistTotalAbs: " + twistTotalAbs.ToString() + " steps: " + steps.ToString()); #endif double percentOfPathMultiplier = 1.0 / steps; float start = -0.5f; float stepSize = 1.0f / (float)steps; float xProfileScale = 1.0f; float yProfileScale = 1.0f; float xOffset = 0.0f; float yOffset = 0.0f; float zOffset = start; float xOffsetStepIncrement = pushX / steps; float yOffsetStepIncrement = pushY / steps; #if SPAM System.Console.WriteLine("Extruder: twistTop: " + twistTop.ToString() + " twistbot: " + twistBot.ToString() + " twisttotal: " + twistTotal.ToString()); System.Console.WriteLine("Extruder: taperBotFactorX: " + taperBotFactorX.ToString() + " taperBotFactorY: " + taperBotFactorY.ToString() + " taperTopFactorX: " + taperTopFactorX.ToString() + " taperTopFactorY: " + taperTopFactorY.ToString()); System.Console.WriteLine("Extruder: PathScaleX: " + pathScaleX.ToString() + " pathScaleY: " + pathScaleY.ToString()); #endif //float percentOfPath = 0.0f; float percentOfPath = (float)pathBegin * 2.0e-5f; zOffset += percentOfPath; bool done = false; do // loop through the length of the path and add the layers { newLayer = m.Clone(); if (taperBotFactorX < 1.0f) xProfileScale = 1.0f - (1.0f - percentOfPath) * (1.0f - taperBotFactorX); else if (taperTopFactorX < 1.0f) xProfileScale = 1.0f - percentOfPath * (1.0f - taperTopFactorX); else xProfileScale = 1.0f; if (taperBotFactorY < 1.0f) yProfileScale = 1.0f - (1.0f - percentOfPath) * (1.0f - taperBotFactorY); else if (taperTopFactorY < 1.0f) yProfileScale = 1.0f - percentOfPath * (1.0f - taperTopFactorY); else yProfileScale = 1.0f; #if SPAM //System.Console.WriteLine("xProfileScale: " + xProfileScale.ToString() + " yProfileScale: " + yProfileScale.ToString()); #endif Vertex vTemp = new Vertex(0.0f, 0.0f, 0.0f); // apply the taper to the profile before any rotations if (xProfileScale != 1.0f || yProfileScale != 1.0f) { foreach (Vertex v in newLayer.vertices) { if (v != null) { v.X *= xProfileScale; v.Y *= yProfileScale; } } } float twist = twistBot + (twistTotal * (float)percentOfPath); #if SPAM System.Console.WriteLine("Extruder: percentOfPath: " + percentOfPath.ToString() + " zOffset: " + zOffset.ToString() + " xProfileScale: " + xProfileScale.ToString() + " yProfileScale: " + yProfileScale.ToString()); #endif // apply twist rotation to the profile layer and position the layer in the prim Quaternion profileRot = Quaternion.CreateFromAxisAngle(new Vector3(0.0f, 0.0f, 1.0f), twist); foreach (Vertex v in newLayer.vertices) { if (v != null) { vTemp = v * profileRot; v.X = vTemp.X + xOffset; v.Y = vTemp.Y + yOffset; v.Z = vTemp.Z + zOffset; } } if (step == 0) // the first layer, invert normals { foreach (Triangle t in newLayer.triangles) { t.invertNormal(); } } result.Append(newLayer); int iLastNull = 0; if (lastLayer != null) { int i, count = newLayer.vertices.Count; for (i = 0; i < count; i++) { int iNext = (i + 1); if (lastLayer.vertices[i] == null) // cant make a simplex here { iLastNull = i + 1; } else { if (i == count - 1) // End of list iNext = iLastNull; if (lastLayer.vertices[iNext] == null) // Null means wrap to begin of last segment iNext = iLastNull; result.Add(new Triangle(newLayer.vertices[i], lastLayer.vertices[i], newLayer.vertices[iNext])); result.Add(new Triangle(newLayer.vertices[iNext], lastLayer.vertices[i], lastLayer.vertices[iNext])); } } } lastLayer = newLayer; // calc the step for the next interation of the loop if (step < steps) { step++; percentOfPath += (float)percentOfPathMultiplier; xOffset += xOffsetStepIncrement; yOffset += yOffsetStepIncrement; zOffset += stepSize; if (percentOfPath > 1.0f - (float)pathEnd * 2.0e-5f) done = true; } else done = true; } while (!done); // loop until all the layers in the path are completed // scale the mesh to the desired size float xScale = size.X; float yScale = size.Y; float zScale = size.Z; foreach (Vertex v in result.vertices) { if (v != null) { v.X *= xScale; v.Y *= yScale; v.Z *= zScale; } } return result; } /// <summary> /// Extrudes a shape around a circular path. Used to create prim types torus, ring, and tube. /// </summary> /// <param name="m"></param> /// <returns>a mesh of the extruded shape</returns> public Mesh ExtrudeCircularPath(Mesh m) { Mesh result = new Mesh(); Mesh newLayer; Mesh lastLayer = null; int step; int steps = 24; float twistTotal = twistTop - twistBot; // if the profile has a lot of twist, add more layers otherwise the layers may overlap // and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't // accurately match the viewer if (System.Math.Abs(twistTotal) > (float)System.Math.PI * 1.5f) steps *= 2; if (System.Math.Abs(twistTotal) > (float)System.Math.PI * 3.0f) steps *= 2; // double percentOfPathMultiplier = 1.0 / steps; // double angleStepMultiplier = System.Math.PI * 2.0 / steps; float yPathScale = pathScaleY * 0.5f; float pathLength = pathCutEnd - pathCutBegin; float totalSkew = skew * 2.0f * pathLength; float skewStart = (-skew) + pathCutBegin * 2.0f * skew; // It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end // angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used // to calculate the sine for generating the path radius appears to approximate it's effects there // too, but there are some subtle differences in the radius which are noticeable as the prim size // increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on // the meshes generated with this technique appear nearly identical in shape to the same prims when // displayed by the viewer. float startAngle = (float)(System.Math.PI * 2.0 * pathCutBegin * revolutions) - pushY * 0.9f; float endAngle = (float)(System.Math.PI * 2.0 * pathCutEnd * revolutions) - pushY * 0.9f; float stepSize = (float)0.2617993878; // 2*PI / 24 segments per revolution step = (int)(startAngle / stepSize); float angle = startAngle; float xProfileScale = 1.0f; float yProfileScale = 1.0f; #if SPAM System.Console.WriteLine("Extruder: twistTop: " + twistTop.ToString() + " twistbot: " + twistBot.ToString() + " twisttotal: " + twistTotal.ToString()); System.Console.WriteLine("Extruder: startAngle: " + startAngle.ToString() + " endAngle: " + endAngle.ToString() + " step: " + step.ToString()); System.Console.WriteLine("Extruder: taperBotFactorX: " + taperBotFactorX.ToString() + " taperBotFactorY: " + taperBotFactorY.ToString() + " taperTopFactorX: " + taperTopFactorX.ToString() + " taperTopFactorY: " + taperTopFactorY.ToString()); System.Console.WriteLine("Extruder: PathScaleX: " + pathScaleX.ToString() + " pathScaleY: " + pathScaleY.ToString()); #endif bool done = false; do // loop through the length of the path and add the layers { newLayer = m.Clone(); float percentOfPath = (angle - startAngle) / (endAngle - startAngle); // endAngle should always be larger than startAngle if (pathTaperX > 0.001f) // can't really compare to 0.0f as the value passed is never exactly zero xProfileScale = 1.0f - percentOfPath * pathTaperX; else if (pathTaperX < -0.001f) xProfileScale = 1.0f + (1.0f - percentOfPath) * pathTaperX; else xProfileScale = 1.0f; if (pathTaperY > 0.001f) yProfileScale = 1.0f - percentOfPath * pathTaperY; else if (pathTaperY < -0.001f) yProfileScale = 1.0f + (1.0f - percentOfPath) * pathTaperY; else yProfileScale = 1.0f; #if SPAM //System.Console.WriteLine("xProfileScale: " + xProfileScale.ToString() + " yProfileScale: " + yProfileScale.ToString()); #endif Vertex vTemp = new Vertex(0.0f, 0.0f, 0.0f); // apply the taper to the profile before any rotations if (xProfileScale != 1.0f || yProfileScale != 1.0f) { foreach (Vertex v in newLayer.vertices) { if (v != null) { v.X *= xProfileScale; v.Y *= yProfileScale; } } } float radiusScale; if (radius > 0.001f) radiusScale = 1.0f - radius * percentOfPath; else if (radius < 0.001f) radiusScale = 1.0f + radius * (1.0f - percentOfPath); else radiusScale = 1.0f; #if SPAM System.Console.WriteLine("Extruder: angle: " + angle.ToString() + " percentOfPath: " + percentOfPath.ToString() + " radius: " + radius.ToString() + " radiusScale: " + radiusScale.ToString() + " xProfileScale: " + xProfileScale.ToString() + " yProfileScale: " + yProfileScale.ToString()); #endif float twist = twistBot + (twistTotal * (float)percentOfPath); float xOffset; float yOffset; float zOffset; xOffset = 0.5f * (skewStart + totalSkew * (float)percentOfPath); xOffset += (float) System.Math.Sin(angle) * pushX * 0.45f; yOffset = (float)(System.Math.Cos(angle) * (0.5f - yPathScale)) * radiusScale; zOffset = (float)(System.Math.Sin(angle + pushY * 0.9f) * (0.5f - yPathScale)) * radiusScale; // next apply twist rotation to the profile layer if (twistTotal != 0.0f || twistBot != 0.0f) { Quaternion profileRot = new Quaternion(new Vector3(0.0f, 0.0f, 1.0f), twist); foreach (Vertex v in newLayer.vertices) { if (v != null) { vTemp = v * profileRot; v.X = vTemp.X; v.Y = vTemp.Y; v.Z = vTemp.Z; } } } // now orient the rotation of the profile layer relative to it's position on the path // adding pushY to the angle used to generate the quat appears to approximate the viewer Quaternion layerRot = Quaternion.CreateFromAxisAngle(new Vector3(1.0f, 0.0f, 0.0f), (float)angle + pushY * 0.9f); foreach (Vertex v in newLayer.vertices) { if (v != null) { vTemp = v * layerRot; v.X = vTemp.X + xOffset; v.Y = vTemp.Y + yOffset; v.Z = vTemp.Z + zOffset; } } if (angle == startAngle) // the first layer, invert normals { foreach (Triangle t in newLayer.triangles) { t.invertNormal(); } } result.Append(newLayer); int iLastNull = 0; if (lastLayer != null) { int i, count = newLayer.vertices.Count; for (i = 0; i < count; i++) { int iNext = (i + 1); if (lastLayer.vertices[i] == null) // cant make a simplex here { iLastNull = i + 1; } else { if (i == count - 1) // End of list iNext = iLastNull; if (lastLayer.vertices[iNext] == null) // Null means wrap to begin of last segment iNext = iLastNull; result.Add(new Triangle(newLayer.vertices[i], lastLayer.vertices[i], newLayer.vertices[iNext])); result.Add(new Triangle(newLayer.vertices[iNext], lastLayer.vertices[i], lastLayer.vertices[iNext])); } } } lastLayer = newLayer; // calc the angle for the next interation of the loop if (angle >= endAngle) { done = true; } else { angle = stepSize * ++step; if (angle > endAngle) angle = endAngle; } } while (!done); // loop until all the layers in the path are completed // scale the mesh to the desired size float xScale = size.X; float yScale = size.Y; float zScale = size.Z; foreach (Vertex v in result.vertices) { if (v != null) { v.X *= xScale; v.Y *= yScale; v.Z *= zScale; } } return result; } } }