/* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Revised March 5th 2010 by Kitto Flora. ODEDynamics.cs
* Ubit 2012
* rolled into ODEPrim.cs
*/
using System;
using System.IO;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
///
/// Various properties that ODE uses for AMotors but isn't exposed in ODE.NET so we must define them ourselves.
///
public class OdePrim : PhysicsActor
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
public class SerialControl
{
public object alock = new object();
public byte[] data = new byte[0];
}
private Vector3 _position;
private Vector3 _velocity;
private Vector3 _torque;
private Vector3 m_lastVelocity;
private Vector3 m_lastposition;
private Quaternion m_lastorientation = new Quaternion();
private Vector3 m_rotationalVelocity;
private Vector3 _size;
private Vector3 _acceleration;
// private d.Vector3 _zeroPosition = new d.Vector3(0.0f, 0.0f, 0.0f);
private Quaternion _orientation;
private Vector3 m_taintposition;
private Vector3 m_taintsize;
private Vector3 m_taintVelocity;
private Vector3 m_taintTorque;
private Quaternion m_taintrot;
private Vector3 m_rotateEnable = Vector3.One; // Current setting
private Vector3 m_rotateEnableRequest = Vector3.One; // Request from LSL
private bool m_rotateEnableUpdate = false;
private Vector3 m_lockX;
private Vector3 m_lockY;
private Vector3 m_lockZ;
private IntPtr Amotor = IntPtr.Zero;
private IntPtr AmotorX = IntPtr.Zero;
private IntPtr AmotorY = IntPtr.Zero;
private IntPtr AmotorZ = IntPtr.Zero;
private Vector3 m_PIDTarget;
private float m_PIDTau;
private float PID_D = 35f;
private float PID_G = 25f;
private bool m_usePID = false;
private Quaternion m_APIDTarget = new Quaternion();
private float m_APIDStrength = 0.5f;
private float m_APIDDamping = 0.5f;
private bool m_useAPID = false;
private float m_APIDdamper = 1.0f;
// These next 7 params apply to llSetHoverHeight(float height, integer water, float tau),
// do not confuse with VEHICLE HOVER
private float m_PIDHoverHeight;
private float m_PIDHoverTau;
private bool m_useHoverPID;
private PIDHoverType m_PIDHoverType = PIDHoverType.Ground;
private float m_targetHoverHeight;
private float m_groundHeight;
private float m_waterHeight;
private float m_buoyancy; //m_buoyancy set by llSetBuoyancy()
// private float m_tensor = 5f;
private int body_autodisable_frames = 20;
private const CollisionCategories m_default_collisionFlags = (CollisionCategories.Geom
| CollisionCategories.Space
| CollisionCategories.Body
| CollisionCategories.Character
);
private bool m_taintshape;
private bool m_taintPhysics;
private bool m_collidesLand = true;
private bool m_collidesWater;
// public bool m_returnCollisions;
// Default we're a Geometry
private CollisionCategories m_collisionCategories = (CollisionCategories.Geom);
// Default, Collide with Other Geometries, spaces and Bodies
private CollisionCategories m_collisionFlags = m_default_collisionFlags;
public bool m_taintremove;
public bool m_taintdisable;
public bool m_disabled;
public bool m_taintadd;
public bool m_taintselected;
public bool m_taintCollidesWater;
public uint m_localID;
//public GCHandle gc;
private CollisionLocker ode;
private bool m_meshfailed = false;
private bool m_taintforce = false;
private bool m_taintaddangularforce = false;
private Vector3 m_force;
private List m_forcelist = new List();
private List m_angularforcelist = new List();
private IMesh _mesh;
private PrimitiveBaseShape _pbs;
private OdeScene _parent_scene;
public IntPtr m_targetSpace = IntPtr.Zero;
public IntPtr prim_geom;
// public IntPtr prev_geom;
public IntPtr _triMeshData;
private IntPtr _linkJointGroup = IntPtr.Zero;
private PhysicsActor _parent;
private PhysicsActor m_taintparent;
private List childrenPrim = new List();
private bool iscolliding;
private bool m_isphysical;
private bool m_isSelected;
internal bool m_isVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively
private bool m_throttleUpdates;
private int throttleCounter;
public int m_interpenetrationcount;
public float m_collisionscore;
// public int m_roundsUnderMotionThreshold;
// private int m_crossingfailures;
public bool m_outofBounds;
private float m_density = 10.000006836f; // Aluminum g/cm3;
public bool _zeroFlag; // if body has been stopped
private bool m_lastUpdateSent;
public IntPtr Body = IntPtr.Zero;
public String m_primName;
private Vector3 _target_velocity;
public d.Mass pMass;
public int m_eventsubscription;
private CollisionEventUpdate CollisionEventsThisFrame;
private IntPtr m_linkJoint = IntPtr.Zero;
public volatile bool childPrim;
internal int m_material = (int)Material.Wood;
private IntPtr m_body = IntPtr.Zero;
// Vehicle properties ============================================================================================
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag)0; // Bit settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity
//requested by LSL
private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL
private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL
private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL
private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor
private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity
private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
// private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
// private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 1.0f; // damped
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
SerialControl m_taintserial = null;
object m_taintvehicledata = null;
public void DoSetVehicle()
{
VehicleData vd = (VehicleData)m_taintvehicledata;
m_type = vd.m_type;
m_flags = vd.m_flags;
// Linear properties
m_linearMotorDirection = vd.m_linearMotorDirection;
m_linearFrictionTimescale = vd.m_linearFrictionTimescale;
m_linearMotorDecayTimescale = vd.m_linearMotorDecayTimescale;
m_linearMotorTimescale = vd.m_linearMotorTimescale;
// m_linearMotorOffset = vd.m_linearMotorOffset;
//Angular properties
m_angularMotorDirection = vd.m_angularMotorDirection;
m_angularMotorTimescale = vd.m_angularMotorTimescale;
m_angularMotorDecayTimescale = vd.m_angularMotorDecayTimescale;
m_angularFrictionTimescale = vd.m_angularFrictionTimescale;
//Deflection properties
// m_angularDeflectionEfficiency = vd.m_angularDeflectionEfficiency;
// m_angularDeflectionTimescale = vd.m_angularDeflectionTimescale;
// m_linearDeflectionEfficiency = vd.m_linearDeflectionEfficiency;
// m_linearDeflectionTimescale = vd.m_linearDeflectionTimescale;
//Banking properties
// m_bankingEfficiency = vd.m_bankingEfficiency;
// m_bankingMix = vd.m_bankingMix;
// m_bankingTimescale = vd.m_bankingTimescale;
//Hover and Buoyancy properties
m_VhoverHeight = vd.m_VhoverHeight;
// m_VhoverEfficiency = vd.m_VhoverEfficiency;
m_VhoverTimescale = vd.m_VhoverTimescale;
m_VehicleBuoyancy = vd.m_VehicleBuoyancy;
//Attractor properties
m_verticalAttractionEfficiency = vd.m_verticalAttractionEfficiency;
m_verticalAttractionTimescale = vd.m_verticalAttractionTimescale;
// Axis
// m_referenceFrame = vd.m_referenceFrame;
m_taintvehicledata = null;
}
public override void SetVehicle(object vdata)
{
m_taintvehicledata = vdata;
_parent_scene.AddPhysicsActorTaint(this);
}
public override byte[] Serialize(bool PhysIsRunning)
{
SerialControl sc = new SerialControl();
lock (sc.alock)
{
if (PhysIsRunning)
{
m_taintserial = sc;
if (!Monitor.Wait(sc.alock, 1000))
{
m_log.Error("[chOde] prim data serialization timed out");
m_taintserial = null;
return new byte[0];
}
}
else
DoSerialize(sc);
}
return sc.data;
}
public void DoSerialize(SerialControl sc)
{
wstreamer st = new wstreamer();
Vector3 vtmp;
ushort version = 2;
if (!BitConverter.IsLittleEndian)
version |= 1;
st.Wushort(version); //version lower bit codes endian type for future use
// compact booleans in a ushort
ushort flags = 0;
if (m_isphysical) // this should be true for now
flags |= 1;
if (m_isSelected)
flags |= 2;
if (m_isVolumeDetect)
flags |= 4;
if (m_disabled)
flags |= 8;
if (m_collidesWater)
flags |= 16;
if (m_collidesLand)
flags |= 32;
if (m_usePID)
flags |= 64;
if (m_useAPID)
flags |= 128;
if (m_useHoverPID)
flags |= 256;
if (m_throttleUpdates)
flags |= 512;
st.Wushort(flags);
st.Wvector3(_size);
st.Wint(m_material);
st.Wfloat(m_density);
st.Wfloat(0); // future gravity mod V3
st.Wfloat(0); // future friction V3
st.Wfloat(0); // future bounce V3
// st.Wuint((uint)m_collisionCategories);
// st.Wuint((uint)m_collisionFlags);
if (_parent == null)
{
st.Wvector3(_position); // ??
st.Wquat(_orientation);
}
else // for childs save offsets
{
Quaternion to;
Quaternion ipo = Quaternion.Inverse(_parent.Orientation);
if (m_isphysical && prim_geom != IntPtr.Zero)
{
d.Vector3 dvt;
d.GeomCopyPosition(prim_geom, out dvt);
vtmp.X = dvt.X;
vtmp.Y = dvt.Y;
vtmp.Z = dvt.Z;
d.Quaternion dqt;
d.GeomCopyQuaternion(prim_geom, out dqt);
to.X = dqt.X;
to.Y = dqt.Y;
to.Z = dqt.Z;
to.W = dqt.W; // rotation in world
}
else
{
vtmp = _position;
to = _orientation;
}
vtmp -= _parent.Position; // offset in world
vtmp *= ipo; // offset in local
st.Wvector3(vtmp);
ipo *= to; // own rotation
st.Wquat(ipo);
}
st.Wvector3(_velocity);
st.Wvector3(m_rotationalVelocity);
st.Wvector3(_acceleration);
st.Wvector3(m_rotateEnable);
vtmp = Vector3.Zero;
for (int i = 0; i < m_forcelist.Count; i++)
{
vtmp += (m_forcelist[i] * 100);
}
st.Wvector3(vtmp); // force acc
vtmp = Vector3.Zero;
for (int i = 0; i < m_angularforcelist.Count; i++)
{
vtmp += (m_angularforcelist[i] * 100);
}
st.Wvector3(vtmp); // angular force acc
st.Wvector3(m_PIDTarget);
st.Wfloat(m_PIDTau);
st.Wfloat(PID_D);
st.Wfloat(PID_G);
st.Wquat(m_APIDTarget);
st.Wfloat(m_APIDStrength);
st.Wfloat(m_APIDDamping);
st.Wfloat(m_APIDdamper);
st.Wint((int)m_PIDHoverType);
st.Wfloat(m_PIDHoverHeight);
st.Wfloat(m_PIDHoverTau);
st.Wfloat(m_targetHoverHeight);
st.Wfloat(m_groundHeight);
st.Wfloat(m_waterHeight);
st.Wfloat(m_buoyancy);
// this must be last since type none ends stream
if (m_type == Vehicle.TYPE_NONE)
st.Wint((int)Vehicle.TYPE_NONE);
else
{
st.Wint((int)m_type);
st.Wquat(Quaternion.Identity); //m_referenceFrame
st.Wint((int)m_flags);
st.Wvector3(m_linearMotorDirection);
st.Wfloat(
(float)Math.Sqrt(m_lLinMotorDVel.LengthSquared() / m_linearMotorDirection.LengthSquared()));
st.Wvector3(m_linearFrictionTimescale);
st.Wfloat(m_linearMotorDecayTimescale);
st.Wfloat(m_linearMotorTimescale);
st.Wvector3(new Vector3(0, 0, 0)); //m_linearMotorOffset);
st.Wvector3(m_angularMotorDirection);
st.Wfloat((float)Math.Sqrt(m_angularMotorDVel.LengthSquared() / m_angularMotorDirection.LengthSquared()));
st.Wvector3(m_angularFrictionTimescale);
st.Wfloat(m_angularMotorDecayTimescale);
st.Wfloat(m_angularMotorTimescale);
st.Wfloat(0); //m_linearDeflectionEfficiency);
st.Wfloat(1000); //m_linearDeflectionTimescale);
st.Wfloat(0); //m_angularDeflectionEfficiency);
st.Wfloat(120); //m_angularDeflectionTimescale);
st.Wfloat(0); // m_bankingEfficiency);
st.Wfloat(0); //m_bankingMix);
st.Wfloat(1000); //m_bankingTimescale);
st.Wfloat(m_VhoverHeight);
st.Wfloat(0.5f); //m_VhoverEfficiency);
st.Wfloat(m_VhoverTimescale);
st.Wfloat(m_VehicleBuoyancy);
st.Wfloat(m_verticalAttractionEfficiency);
st.Wfloat(m_verticalAttractionTimescale);
}
sc.data = st.close();
m_taintserial = null;
Monitor.PulseAll(sc.alock);
}
public bool DeSerialize(byte[] data)
{
rstreamer st = new rstreamer(data);
int version =st.Rushort(); //version
// merge booleans in a ushort
ushort flags = st.Rushort();
if ((flags & 1) != 0)
m_isphysical = true;
if ((flags & 2) != 0)
m_taintselected = true;
if ((flags & 4) != 0)
m_isVolumeDetect = true;
if ((flags & 8) != 0)
m_taintdisable = true;
if ((flags & 16) != 0)
m_taintCollidesWater = true;
if ((flags & 32) != 0)
m_collidesLand = true;
if ((flags & 64) != 0)
m_usePID = true;
if ((flags & 128) != 0)
m_useAPID = true;
if ((flags & 256) != 0)
m_useHoverPID = true;
if ((flags & 512) != 0)
m_throttleUpdates = true;
_size = st.Rvector3();
m_taintsize = _size;
m_material= st.Rint();
m_density = st.Rfloat();
st.Rfloat(); // future gravity mod V3
st.Rfloat(); // future friction V3
st.Rfloat(); // future bounce V3
// m_collisionCategories = (CollisionCategories)st.Ruint();
// m_collisionFlags = (CollisionCategories) st.Ruint();
if (m_taintparent == null)
{
st.Rvector3(); // ignore old position sop/sog as to tell the new one
m_taintrot = st.Rquat(); //
_orientation = m_taintrot;
}
else
{
m_taintrot = _parent.Orientation;
m_taintposition = st.Rvector3(); // ??
_position = m_taintposition;
m_taintposition *= m_taintrot;
m_taintposition += _parent.Position;
m_taintrot *= st.Rquat(); //
_orientation = m_taintrot;
}
m_taintVelocity = st.Rvector3();
m_rotationalVelocity = st.Rvector3();
_acceleration = st.Rvector3();
m_rotateEnableRequest = st.Rvector3();
m_rotateEnableUpdate = true;
Vector3 vtmp;
vtmp = st.Rvector3(); // forces acc
m_forcelist.Add(vtmp);
m_taintforce = true;
vtmp = st.Rvector3(); // angular forces acc
m_angularforcelist.Add(vtmp);
m_taintaddangularforce = true;
m_PIDTarget = st.Rvector3();
m_PIDTau = st.Rfloat();
PID_D = st.Rfloat();
PID_G = st.Rfloat();
m_APIDTarget = st.Rquat();
m_APIDStrength = st.Rfloat();
m_APIDDamping = st.Rfloat();
m_APIDdamper = st.Rfloat();
m_PIDHoverType = (PIDHoverType) st.Rint();
m_PIDHoverHeight = st.Rfloat();
m_PIDHoverTau = st.Rfloat();
m_targetHoverHeight = st.Rfloat();
m_groundHeight = st.Rfloat();
m_waterHeight = st.Rfloat();
m_buoyancy = st.Rfloat();
// this must be last since type none ends stream
m_type = (Vehicle) st.Rint();
if (m_type != Vehicle.TYPE_NONE)
{
float ftmp;
st.Rquat(); //m_referenceFrame
m_flags = (VehicleFlag) st.Rint();
m_linearMotorDirection = st.Rvector3();
ftmp = st.Rfloat();
m_lLinMotorDVel = m_linearMotorDirection * ftmp;
m_linearFrictionTimescale = st.Rvector3();
m_linearMotorDecayTimescale = st.Rfloat();
m_linearMotorTimescale = st.Rfloat();
st.Rvector3(); //m_linearMotorOffset);
m_angularMotorDirection = st.Rvector3();
ftmp = st.Rfloat();
m_angularMotorDVel = m_angularMotorDirection * ftmp;
m_angularFrictionTimescale = st.Rvector3();
m_angularMotorDecayTimescale = st.Rfloat();
m_angularMotorTimescale = st.Rfloat();
st.Rfloat(); //m_linearDeflectionEfficiency);
st.Rfloat(); //m_linearDeflectionTimescale);
st.Rfloat(); //m_angularDeflectionEfficiency);
st.Rfloat(); //m_angularDeflectionTimescale);
st.Rfloat(); // m_bankingEfficiency);
st.Rfloat(); //m_bankingMix);
st.Rfloat(); //m_bankingTimescale);
m_VhoverHeight = st.Rfloat();
st.Rfloat(); //m_VhoverEfficiency);
m_VhoverTimescale = st.Rfloat();
m_VehicleBuoyancy = st.Rfloat();
m_verticalAttractionEfficiency = st.Rfloat();
m_verticalAttractionTimescale = st.Rfloat();
}
st.close();
return true;
}
public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, PhysicsActor parent,
PrimitiveBaseShape pbs, CollisionLocker dode, uint localid, byte[] sdata)
{
m_localID = localid;
ode = dode;
if (parent == null)
{
m_taintparent = null;
if (!pos.IsFinite())
{
pos = new Vector3(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f),
parent_scene.GetTerrainHeightAtXY(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f)) + 0.5f);
m_log.Warn("[PHYSICS]: Got nonFinite Object create Position");
}
_position = pos;
m_taintposition = pos;
}
else
m_taintparent = parent;
body_autodisable_frames = parent_scene.bodyFramesAutoDisable;
prim_geom = IntPtr.Zero;
_mesh = null;
m_meshfailed = false;
_pbs = pbs;
_parent_scene = parent_scene;
m_targetSpace = (IntPtr)0;
if(sdata != null && sdata.Length > 1)
DeSerialize(sdata);
if (m_isphysical)
m_targetSpace = _parent_scene.space;
_triMeshData = IntPtr.Zero;
m_primName = primName;
m_taintserial = null;
m_taintadd = true;
_parent_scene.AddPhysicsActorTaint(this);
// don't do .add() here; old geoms get recycled with the same hash
}
public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size,
Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode, uint localid)
{
m_localID = localid;
ode = dode;
if (!pos.IsFinite())
{
pos = new Vector3(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f),
parent_scene.GetTerrainHeightAtXY(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f)) + 0.5f);
m_log.Warn("[PHYSICS]: Got nonFinite Object create Position");
}
_position = pos;
m_taintposition = pos;
PID_D = parent_scene.bodyPIDD;
PID_G = parent_scene.bodyPIDG;
m_density = parent_scene.geomDefaultDensity;
// m_tensor = parent_scene.bodyMotorJointMaxforceTensor;
body_autodisable_frames = parent_scene.bodyFramesAutoDisable;
prim_geom = IntPtr.Zero;
// prev_geom = IntPtr.Zero;
if (!pos.IsFinite())
{
size = new Vector3(0.5f, 0.5f, 0.5f);
m_log.Warn("[PHYSICS]: Got nonFinite Object create Size");
}
if (size.X <= 0) size.X = 0.01f;
if (size.Y <= 0) size.Y = 0.01f;
if (size.Z <= 0) size.Z = 0.01f;
_size = size;
m_taintsize = _size;
if (!QuaternionIsFinite(rotation))
{
rotation = Quaternion.Identity;
m_log.Warn("[PHYSICS]: Got nonFinite Object create Rotation");
}
_orientation = rotation;
m_taintrot = _orientation;
_mesh = mesh;
_pbs = pbs;
_parent_scene = parent_scene;
m_targetSpace = (IntPtr)0;
// if (pos.Z < 0)
if (pos.Z < parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y))
m_isphysical = false;
else
{
m_isphysical = pisPhysical;
// If we're physical, we need to be in the master space for now.
// linksets *should* be in a space together.. but are not currently
if (m_isphysical)
m_targetSpace = _parent_scene.space;
}
_triMeshData = IntPtr.Zero;
m_taintserial = null;
m_primName = primName;
m_taintadd = true;
_parent_scene.AddPhysicsActorTaint(this);
// don't do .add() here; old geoms get recycled with the same hash
}
public override int PhysicsActorType
{
get { return (int)ActorTypes.Prim; }
set { return; }
}
public override bool SetAlwaysRun
{
get { return false; }
set { return; }
}
public override uint LocalID
{
set
{
//m_log.Info("[PHYSICS]: Setting TrackerID: " + value);
m_localID = value;
}
}
public override bool Grabbed
{
set { return; }
}
public override bool Selected
{
set
{
//Console.WriteLine("Sel {0} {1} {2}", m_primName, value, m_isphysical);
// This only makes the object not collidable if the object
// is physical or the object is modified somehow *IN THE FUTURE*
// without this, if an avatar selects prim, they can walk right
// through it while it's selected
m_collisionscore = 0;
if ((m_isphysical && !_zeroFlag) || !value)
{
m_taintselected = value;
_parent_scene.AddPhysicsActorTaint(this);
}
else
{
m_taintselected = value;
m_isSelected = value;
}
if (m_isSelected) disableBodySoft();
}
}
public override bool IsPhysical
{
get { return m_isphysical; }
set
{
m_isphysical = value;
if (!m_isphysical)
{ // Zero the remembered last velocity
m_lastVelocity = Vector3.Zero;
if (m_type != Vehicle.TYPE_NONE) Halt();
}
}
}
public void setPrimForRemoval()
{
m_taintremove = true;
}
public override bool Flying
{
// no flying prims for you
get { return false; }
set { }
}
public override bool IsColliding
{
get { return iscolliding; }
set { iscolliding = value; }
}
public override bool CollidingGround
{
get { return false; }
set { return; }
}
public override bool CollidingObj
{
get { return false; }
set { return; }
}
public override bool ThrottleUpdates
{
get { return m_throttleUpdates; }
set { m_throttleUpdates = value; }
}
public override bool Stopped
{
get { return _zeroFlag; }
}
public override Vector3 Position
{
get { return _position; }
set
{
_position = value;
//m_log.Info("[PHYSICS]: " + _position.ToString());
}
}
public override Vector3 Size
{
get { return _size; }
set
{
if (value.IsFinite())
{
_size = value;
}
else
{
m_log.Warn("[PHYSICS]: Got NaN Size on object");
}
}
}
public override float Mass
{
get { return CalculateMass(); }
}
public override Vector3 Force
{
//get { return Vector3.Zero; }
get { return m_force; }
set
{
if (value.IsFinite())
{
m_force = value;
}
else
{
m_log.Warn("[PHYSICS]: NaN in Force Applied to an Object");
}
}
}
public override int VehicleType
{
get { return (int)m_type; }
set { ProcessTypeChange((Vehicle)value); }
}
public override void VehicleFloatParam(int param, float value)
{
ProcessFloatVehicleParam((Vehicle)param, value);
}
public override void VehicleVectorParam(int param, Vector3 value)
{
ProcessVectorVehicleParam((Vehicle)param, value);
}
public override void VehicleRotationParam(int param, Quaternion rotation)
{
ProcessRotationVehicleParam((Vehicle)param, rotation);
}
public override void VehicleFlags(int param, bool remove)
{
ProcessVehicleFlags(param, remove);
}
public override void SetVolumeDetect(int param)
{
lock (_parent_scene.OdeLock)
{
m_isVolumeDetect = (param != 0);
}
}
public override Vector3 CenterOfMass
{
get { return Vector3.Zero; }
}
public override Vector3 GeometricCenter
{
get { return Vector3.Zero; }
}
public override PrimitiveBaseShape Shape
{
set
{
_pbs = value;
m_taintshape = true;
}
}
public override Vector3 Velocity
{
get
{
// Averate previous velocity with the new one so
// client object interpolation works a 'little' better
if (_zeroFlag)
return Vector3.Zero;
Vector3 returnVelocity = Vector3.Zero;
returnVelocity.X = (m_lastVelocity.X + _velocity.X) / 2;
returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y) / 2;
returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z) / 2;
return returnVelocity;
}
set
{
if (value.IsFinite())
{
_velocity = value;
if (_velocity.ApproxEquals(Vector3.Zero, 0.001f))
_acceleration = Vector3.Zero;
m_taintVelocity = value;
_parent_scene.AddPhysicsActorTaint(this);
}
else
{
m_log.Warn("[PHYSICS]: Got NaN Velocity in Object");
}
}
}
public override Vector3 Torque
{
get
{
if (!m_isphysical || Body == IntPtr.Zero)
return Vector3.Zero;
return _torque;
}
set
{
if (value.IsFinite())
{
m_taintTorque = value;
_parent_scene.AddPhysicsActorTaint(this);
}
else
{
m_log.Warn("[PHYSICS]: Got NaN Torque in Object");
}
}
}
public override float CollisionScore
{
get { return m_collisionscore; }
set { m_collisionscore = value; }
}
public override bool Kinematic
{
get { return false; }
set { }
}
public override Quaternion Orientation
{
get { return _orientation; }
set
{
if (QuaternionIsFinite(value))
{
_orientation = value;
}
else
m_log.Warn("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object");
}
}
public override bool FloatOnWater
{
set
{
m_taintCollidesWater = value;
_parent_scene.AddPhysicsActorTaint(this);
}
}
public override void SetMomentum(Vector3 momentum)
{
}
public override Vector3 PIDTarget
{
set
{
if (value.IsFinite())
{
m_PIDTarget = value;
}
else
m_log.Warn("[PHYSICS]: Got NaN PIDTarget from Scene on Object");
}
}
public override bool PIDActive { set { m_usePID = value; } }
public override float PIDTau { set { m_PIDTau = value; } }
// For RotLookAt
public override Quaternion APIDTarget { set { m_APIDTarget = value; } }
public override bool APIDActive { set { m_useAPID = value; } }
public override float APIDStrength { set { m_APIDStrength = value; } }
public override float APIDDamping { set { m_APIDDamping = value; } }
public override float PIDHoverHeight { set { m_PIDHoverHeight = value; ; } }
public override bool PIDHoverActive { set { m_useHoverPID = value; } }
public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } }
public override float PIDHoverTau { set { m_PIDHoverTau = value; } }
internal static bool QuaternionIsFinite(Quaternion q)
{
if (Single.IsNaN(q.X) || Single.IsInfinity(q.X))
return false;
if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y))
return false;
if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z))
return false;
if (Single.IsNaN(q.W) || Single.IsInfinity(q.W))
return false;
return true;
}
public override Vector3 Acceleration // client updates read data via here
{
get
{
if (_zeroFlag)
{
return Vector3.Zero;
}
return _acceleration;
}
set { _acceleration = value; }
}
public void SetAcceleration(Vector3 accel) // No one calls this, and it would not do anything.
{
_acceleration = accel;
}
public override void AddForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
lock (m_forcelist)
m_forcelist.Add(force);
m_taintforce = true;
}
else
{
m_log.Warn("[PHYSICS]: Got Invalid linear force vector from Scene in Object");
}
//m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString());
}
public override void AddAngularForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
m_angularforcelist.Add(force);
m_taintaddangularforce = true;
}
else
{
m_log.Warn("[PHYSICS]: Got Invalid Angular force vector from Scene in Object");
}
}
public override Vector3 RotationalVelocity
{
get
{
return m_rotationalVelocity;
}
set
{
if (value.IsFinite())
{
m_rotationalVelocity = value;
}
else
{
m_log.Warn("[PHYSICS]: Got NaN RotationalVelocity in Object");
}
}
}
public override void CrossingFailure()
{
if (m_outofBounds)
{
_position.X = Util.Clip(_position.X, 0.5f, _parent_scene.WorldExtents.X - 0.5f);
_position.Y = Util.Clip(_position.Y, 0.5f, _parent_scene.WorldExtents.Y - 0.5f);
_position.Z = Util.Clip(_position.Z, -100f, 50000f);
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
m_lastposition = _position;
_velocity = Vector3.Zero;
m_lastVelocity = _velocity;
if (m_type != Vehicle.TYPE_NONE)
Halt();
d.BodySetLinearVel(Body, 0, 0, 0);
base.RequestPhysicsterseUpdate();
m_outofBounds = false;
}
/*
int tmp = Interlocked.Increment(ref m_crossingfailures);
if (tmp > _parent_scene.geomCrossingFailuresBeforeOutofbounds)
{
base.RaiseOutOfBounds(_position);
return;
}
else if (tmp == _parent_scene.geomCrossingFailuresBeforeOutofbounds)
{
m_log.Warn("[PHYSICS]: Too many crossing failures for: " + m_primName);
}
*/
}
public override float Buoyancy
{
get { return m_buoyancy; }
set { m_buoyancy = value; }
}
public override void link(PhysicsActor obj)
{
m_taintparent = obj;
}
public override void delink()
{
m_taintparent = null;
}
public override void LockAngularMotion(Vector3 axis)
{
// This is actually ROTATION ENABLE, not a lock.
// default is <1,1,1> which is all enabled.
// The lock value is updated inside Move(), no point in using the taint system.
// OS 'm_taintAngularLock' etc change to m_rotateEnable.
if (axis.IsFinite())
{
axis.X = (axis.X > 0) ? 1f : 0f;
axis.Y = (axis.Y > 0) ? 1f : 0f;
axis.Z = (axis.Z > 0) ? 1f : 0f;
m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z);
m_rotateEnableRequest = axis;
m_rotateEnableUpdate = true;
}
else
{
m_log.Warn("[PHYSICS]: Got NaN locking axis from Scene on Object");
}
}
public void SetGeom(IntPtr geom)
{
if (prim_geom != IntPtr.Zero)
{
// Remove any old entries
//string tPA;
//_parent_scene.geom_name_map.TryGetValue(prim_geom, out tPA);
//Console.WriteLine("**** Remove {0}", tPA);
if (_parent_scene.geom_name_map.ContainsKey(prim_geom)) _parent_scene.geom_name_map.Remove(prim_geom);
if (_parent_scene.actor_name_map.ContainsKey(prim_geom)) _parent_scene.actor_name_map.Remove(prim_geom);
d.GeomDestroy(prim_geom);
}
prim_geom = geom;
//Console.WriteLine("SetGeom to " + prim_geom + " for " + m_primName);
if (prim_geom != IntPtr.Zero)
{
_parent_scene.geom_name_map[prim_geom] = this.m_primName;
_parent_scene.actor_name_map[prim_geom] = (PhysicsActor)this;
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
//Console.WriteLine("**** Create {2} Dicts: actor={0} name={1}", _parent_scene.actor_name_map.Count, _parent_scene.geom_name_map.Count, this.m_primName);
}
if (childPrim)
{
if (_parent != null && _parent is OdePrim)
{
OdePrim parent = (OdePrim)_parent;
//Console.WriteLine("SetGeom calls ChildSetGeom");
parent.ChildSetGeom(this);
}
}
//m_log.Warn("Setting Geom to: " + prim_geom);
}
public void enableBodySoft()
{
if (!childPrim)
{
if (m_isphysical && Body != IntPtr.Zero)
{
d.BodyEnable(Body);
if (m_type != Vehicle.TYPE_NONE)
Enable(Body, _parent_scene);
}
m_disabled = false;
}
}
public void disableBodySoft()
{
m_disabled = true;
if (m_isphysical && Body != IntPtr.Zero)
{
d.BodyDisable(Body);
Halt();
}
}
public void enableBody()
{
// Don't enable this body if we're a child prim
// this should be taken care of in the parent function not here
if (!childPrim)
{
// Sets the geom to a body
Body = d.BodyCreate(_parent_scene.world);
setMass();
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.BodySetQuaternion(Body, ref myrot);
d.GeomSetBody(prim_geom, Body);
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
// disconnect from world gravity so we can apply buoyancy
d.BodySetGravityMode(Body, false);
m_interpenetrationcount = 0;
m_collisionscore = 0;
m_disabled = false;
if (m_type != Vehicle.TYPE_NONE)
{
Enable(Body, _parent_scene);
}
_parent_scene.addActivePrim(this);
}
}
#region Mass Calculation
private float CalculateMass()
{
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float returnMass = 0;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume * tmp * tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f; ;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.52359877559829887307710723054658f;
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
returnMass = m_density * volume;
if (returnMass <= 0)
returnMass = 0.0001f;//ckrinke: Mass must be greater then zero.
// else if (returnMass > _parent_scene.maximumMassObject)
// returnMass = _parent_scene.maximumMassObject;
// Recursively calculate mass
bool HasChildPrim = false;
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
HasChildPrim = true;
}
}
if (HasChildPrim)
{
OdePrim[] childPrimArr = new OdePrim[0];
lock (childrenPrim)
childPrimArr = childrenPrim.ToArray();
for (int i = 0; i < childPrimArr.Length; i++)
{
if (childPrimArr[i] != null && !childPrimArr[i].m_taintremove)
returnMass += childPrimArr[i].CalculateMass();
// failsafe, this shouldn't happen but with OpenSim, you never know :)
if (i > 256)
break;
}
}
if (returnMass > _parent_scene.maximumMassObject)
returnMass = _parent_scene.maximumMassObject;
return returnMass;
}// end CalculateMass
#endregion
public void setMass()
{
if (Body != (IntPtr)0)
{
float newmass = CalculateMass();
//m_log.Info("[PHYSICS]: New Mass: " + newmass.ToString());
d.MassSetBoxTotal(out pMass, newmass, _size.X, _size.Y, _size.Z);
d.BodySetMass(Body, ref pMass);
}
}
public void disableBody()
{
//this kills the body so things like 'mesh' can re-create it.
lock (this)
{
if (!childPrim)
{
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
m_collisionCategories &= ~CollisionCategories.Body;
m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
d.BodyDestroy(Body);
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
{
_parent_scene.remActivePrim(prm);
prm.Body = IntPtr.Zero;
}
}
}
Body = IntPtr.Zero;
}
}
else
{
_parent_scene.remActivePrim(this);
m_collisionCategories &= ~CollisionCategories.Body;
m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
Body = IntPtr.Zero;
}
}
m_disabled = true;
m_collisionscore = 0;
}
private static Dictionary m_MeshToTriMeshMap = new Dictionary();
public bool setMesh(OdeScene parent_scene, IMesh mesh)
{
// This sleeper is there to moderate how long it takes between
// setting up the mesh and pre-processing it when we get rapid fire mesh requests on a single object
//Thread.Sleep(10);
//Kill Body so that mesh can re-make the geom
if (IsPhysical && Body != IntPtr.Zero)
{
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this);
}
}
else
{
disableBody();
}
}
// do it on caller instead
/*
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
*/
IntPtr vertices, indices;
int vertexCount, indexCount;
int vertexStride, triStride;
mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount); // Note, that vertices are fixed in unmanaged heap
mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount); // Also fixed, needs release after usage
if (vertexCount == 0 || indexCount == 0)
{
m_log.WarnFormat("[PHYSICS]: Got invalid mesh on prim {0} at <{1},{2},{3}>. It can be a sculp with alpha channel in map. Replacing it by a small box.", Name, _position.X, _position.Y, _position.Z);
_size.X = 0.01f;
_size.Y = 0.01f;
_size.Z = 0.01f;
return false;
}
// warning this destroys the mesh for eventual future use. Only pinned float arrays stay valid
mesh.releaseSourceMeshData(); // free up the original mesh data to save memory
/*
if (m_MeshToTriMeshMap.ContainsKey(mesh))
{
_triMeshData = m_MeshToTriMeshMap[mesh];
}
else
*/
{
_triMeshData = d.GeomTriMeshDataCreate();
d.GeomTriMeshDataBuildSimple(_triMeshData, vertices, vertexStride, vertexCount, indices, indexCount, triStride);
d.GeomTriMeshDataPreprocess(_triMeshData);
// m_MeshToTriMeshMap[mesh] = _triMeshData;
}
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
// if (prim_geom == IntPtr.Zero) // setGeom takes care of phys engine recreate and prim_geom pointer
// {
// SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, parent_scene.triCallback, null, null));
SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, null, null, null));
// }
}
catch (AccessViolationException)
{
m_log.Error("[PHYSICS]: MESH LOCKED");
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
return false;
}
// if (IsPhysical && Body == (IntPtr) 0)
// {
// Recreate the body
// m_interpenetrationcount = 0;
// m_collisionscore = 0;
// enableBody();
// }
return true;
}
public void ProcessTaints(float timestep) //=============================================================================
{
if (m_taintadd)
{
changeadd(timestep);
}
if (prim_geom != IntPtr.Zero)
{
if (!_position.ApproxEquals(m_taintposition, 0f))
{
changemove(timestep);
}
if (m_taintrot != _orientation)
{
if (childPrim && IsPhysical) // For physical child prim...
{
rotate(timestep);
// KF: ODE will also rotate the parent prim!
// so rotate the root back to where it was
OdePrim parent = (OdePrim)_parent;
parent.rotate(timestep);
}
else
{
//Just rotate the prim
rotate(timestep);
}
}
//
if (m_taintPhysics != m_isphysical && !(m_taintparent != _parent))
{
changePhysicsStatus(timestep);
}//
if (!_size.ApproxEquals(m_taintsize, 0f))
changesize(timestep);
//
if (m_taintshape)
changeshape(timestep);
//
if (m_taintforce)
changeAddForce(timestep);
if (m_taintaddangularforce)
changeAddAngularForce(timestep);
if (!m_taintTorque.ApproxEquals(Vector3.Zero, 0.001f))
changeSetTorque(timestep);
if (m_taintdisable)
changedisable(timestep);
if (m_taintselected != m_isSelected)
changeSelectedStatus(timestep);
if (!m_taintVelocity.ApproxEquals(Vector3.Zero, 0.001f))
changevelocity(timestep);
if (m_taintparent != _parent)
changelink(timestep);
if (m_taintCollidesWater != m_collidesWater)
changefloatonwater(timestep);
if (m_taintvehicledata != null)
DoSetVehicle();
if (m_taintserial != null)
DoSerialize(m_taintserial);
/* obsolete
if (!m_angularLock.ApproxEquals(m_taintAngularLock,0f))
changeAngularLock(timestep);
*/
}
else
{
m_log.Error("[PHYSICS]: The scene reused a disposed PhysActor! *waves finger*, Don't be evil. A couple of things can cause this. An improper prim breakdown(be sure to set prim_geom to zero after d.GeomDestroy! An improper buildup (creating the geom failed). Or, the Scene Reused a physics actor after disposing it.)");
}
}
/* obsolete
private void changeAngularLock(float timestep)
{
if (_parent == null)
{
m_angularLock = m_taintAngularLock;
m_angularLockSet = true;
}
}
*/
private void changelink(float timestep)
{
// If the newly set parent is not null
// create link
if (_parent == null && m_taintparent != null)
{
if (m_taintparent.PhysicsActorType == (int)ActorTypes.Prim)
{
OdePrim obj = (OdePrim)m_taintparent;
//obj.disableBody();
obj.ParentPrim(this);
/*
if (obj.Body != (IntPtr)0 && Body != (IntPtr)0 && obj.Body != Body)
{
_linkJointGroup = d.JointGroupCreate(0);
m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup);
d.JointAttach(m_linkJoint, obj.Body, Body);
d.JointSetFixed(m_linkJoint);
}
*/
}
}
// If the newly set parent is null
// destroy link
else if (_parent != null && m_taintparent == null)
{
if (_parent is OdePrim)
{
OdePrim obj = (OdePrim)_parent;
obj.ChildDelink(this);
childPrim = false;
//_parent = null;
}
/*
if (Body != (IntPtr)0 && _linkJointGroup != (IntPtr)0)
d.JointGroupDestroy(_linkJointGroup);
_linkJointGroup = (IntPtr)0;
m_linkJoint = (IntPtr)0;
*/
}
_parent = m_taintparent;
m_taintPhysics = m_isphysical;
}
// I'm the parent
// prim is the child
public void ParentPrim(OdePrim prim)
{
if (this.m_localID != prim.m_localID)
{
if (Body == IntPtr.Zero)
{
Body = d.BodyCreate(_parent_scene.world);
// disconnect from world gravity so we can apply buoyancy
d.BodySetGravityMode(Body, false);
setMass();
}
if (Body != IntPtr.Zero)
{
lock (childrenPrim)
{
if (!childrenPrim.Contains(prim))
{
childrenPrim.Add(prim);
foreach (OdePrim prm in childrenPrim)
{
d.Mass m2;
d.MassSetZero(out m2);
d.MassSetBoxTotal(out m2, prim.CalculateMass(), prm._size.X, prm._size.Y, prm._size.Z);
d.Quaternion quat = new d.Quaternion();
quat.W = prm._orientation.W;
quat.X = prm._orientation.X;
quat.Y = prm._orientation.Y;
quat.Z = prm._orientation.Z;
d.Matrix3 mat = new d.Matrix3();
d.RfromQ(out mat, ref quat);
d.MassRotate(ref m2, ref mat);
d.MassTranslate(ref m2, Position.X - prm.Position.X, Position.Y - prm.Position.Y, Position.Z - prm.Position.Z);
d.MassAdd(ref pMass, ref m2);
}
foreach (OdePrim prm in childrenPrim)
{
prm.m_collisionCategories |= CollisionCategories.Body;
prm.m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
if (prm.prim_geom == IntPtr.Zero)
{
m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements. No geom yet");
continue;
}
d.GeomSetCategoryBits(prm.prim_geom, (int)prm.m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (int)prm.m_collisionFlags);
d.Quaternion quat = new d.Quaternion();
quat.W = prm._orientation.W;
quat.X = prm._orientation.X;
quat.Y = prm._orientation.Y;
quat.Z = prm._orientation.Z;
d.Matrix3 mat = new d.Matrix3();
d.RfromQ(out mat, ref quat);
if (Body != IntPtr.Zero)
{
d.GeomSetBody(prm.prim_geom, Body);
prm.childPrim = true;
d.GeomSetOffsetWorldPosition(prm.prim_geom, prm.Position.X, prm.Position.Y, prm.Position.Z);
//d.GeomSetOffsetPosition(prim.prim_geom,
// (Position.X - prm.Position.X) - pMass.c.X,
// (Position.Y - prm.Position.Y) - pMass.c.Y,
// (Position.Z - prm.Position.Z) - pMass.c.Z);
d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat);
//d.GeomSetOffsetRotation(prm.prim_geom, ref mat);
d.MassTranslate(ref pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z);
d.BodySetMass(Body, ref pMass);
}
else
{
m_log.Debug("[PHYSICS]:I ain't got no boooooooooddy, no body");
}
prm.m_interpenetrationcount = 0;
prm.m_collisionscore = 0;
prm.m_disabled = false;
prm.Body = Body;
_parent_scene.addActivePrim(prm);
}
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
d.Quaternion quat2 = new d.Quaternion();
quat2.W = _orientation.W;
quat2.X = _orientation.X;
quat2.Y = _orientation.Y;
quat2.Z = _orientation.Z;
d.Matrix3 mat2 = new d.Matrix3();
d.RfromQ(out mat2, ref quat2);
d.GeomSetBody(prim_geom, Body);
d.GeomSetOffsetWorldPosition(prim_geom, Position.X - pMass.c.X, Position.Y - pMass.c.Y, Position.Z - pMass.c.Z);
//d.GeomSetOffsetPosition(prim.prim_geom,
// (Position.X - prm.Position.X) - pMass.c.X,
// (Position.Y - prm.Position.Y) - pMass.c.Y,
// (Position.Z - prm.Position.Z) - pMass.c.Z);
//d.GeomSetOffsetRotation(prim_geom, ref mat2);
d.MassTranslate(ref pMass, -pMass.c.X, -pMass.c.Y, -pMass.c.Z);
d.BodySetMass(Body, ref pMass);
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
m_interpenetrationcount = 0;
m_collisionscore = 0;
m_disabled = false;
d.BodySetPosition(Body, Position.X, Position.Y, Position.Z);
if (m_type != Vehicle.TYPE_NONE) Enable(Body, _parent_scene);
_parent_scene.addActivePrim(this);
}
}
}
}
}
private void ChildSetGeom(OdePrim odePrim)
{
//if (m_isphysical && Body != IntPtr.Zero)
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
//prm.childPrim = true;
prm.disableBody();
//prm.m_taintparent = null;
//prm._parent = null;
//prm.m_taintPhysics = false;
//prm.m_disabled = true;
//prm.childPrim = false;
}
}
disableBody();
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
}
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
ParentPrim(prm);
}
}
}
private void ChildDelink(OdePrim odePrim)
{
// Okay, we have a delinked child.. need to rebuild the body.
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
prm.childPrim = true;
prm.disableBody();
//prm.m_taintparent = null;
//prm._parent = null;
//prm.m_taintPhysics = false;
//prm.m_disabled = true;
//prm.childPrim = false;
}
}
disableBody();
lock (childrenPrim)
{
childrenPrim.Remove(odePrim);
}
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
}
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
ParentPrim(prm);
}
}
}
private void changeSelectedStatus(float timestep)
{
if (m_taintselected)
{
m_collisionCategories = CollisionCategories.Selected;
m_collisionFlags = (CollisionCategories.Sensor | CollisionCategories.Space);
// We do the body disable soft twice because 'in theory' a collision could have happened
// in between the disabling and the collision properties setting
// which would wake the physical body up from a soft disabling and potentially cause it to fall
// through the ground.
// NOTE FOR JOINTS: this doesn't always work for jointed assemblies because if you select
// just one part of the assembly, the rest of the assembly is non-selected and still simulating,
// so that causes the selected part to wake up and continue moving.
// even if you select all parts of a jointed assembly, it is not guaranteed that the entire
// assembly will stop simulating during the selection, because of the lack of atomicity
// of select operations (their processing could be interrupted by a thread switch, causing
// simulation to continue before all of the selected object notifications trickle down to
// the physics engine).
// e.g. we select 100 prims that are connected by joints. non-atomically, the first 50 are
// selected and disabled. then, due to a thread switch, the selection processing is
// interrupted and the physics engine continues to simulate, so the last 50 items, whose
// selection was not yet processed, continues to simulate. this wakes up ALL of the
// first 50 again. then the last 50 are disabled. then the first 50, which were just woken
// up, start simulating again, which in turn wakes up the last 50.
if (m_isphysical)
{
disableBodySoft();
}
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
if (m_isphysical)
{
disableBodySoft();
}
if (Body != IntPtr.Zero)
{
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetForce(Body, 0f, 0f, 0f);
d.BodySetAngularVel(Body, 0.0f, 0.0f, 0.0f);
d.BodySetTorque(Body, 0.0f, 0.0f, 0.0f);
}
}
else
{
m_collisionCategories = CollisionCategories.Geom;
if (m_isphysical)
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags = m_default_collisionFlags;
if (m_collidesLand)
m_collisionFlags |= CollisionCategories.Land;
if (m_collidesWater)
m_collisionFlags |= CollisionCategories.Water;
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
if (Body != IntPtr.Zero)
{
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetForce(Body, 0f, 0f, 0f);
d.BodySetAngularVel(Body, 0.0f, 0.0f, 0.0f);
d.BodySetTorque(Body, 0.0f, 0.0f, 0.0f);
}
if (m_isphysical)
{
if (Body != IntPtr.Zero)
{
enableBodySoft();
}
}
}
resetCollisionAccounting();
m_isSelected = m_taintselected;
}//end changeSelectedStatus
public void ResetTaints()
{
m_taintposition = _position;
m_taintrot = _orientation;
m_taintPhysics = m_isphysical;
m_taintselected = m_isSelected;
m_taintsize = _size;
m_taintshape = false;
m_taintforce = false;
m_taintdisable = false;
m_taintVelocity = Vector3.Zero;
}
public void CreateGeom(IntPtr m_targetSpace, IMesh _mesh)
{
bool gottrimesh = false;
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
if (_mesh != null) // Special - make mesh
{
gottrimesh = setMesh(_parent_scene, _mesh);
}
if(!gottrimesh) // not a mesh
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) // special profile??
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z) // Equi-size
{
if (((_size.X / 2f) > 0f)) // Has size
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
else
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
else // not equi-size
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
else // not special profile
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
{
m_log.Warn("[PHYSICS]: Unable to create physics proxy for object");
ode.dunlock(_parent_scene.world);
return;
}
}
}
}
public void changeadd(float timestep)
{
int[] iprimspaceArrItem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
IntPtr targetspace = _parent_scene.calculateSpaceForGeom(_position);
if (targetspace == IntPtr.Zero)
targetspace = _parent_scene.createprimspace(iprimspaceArrItem[0], iprimspaceArrItem[1]);
m_targetSpace = targetspace;
if (_mesh == null && m_meshfailed == false)
{
if (_parent_scene.needsMeshing(_pbs))
{
// Don't need to re-enable body.. it's done in SetMesh
try
{
_mesh = _parent_scene.mesher.CreateMesh(m_primName, _pbs, _size, (int)LevelOfDetail.High, true);
}
catch
{
//Don't continuously try to mesh prims when meshing has failed
m_meshfailed = true;
}
// createmesh returns null when it's a shape that isn't a cube.
// m_log.Debug(m_localID);
}
}
lock (_parent_scene.OdeLock)
{
CreateGeom(m_targetSpace, _mesh);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
if (m_isphysical && Body == IntPtr.Zero)
{
enableBody();
}
}
changeSelectedStatus(timestep);
m_taintadd = false;
}
public void changemove(float timestep)
{
if (m_isphysical)
{
// if (!m_disabled && !m_taintremove && !childPrim) After one edit m_disabled is sometimes set, disabling further edits!
if (!m_taintremove && !childPrim)
{
if (Body == IntPtr.Zero)
enableBody();
//Prim auto disable after 20 frames,
//if you move it, re-enable the prim manually.
if (_parent != null)
{
if (m_linkJoint != IntPtr.Zero)
{
d.JointDestroy(m_linkJoint);
m_linkJoint = IntPtr.Zero;
}
}
if (Body != IntPtr.Zero)
{
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
if (_parent != null)
{
OdePrim odParent = (OdePrim)_parent;
if (Body != (IntPtr)0 && odParent.Body != (IntPtr)0 && Body != odParent.Body)
{
// KF: Fixed Joints were removed? Anyway - this Console.WriteLine does not show up, so routine is not used??
Console.WriteLine("ODEPrim JointCreateFixed !!!");
m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup);
d.JointAttach(m_linkJoint, Body, odParent.Body);
d.JointSetFixed(m_linkJoint);
}
}
d.BodyEnable(Body);
if (m_type != Vehicle.TYPE_NONE)
{
Enable(Body, _parent_scene);
}
}
else
{
m_log.Warn("[PHYSICS]: Body Still null after enableBody(). This is a crash scenario.");
}
}
//else
// {
//m_log.Debug("[BUG]: race!");
//}
}
else
{
// string primScenAvatarIn = _parent_scene.whichspaceamIin(_position);
// int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
IntPtr tempspace = _parent_scene.recalculateSpaceForGeom(prim_geom, _position, m_targetSpace);
m_targetSpace = tempspace;
_parent_scene.waitForSpaceUnlock(m_targetSpace);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
d.SpaceAdd(m_targetSpace, prim_geom);
}
}
changeSelectedStatus(timestep);
resetCollisionAccounting();
m_taintposition = _position;
}
public void rotate(float timestep)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
if (Body != IntPtr.Zero)
{
// KF: If this is a root prim do BodySet
d.BodySetQuaternion(Body, ref myrot);
}
else
{
// daughter prim, do Geom set
d.GeomSetQuaternion(prim_geom, ref myrot);
}
resetCollisionAccounting();
m_taintrot = _orientation;
}
private void resetCollisionAccounting()
{
m_collisionscore = 0;
m_interpenetrationcount = 0;
m_disabled = false;
}
public void changedisable(float timestep)
{
m_disabled = true;
if (Body != IntPtr.Zero)
{
d.BodyDisable(Body);
Body = IntPtr.Zero;
}
m_taintdisable = false;
}
public void changePhysicsStatus(float timestep)
{
if (m_isphysical == true)
{
if (Body == IntPtr.Zero)
{
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
changeshape(2f);
}
else
{
enableBody();
}
}
}
else
{
if (Body != IntPtr.Zero)
{
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
_mesh = null;
changeadd(2f);
}
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this);
}
}
else
{
disableBody();
}
}
}
changeSelectedStatus(timestep);
resetCollisionAccounting();
m_taintPhysics = m_isphysical;
}
public void changesize(float timestamp)
{
string oldname = _parent_scene.geom_name_map[prim_geom];
if (_size.X <= 0) _size.X = 0.01f;
if (_size.Y <= 0) _size.Y = 0.01f;
if (_size.Z <= 0) _size.Z = 0.01f;
// Cleanup of old prim geometry
if (_mesh != null)
{
// Cleanup meshing here
}
//kill body to rebuild
if (IsPhysical && Body != IntPtr.Zero)
{
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this);
}
}
else
{
disableBody();
}
}
if (d.SpaceQuery(m_targetSpace, prim_geom))
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
d.SpaceRemove(m_targetSpace, prim_geom);
}
// we don't need to do space calculation because the client sends a position update also.
// Construction of new prim
if (_parent_scene.needsMeshing(_pbs) && m_meshfailed == false)
{
float meshlod = _parent_scene.meshSculptLOD;
if (IsPhysical)
meshlod = _parent_scene.MeshSculptphysicalLOD;
// Don't need to re-enable body.. it's done in SetMesh
IMesh mesh = null;
try
{
if (_parent_scene.needsMeshing(_pbs))
mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, (int)LevelOfDetail.High, true);
}
catch
{
m_meshfailed = true;
}
//IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical);
CreateGeom(m_targetSpace, mesh);
}
else
{
_mesh = null;
CreateGeom(m_targetSpace, _mesh);
}
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == IntPtr.Zero && !childPrim)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
d.BodyEnable(Body);
}
_parent_scene.geom_name_map[prim_geom] = oldname;
changeSelectedStatus(timestamp);
if (childPrim)
{
if (_parent is OdePrim)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildSetGeom(this);
}
}
resetCollisionAccounting();
m_taintsize = _size;
}
public void changefloatonwater(float timestep)
{
m_collidesWater = m_taintCollidesWater;
if (prim_geom != IntPtr.Zero)
{
if (m_collidesWater)
{
m_collisionFlags |= CollisionCategories.Water;
}
else
{
m_collisionFlags &= ~CollisionCategories.Water;
}
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
}
public void changeshape(float timestamp)
{
string oldname = _parent_scene.geom_name_map[prim_geom];
// Cleanup of old prim geometry and Bodies
if (IsPhysical && Body != IntPtr.Zero)
{
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this);
}
}
else
{
disableBody();
}
}
// we don't need to do space calculation because the client sends a position update also.
if (_size.X <= 0) _size.X = 0.01f;
if (_size.Y <= 0) _size.Y = 0.01f;
if (_size.Z <= 0) _size.Z = 0.01f;
// Construction of new prim
if (_parent_scene.needsMeshing(_pbs) && m_meshfailed == false)
{
// Don't need to re-enable body.. it's done in SetMesh
float meshlod = _parent_scene.meshSculptLOD;
if (IsPhysical)
meshlod = _parent_scene.MeshSculptphysicalLOD;
try
{
IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, (int)LevelOfDetail.High, true);
CreateGeom(m_targetSpace, mesh);
}
catch
{
m_meshfailed = true;
}
// createmesh returns null when it doesn't mesh.
}
else
{
_mesh = null;
CreateGeom(m_targetSpace, null);
}
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
//myrot.W = _orientation.w;
myrot.W = _orientation.W;
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
d.GeomSetQuaternion(prim_geom, ref myrot);
//d.GeomBoxSetLengths(prim_geom, _size.X, _size.Y, _size.Z);
if (IsPhysical && Body == IntPtr.Zero)
{
// Re creates body on size.
// EnableBody also does setMass()
enableBody();
if (Body != IntPtr.Zero)
{
d.BodyEnable(Body);
}
}
_parent_scene.geom_name_map[prim_geom] = oldname;
changeSelectedStatus(timestamp);
if (childPrim)
{
if (_parent is OdePrim)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildSetGeom(this);
}
}
resetCollisionAccounting();
m_taintshape = false;
}
public void changeAddForce(float timestamp)
{
if (!m_isSelected)
{
lock (m_forcelist)
{
//m_log.Info("[PHYSICS]: dequeing forcelist");
if (IsPhysical)
{
Vector3 iforce = Vector3.Zero;
int i = 0;
try
{
for (i = 0; i < m_forcelist.Count; i++)
{
iforce = iforce + (m_forcelist[i] * 100);
}
}
catch (IndexOutOfRangeException)
{
m_forcelist = new List();
m_collisionscore = 0;
m_interpenetrationcount = 0;
m_taintforce = false;
return;
}
catch (ArgumentOutOfRangeException)
{
m_forcelist = new List();
m_collisionscore = 0;
m_interpenetrationcount = 0;
m_taintforce = false;
return;
}
d.BodyEnable(Body);
d.BodyAddForce(Body, iforce.X, iforce.Y, iforce.Z);
}
m_forcelist.Clear();
}
m_collisionscore = 0;
m_interpenetrationcount = 0;
}
m_taintforce = false;
}
public void changeSetTorque(float timestamp)
{
if (!m_isSelected)
{
if (IsPhysical && Body != IntPtr.Zero)
{
d.BodySetTorque(Body, m_taintTorque.X, m_taintTorque.Y, m_taintTorque.Z);
}
}
m_taintTorque = Vector3.Zero;
}
public void changeAddAngularForce(float timestamp)
{
if (!m_isSelected)
{
lock (m_angularforcelist)
{
//m_log.Info("[PHYSICS]: dequeing forcelist");
if (IsPhysical)
{
Vector3 iforce = Vector3.Zero;
for (int i = 0; i < m_angularforcelist.Count; i++)
{
iforce = iforce + (m_angularforcelist[i] * 100);
}
d.BodyEnable(Body);
d.BodyAddTorque(Body, iforce.X, iforce.Y, iforce.Z);
}
m_angularforcelist.Clear();
}
m_collisionscore = 0;
m_interpenetrationcount = 0;
}
m_taintaddangularforce = false;
}
private void changevelocity(float timestep)
{
if (!m_isSelected)
{
Thread.Sleep(20);
if (IsPhysical)
{
if (Body != IntPtr.Zero)
d.BodySetLinearVel(Body, m_taintVelocity.X, m_taintVelocity.Y, m_taintVelocity.Z);
}
//resetCollisionAccounting();
}
m_taintVelocity = Vector3.Zero;
}
public void UpdatePositionAndVelocity()
{
return; // moved to the Move () method
}
public d.Mass FromMatrix4(Matrix4 pMat, ref d.Mass obj)
{
obj.I.M00 = pMat[0, 0];
obj.I.M01 = pMat[0, 1];
obj.I.M02 = pMat[0, 2];
obj.I.M10 = pMat[1, 0];
obj.I.M11 = pMat[1, 1];
obj.I.M12 = pMat[1, 2];
obj.I.M20 = pMat[2, 0];
obj.I.M21 = pMat[2, 1];
obj.I.M22 = pMat[2, 2];
return obj;
}
public override void SubscribeEvents(int ms)
{
m_eventsubscription = ms;
_parent_scene.addCollisionEventReporting(this);
}
public override void UnSubscribeEvents()
{
_parent_scene.remCollisionEventReporting(this);
m_eventsubscription = 0;
}
public void AddCollisionEvent(uint CollidedWith, ContactPoint contact)
{
if (CollisionEventsThisFrame == null)
CollisionEventsThisFrame = new CollisionEventUpdate();
CollisionEventsThisFrame.AddCollider(CollidedWith, contact);
}
public void SendCollisions()
{
if (CollisionEventsThisFrame == null)
return;
base.SendCollisionUpdate(CollisionEventsThisFrame);
if (CollisionEventsThisFrame.m_objCollisionList.Count == 0)
CollisionEventsThisFrame = null;
else
CollisionEventsThisFrame = new CollisionEventUpdate();
}
public override bool SubscribedEvents()
{
if (m_eventsubscription > 0)
return true;
return false;
}
public static Matrix4 Inverse(Matrix4 pMat)
{
if (determinant3x3(pMat) == 0)
{
return Matrix4.Identity; // should probably throw an error. singluar matrix inverse not possible
}
return (Adjoint(pMat) / determinant3x3(pMat));
}
public static Matrix4 Adjoint(Matrix4 pMat)
{
Matrix4 adjointMatrix = new Matrix4();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
Matrix4SetValue(ref adjointMatrix, i, j, (float)(Math.Pow(-1, i + j) * (determinant3x3(Minor(pMat, i, j)))));
}
}
adjointMatrix = Transpose(adjointMatrix);
return adjointMatrix;
}
public static Matrix4 Minor(Matrix4 matrix, int iRow, int iCol)
{
Matrix4 minor = new Matrix4();
int m = 0, n = 0;
for (int i = 0; i < 4; i++)
{
if (i == iRow)
continue;
n = 0;
for (int j = 0; j < 4; j++)
{
if (j == iCol)
continue;
Matrix4SetValue(ref minor, m, n, matrix[i, j]);
n++;
}
m++;
}
return minor;
}
public static Matrix4 Transpose(Matrix4 pMat)
{
Matrix4 transposeMatrix = new Matrix4();
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
Matrix4SetValue(ref transposeMatrix, i, j, pMat[j, i]);
return transposeMatrix;
}
public static void Matrix4SetValue(ref Matrix4 pMat, int r, int c, float val)
{
switch (r)
{
case 0:
switch (c)
{
case 0:
pMat.M11 = val;
break;
case 1:
pMat.M12 = val;
break;
case 2:
pMat.M13 = val;
break;
case 3:
pMat.M14 = val;
break;
}
break;
case 1:
switch (c)
{
case 0:
pMat.M21 = val;
break;
case 1:
pMat.M22 = val;
break;
case 2:
pMat.M23 = val;
break;
case 3:
pMat.M24 = val;
break;
}
break;
case 2:
switch (c)
{
case 0:
pMat.M31 = val;
break;
case 1:
pMat.M32 = val;
break;
case 2:
pMat.M33 = val;
break;
case 3:
pMat.M34 = val;
break;
}
break;
case 3:
switch (c)
{
case 0:
pMat.M41 = val;
break;
case 1:
pMat.M42 = val;
break;
case 2:
pMat.M43 = val;
break;
case 3:
pMat.M44 = val;
break;
}
break;
}
}
private static float determinant3x3(Matrix4 pMat)
{
float det = 0;
float diag1 = pMat[0, 0] * pMat[1, 1] * pMat[2, 2];
float diag2 = pMat[0, 1] * pMat[2, 1] * pMat[2, 0];
float diag3 = pMat[0, 2] * pMat[1, 0] * pMat[2, 1];
float diag4 = pMat[2, 0] * pMat[1, 1] * pMat[0, 2];
float diag5 = pMat[2, 1] * pMat[1, 2] * pMat[0, 0];
float diag6 = pMat[2, 2] * pMat[1, 0] * pMat[0, 1];
det = diag1 + diag2 + diag3 - (diag4 + diag5 + diag6);
return det;
}
private static void DMassCopy(ref d.Mass src, ref d.Mass dst)
{
dst.c.W = src.c.W;
dst.c.X = src.c.X;
dst.c.Y = src.c.Y;
dst.c.Z = src.c.Z;
dst.mass = src.mass;
dst.I.M00 = src.I.M00;
dst.I.M01 = src.I.M01;
dst.I.M02 = src.I.M02;
dst.I.M10 = src.I.M10;
dst.I.M11 = src.I.M11;
dst.I.M12 = src.I.M12;
dst.I.M20 = src.I.M20;
dst.I.M21 = src.I.M21;
dst.I.M22 = src.I.M22;
}
public override void SetMaterial(int pMaterial)
{
m_material = pMaterial;
}
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.1f) pValue = 0.1f;
// m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.3f) pValue = 0.3f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.3f) pValue = 0.3f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
// case Vehicle.HOVER_EFFICIENCY:
// if (pValue < 0f) pValue = 0f;
// if (pValue > 1f) pValue = 1f;
// m_VhoverEfficiency = pValue;
// break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.1f) pValue = 0.1f;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.3f) pValue = 0.3f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.1f) pValue = 0.1f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.1f) pValue = 0.1f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue > 30f) pValue = 30f;
if (pValue < 0.1f) pValue = 0.1f;
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
UpdateAngDecay();
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
if (pValue < 0.1f) pValue = 0.1f;
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
UpdateLinDecay();
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue.X > 30f) pValue.X = 30f;
if (pValue.X < 0.1f) pValue.X = 0.1f;
if (pValue.Y > 30f) pValue.Y = 30f;
if (pValue.Y < 0.1f) pValue.Y = 0.1f;
if (pValue.Z > 30f) pValue.Z = 30f;
if (pValue.Z < 0.1f) pValue.Z = 0.1f;
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec
if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
if (m_angularMotorDirection.X < -12.56f) m_angularMotorDirection.X = -12.56f;
if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
if (m_angularMotorDirection.Y < -12.56f) m_angularMotorDirection.Y = -12.56f;
if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
if (m_angularMotorDirection.Z < -12.56f) m_angularMotorDirection.Z = -12.56f;
UpdateAngDecay();
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
if (pValue.X < 0.1f) pValue.X = 0.1f;
if (pValue.Y < 0.1f) pValue.Y = 0.1f;
if (pValue.Z < 0.1f) pValue.Z = 0.1f;
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting
UpdateLinDecay();
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessVehicleFlags(int pParam, bool remove)
{
if (remove)
{
m_flags &= ~((VehicleFlag)pParam);
}
else
{
m_flags |= (VehicleFlag)pParam;
}
}
internal void ProcessTypeChange(Vehicle pType)
{
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(30, 30, 30);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30.
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
// m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 100f;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
}
internal void Halt()
{ // Kill all motions, when non-physical
// m_linearMotorDirection = Vector3.Zero;
m_lLinMotorDVel = Vector3.Zero;
m_lLinObjectVel = Vector3.Zero;
m_wLinObjectVel = Vector3.Zero;
m_angularMotorDirection = Vector3.Zero;
m_lastAngularVelocity = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
_acceleration = Vector3.Zero;
}
private void UpdateLinDecay()
{
m_lLinMotorDVel.X = m_linearMotorDirection.X;
m_lLinMotorDVel.Y = m_linearMotorDirection.Y;
m_lLinMotorDVel.Z = m_linearMotorDirection.Z;
} // else let the motor decay on its own
private void UpdateAngDecay()
{
m_angularMotorDVel.X = m_angularMotorDirection.X;
m_angularMotorDVel.Y = m_angularMotorDirection.Y;
m_angularMotorDVel.Z = m_angularMotorDirection.Z;
} // else let the motor decay on its own
public void Move(float timestep)
{
float fx = 0;
float fy = 0;
float fz = 0;
Vector3 linvel; // velocity applied, including any reversal
// If geomCrossingFailuresBeforeOutofbounds is set to 0 in OpenSim.ini then phys objects bounce off region borders.
// This is a temp patch until proper region crossing is developed.
if (IsPhysical && (Body != IntPtr.Zero) && !m_isSelected && !childPrim && !m_outofBounds) // Only move root prims.
{
// Old public void UpdatePositionAndVelocity(), more accuratley calculated here
bool lastZeroFlag = _zeroFlag; // was it stopped
d.Vector3 vec = d.BodyGetPosition(Body);
Vector3 l_position = Vector3.Zero;
l_position.X = vec.X;
l_position.Y = vec.Y;
l_position.Z = vec.Z;
m_lastposition = _position;
_position = l_position;
d.Quaternion ori = d.BodyGetQuaternion(Body);
// Quaternion l_orientation = Quaternion.Identity;
_orientation.X = ori.X;
_orientation.Y = ori.Y;
_orientation.Z = ori.Z;
_orientation.W = ori.W;
m_lastorientation = _orientation;
d.Vector3 vel = d.BodyGetLinearVel(Body);
m_lastVelocity = _velocity;
_velocity.X = vel.X;
_velocity.Y = vel.Y;
_velocity.Z = vel.Z;
_acceleration = ((_velocity - m_lastVelocity) / timestep);
d.Vector3 torque = d.BodyGetTorque(Body);
_torque = new Vector3(torque.X, torque.Y, torque.Z);
if (_position.X < 0f || _position.X > _parent_scene.WorldExtents.X
|| _position.Y < 0f || _position.Y > _parent_scene.WorldExtents.Y
)
{
// we are outside current region
// clip position to a stop just outside region and stop it only internally
// do it only once using m_crossingfailures as control
_position.X = Util.Clip(l_position.X, -0.2f, _parent_scene.WorldExtents.X + .2f);
_position.Y = Util.Clip(l_position.Y, -0.2f, _parent_scene.WorldExtents.Y + .2f);
_position.Z = Util.Clip(l_position.Z, -100f, 50000f);
d.BodySetPosition(Body, _position.X, _position.Y, _position.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
m_outofBounds = true;
base.RequestPhysicsterseUpdate();
return;
}
base.RequestPhysicsterseUpdate();
if (l_position.Z < 0)
{
// This is so prim that get lost underground don't fall forever and suck up
//
// Sim resources and memory.
// Disables the prim's movement physics....
// It's a hack and will generate a console message if it fails.
//IsPhysical = false;
if (_parent == null) base.RaiseOutOfBounds(_position);
_acceleration.X = 0; // This stuff may stop client display but it has no
_acceleration.Y = 0; // effect on the object in phys engine!
_acceleration.Z = 0;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_lastVelocity = Vector3.Zero;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
if (_parent == null) base.RequestPhysicsterseUpdate();
m_throttleUpdates = false;
throttleCounter = 0;
_zeroFlag = true;
//outofBounds = true;
} // end neg Z check
// Is it moving?
/* if ((Math.Abs(m_lastposition.X - l_position.X) < 0.02)
&& (Math.Abs(m_lastposition.Y - l_position.Y) < 0.02)
&& (Math.Abs(m_lastposition.Z - l_position.Z) < 0.02) */
if ((Vector3.Mag(_velocity) < 0.01) && // moving very slowly
(Vector3.Mag(_velocity) < Vector3.Mag(m_lastVelocity)) && // decelerating
(1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, _orientation)) < 0.0001)) // spinning very slowly
{
_zeroFlag = true;
m_throttleUpdates = false;
}
else
{
//m_log.Debug(Math.Abs(m_lastposition.X - l_position.X).ToString());
_zeroFlag = false;
m_lastUpdateSent = false;
//m_throttleUpdates = false;
}
if (_zeroFlag)
{ // Its stopped
_velocity.X = 0.0f;
_velocity.Y = 0.0f;
// _velocity.Z = 0.0f;
_acceleration.X = 0;
_acceleration.Y = 0;
// _acceleration.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
// Stop it in the phys engine
d.BodySetLinearVel(Body, 0.0f, 0.0f, _velocity.Z);
d.BodySetAngularVel(Body, 0.0f, 0.0f, 0.0f);
d.BodySetForce(Body, 0f, 0f, 0f);
if (!m_lastUpdateSent)
{
m_throttleUpdates = false;
throttleCounter = 0;
if (_parent == null)
{
base.RequestPhysicsterseUpdate();
}
m_lastUpdateSent = true;
}
}
else
{ // Its moving
if (lastZeroFlag != _zeroFlag)
{
if (_parent == null)
{
base.RequestPhysicsterseUpdate();
}
}
m_lastUpdateSent = false;
if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate)
{
if (_parent == null)
{
base.RequestPhysicsterseUpdate();
}
}
else
{
throttleCounter++;
}
}
m_lastposition = l_position;
/// End UpdatePositionAndVelocity insert
// Rotation lock =====================================
if (m_rotateEnableUpdate)
{
// Snapshot current angles, set up Amotor(s)
m_rotateEnableUpdate = false;
m_rotateEnable = m_rotateEnableRequest;
//Console.WriteLine("RotEnable {0} = {1}",m_primName, m_rotateEnable);
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
//Console.WriteLine("Old Amotor Destroyed");
}
if (!m_rotateEnable.ApproxEquals(Vector3.One, 0.003f))
{ // not all are enabled
d.Quaternion r = d.BodyGetQuaternion(Body);
Quaternion locrot = new Quaternion(r.X, r.Y, r.Z, r.W);
// extract the axes vectors
Vector3 vX = new Vector3(1f, 0f, 0f);
Vector3 vY = new Vector3(0f, 1f, 0f);
Vector3 vZ = new Vector3(0f, 0f, 1f);
vX = vX * locrot;
vY = vY * locrot;
vZ = vZ * locrot;
// snapshot the current angle vectors
m_lockX = vX;
m_lockY = vY;
m_lockZ = vZ;
// m_lockRot = locrot;
Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero);
d.JointAttach(Amotor, Body, IntPtr.Zero);
d.JointSetAMotorMode(Amotor, 0); // User mode??
//Console.WriteLine("New Amotor Created for {0}", m_primName);
float axisnum = 3; // how many to lock
axisnum = (axisnum - (m_rotateEnable.X + m_rotateEnable.Y + m_rotateEnable.Z));
d.JointSetAMotorNumAxes(Amotor, (int)axisnum);
//Console.WriteLine("AxisNum={0}",(int)axisnum);
int i = 0;
if (m_rotateEnable.X == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, m_lockX.X, m_lockX.Y, m_lockX.Z);
//Console.WriteLine("AxisX {0} set to {1}", i, m_lockX);
i++;
}
if (m_rotateEnable.Y == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, m_lockY.X, m_lockY.Y, m_lockY.Z);
//Console.WriteLine("AxisY {0} set to {1}", i, m_lockY);
i++;
}
if (m_rotateEnable.Z == 0)
{
d.JointSetAMotorAxis(Amotor, i, 0, m_lockZ.X, m_lockZ.Y, m_lockZ.Z);
//Console.WriteLine("AxisZ {0} set to {1}", i, m_lockZ);
i++;
}
// These lowstops and high stops are effectively (no wiggle room)
d.JointSetAMotorParam(Amotor, (int)dParam.LowStop, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.LoStop3, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.LoStop2, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop3, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.HiStop2, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.Vel, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.Vel3, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.Vel2, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.StopCFM, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.StopCFM3, 0f);
d.JointSetAMotorParam(Amotor, (int)dParam.StopCFM2, 0f);
} // else none are locked
} // end Rotation Update
// VEHICLE processing ==========================================
if (m_type != Vehicle.TYPE_NONE)
{
// get body attitude
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
Quaternion irotq = Quaternion.Inverse(rotq);
// VEHICLE Linear Motion
d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame
Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z);
m_lLinObjectVel = vel_now * irotq;
if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate
{
if (Vector3.Mag(m_lLinMotorDVel) < 1.0f)
{
float decayfactor = m_linearMotorDecayTimescale / timestep;
Vector3 decayAmount = (m_lLinMotorDVel / decayfactor);
m_lLinMotorDVel -= decayAmount;
}
else
{
float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale)));
Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * timestep;
m_lLinMotorDVel -= decel;
}
if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
{
m_lLinMotorDVel = Vector3.Zero;
}
/* else
{
if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X;
if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y;
if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z;
} */
} // end linear motor decay
if ((!m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (!m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)))
{
if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body);
if (m_linearMotorTimescale < 300.0f)
{
Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel;
float linfactor = m_linearMotorTimescale / timestep;
Vector3 attackAmount = (attack_error / linfactor) * 1.3f;
m_lLinObjectVel += attackAmount;
}
if (m_linearFrictionTimescale.X < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.X / timestep;
float fricX = m_lLinObjectVel.X / fricfactor;
m_lLinObjectVel.X -= fricX;
}
if (m_linearFrictionTimescale.Y < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.Y / timestep;
float fricY = m_lLinObjectVel.Y / fricfactor;
m_lLinObjectVel.Y -= fricY;
}
if (m_linearFrictionTimescale.Z < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.Z / timestep;
float fricZ = m_lLinObjectVel.Z / fricfactor;
m_lLinObjectVel.Z -= fricZ;
}
}
m_wLinObjectVel = m_lLinObjectVel * rotq;
// Gravity and Buoyancy
Vector3 grav = Vector3.Zero;
if (m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _parent_scene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force
} // else its 1.0, no gravity.
// Hovering
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _parent_scene.GetWaterLevel() + m_VhoverHeight;
}
else if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// timestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
// Replace Vertical speed with correction figure if significant
if (Math.Abs(herr0) > 0.01f)
{
//? d.Mass objMass;
//? d.BodyGetMass(Body, out objMass);
m_wLinObjectVel.Z = -((herr0 * timestep * 50.0f) / m_VhoverTimescale);
//KF: m_VhoverEfficiency is not yet implemented
}
else
{
m_wLinObjectVel.Z = 0f;
}
}
else
{ // not hovering
if (m_wLinObjectVel.Z == 0f)
{ // Gravity rules
m_wLinObjectVel.Z = vel_now.Z;
} // else the motor has it
}
linvel = m_wLinObjectVel;
// Vehicle Linear Motion done =======================================
// Apply velocity
d.BodySetLinearVel(Body, linvel.X, linvel.Y, linvel.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
//if(frcount == 0) Console.WriteLine("Vel={0} Force={1}",linvel , grav);
// end MoveLinear()
// MoveAngular
/*
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body
*/
//if(frcount == 0) Console.WriteLine("MoveAngular ");
d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body);
Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z);
angObjectVel = angObjectVel * irotq; // ============ Converts to LOCAL rotation
//if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel);
// Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack.
float atk_decayfactor = 23.0f / (m_angularMotorTimescale * timestep);
m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor;
// Decay Angular Motor 2.
if (m_angularMotorDecayTimescale < 300.0f)
{
if (Vector3.Mag(m_angularMotorDVel) < 1.0f)
{
float decayfactor = (m_angularMotorDecayTimescale) / timestep;
Vector3 decayAmount = (m_angularMotorDVel / decayfactor);
m_angularMotorDVel -= decayAmount;
}
else
{
Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * timestep / m_angularMotorDecayTimescale;
m_angularMotorDVel -= decel;
}
if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
{
m_angularMotorDVel = Vector3.Zero;
}
else
{
if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X;
if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y;
if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z;
}
} // end decay angular motor
//if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel);
//if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel);
if ((!m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (!angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)))
{ // if motor or object have motion
if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body);
if (m_angularMotorTimescale < 300.0f)
{
Vector3 attack_error = m_angularMotorDVel - angObjectVel;
float angfactor = m_angularMotorTimescale / timestep;
Vector3 attackAmount = (attack_error / angfactor);
angObjectVel += attackAmount;
//if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount);
//if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel);
}
angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / timestep);
angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / timestep);
angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / timestep);
} // else no signif. motion
//if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel);
// Bank section tba
// Deflection section tba
//if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel);
/* // Rotation Axis Disables:
if (!m_angularEnable.ApproxEquals(Vector3.One, 0.003f))
{
if (m_angularEnable.X == 0)
angObjectVel.X = 0f;
if (m_angularEnable.Y == 0)
angObjectVel.Y = 0f;
if (m_angularEnable.Z == 0)
angObjectVel.Z = 0f;
}
*/
angObjectVel = angObjectVel * rotq; // ================ Converts to WORLD rotation
// Vertical attractor section
Vector3 vertattr = Vector3.Zero;
if (m_verticalAttractionTimescale < 300)
{
float VAservo = 1.0f / (m_verticalAttractionTimescale * timestep);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{ // Deflection from vertical exceeds 90-degrees. This method will ensure stable return to
// vertical, BUT for some reason a z-rotation is imparted to the object. TBI.
//Console.WriteLine("InvertFlip");
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
verterr *= 0.5f;
// verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt)
Vector3 xyav = angObjectVel;
xyav.Z = 0.0f;
if ((!xyav.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f))
{
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
vertattr.X = verterr.Y;
vertattr.Y = -verterr.X;
vertattr.Z = 0f;
//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);
// scaling appears better usingsquare-law
float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency;
float bounce = 1.0f - damped;
// 0 = crit damp, 1 = bouncy
float oavz = angObjectVel.Z; // retain z velocity
// time-scaled correction, which sums, therefore is bouncy:
angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce;
// damped, good @ < 90:
angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped);
angObjectVel.Z = oavz;
//if(frcount == 0) Console.WriteLine("VA+");
//Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel);
}
else
{
// else error is very small
angObjectVel.X = 0f;
angObjectVel.Y = 0f;
//if(frcount == 0) Console.WriteLine("VA0");
}
} // else vertical attractor is off
//if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel);
m_lastAngularVelocity = angObjectVel;
// apply Angular Velocity to body
d.BodySetAngularVel(Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
//if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity);
} // end VEHICLES
else
{
// Dyamics (NON-'VEHICLES') are dealt with here ================================================================
if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); // KF add 161009
/// Dynamics Buoyancy
//KF: m_buoyancy is set by llSetBuoyancy() and is for non-vehicle.
// m_buoyancy: (unlimited value) <0=Falls fast; 0=1g; 1=0g; >1 = floats up
// NB Prims in ODE are no subject to global gravity
// This should only affect gravity operations
float m_mass = CalculateMass();
// calculate z-force due togravity on object.
fz = _parent_scene.gravityz * (1.0f - m_buoyancy) * m_mass; // force = acceleration * mass
if ((m_usePID) && (m_PIDTau > 0.0f)) // Dynamics llMoveToTarget.
{
fz = 0; // llMoveToTarget ignores gravity.
// it also ignores mass of object, and any physical resting on it.
// Vector3 m_PIDTarget is where we are going
// float m_PIDTau is time to get there
fx = 0;
fy = 0;
d.Vector3 pos = d.BodyGetPosition(Body);
Vector3 error = new Vector3(
(m_PIDTarget.X - pos.X),
(m_PIDTarget.Y - pos.Y),
(m_PIDTarget.Z - pos.Z));
if (error.ApproxEquals(Vector3.Zero, 0.01f))
{ // Very close, Jump there and quit move
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
_target_velocity = Vector3.Zero;
d.BodySetLinearVel(Body, _target_velocity.X, _target_velocity.Y, _target_velocity.Z);
d.BodySetForce(Body, 0f, 0f, 0f);
}
else
{
float scale = 50.0f * timestep / m_PIDTau;
if ((error.ApproxEquals(Vector3.Zero, 0.5f)) && (_target_velocity != Vector3.Zero))
{
// Nearby, quit update of velocity
}
else
{ // Far, calc damped velocity
_target_velocity = error * scale;
}
d.BodySetLinearVel(Body, _target_velocity.X, _target_velocity.Y, _target_velocity.Z);
}
} // end PID MoveToTarget
/// Dynamics Hover ===================================================================================
// Hover PID Controller can only run if the PIDcontroller is not in use.
if (m_useHoverPID && !m_usePID)
{
//Console.WriteLine("Hover " + m_primName);
// If we're using the PID controller, then we have no gravity
fz = (-1 * _parent_scene.gravityz) * m_mass;
// no lock; for now it's only called from within Simulate()
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
if ((m_PIDTau < 1))
{
PID_G = PID_G / m_PIDTau;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
// Where are we, and where are we headed?
d.Vector3 pos = d.BodyGetPosition(Body);
// d.Vector3 vel = d.BodyGetLinearVel(Body);
// Non-Vehicles have a limited set of Hover options.
// determine what our target height really is based on HoverType
switch (m_PIDHoverType)
{
case PIDHoverType.Ground:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
break;
case PIDHoverType.GroundAndWater:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_waterHeight = _parent_scene.GetWaterLevel();
if (m_groundHeight > m_waterHeight)
{
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
}
else
{
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
}
break;
} // end switch (m_PIDHoverType)
_target_velocity =
new Vector3(0.0f, 0.0f,
(m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep)
);
// if velocity is zero, use position control; otherwise, velocity control
if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
d.Vector3 dlinvel = vel;
d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight);
d.BodySetLinearVel(Body, dlinvel.X, dlinvel.Y, dlinvel.Z);
d.BodyAddForce(Body, 0, 0, fz);
//KF this prevents furthur motions return;
}
else
{
_zeroFlag = false;
// We're flying and colliding with something
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
} // end m_useHoverPID && !m_usePID
/// Dynamics Apply Forces ===================================================================================
fx *= m_mass;
fy *= m_mass;
//fz *= m_mass;
fx += m_force.X;
fy += m_force.Y;
fz += m_force.Z;
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
//m_taintdisable = true;
//base.RaiseOutOfBounds(Position);
//d.BodySetLinearVel(Body, fx, fy, 0f);
if (!d.BodyIsEnabled(Body))
{
// A physical body at rest on a surface will auto-disable after a while,
// this appears to re-enable it incase the surface it is upon vanishes,
// and the body should fall again.
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetForce(Body, 0f, 0f, 0f);
enableBodySoft();
}
// 35x10 = 350n times the mass per second applied maximum.
float nmax = 35f * m_mass;
float nmin = -35f * m_mass;
if (fx > nmax)
fx = nmax;
if (fx < nmin)
fx = nmin;
if (fy > nmax)
fy = nmax;
if (fy < nmin)
fy = nmin;
d.BodyAddForce(Body, fx, fy, fz);
} // end apply forces
} // end Vehicle/Dynamics
/// RotLookAt / LookAt =================================================================================
if (m_useAPID)
{
// RotLookAt, apparently overrides all other rotation sources. Inputs:
// Quaternion m_APIDTarget
// float m_APIDStrength // From SL experiments, this is the time to get there
// float m_APIDDamping // From SL experiments, this is damping, 1.0 = damped, 0.1 = wobbly
// Also in SL the mass of the object has no effect on time to get there.
// Factors:
// get present body rotation
float limit = 1.0f;
float rscaler = 50f; // adjusts rotation damping time
float lscaler = 10f; // adjusts linear damping time in llLookAt
float RLAservo = 0f;
Vector3 diff_axis;
float diff_angle;
d.Quaternion rot = d.BodyGetQuaternion(Body); // prim present rotation
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
Quaternion rtarget = new Quaternion();
if (m_APIDTarget.W == -99.9f)
{
// this is really a llLookAt(), x,y,z is the target vector
Vector3 target = new Vector3(m_APIDTarget.X, m_APIDTarget.Y, m_APIDTarget.Z);
Vector3 ospin = new Vector3(1.0f, 0.0f, 0.0f) * rotq;
Vector3 error = new Vector3(0.0f, 0.0f, 0.0f);
float twopi = 2.0f * (float)Math.PI;
Vector3 dir = target - _position;
dir.Normalize();
float tzrot = (float)Math.Atan2(dir.Y, dir.X);
float txy = (float)Math.Sqrt((dir.X * dir.X) + (dir.Y * dir.Y));
float terot = (float)Math.Atan2(dir.Z, txy);
float ozrot = (float)Math.Atan2(ospin.Y, ospin.X);
float oxy = (float)Math.Sqrt((ospin.X * ospin.X) + (ospin.Y * ospin.Y));
float oerot = (float)Math.Atan2(ospin.Z, oxy);
float ra = 2.0f * ((rotq.W * rotq.X) + (rotq.Y * rotq.Z));
float rb = 1.0f - 2.0f * ((rotq.Y * rotq.Y) + (rotq.X * rotq.X));
float roll = (float)Math.Atan2(ra, rb);
float errorz = tzrot - ozrot;
if (errorz > (float)Math.PI) errorz -= twopi;
else if (errorz < -(float)Math.PI) errorz += twopi;
float errory = oerot - terot;
if (errory > (float)Math.PI) errory -= twopi;
else if (errory < -(float)Math.PI) errory += twopi;
diff_angle = Math.Abs(errorz) + Math.Abs(errory) + Math.Abs(roll);
if (diff_angle > 0.01f * m_APIDdamper)
{
m_APIDdamper = 1.0f;
RLAservo = timestep / m_APIDStrength * rscaler;
errorz *= RLAservo;
errory *= RLAservo;
error.X = -roll * 8.0f;
error.Y = errory;
error.Z = errorz;
error *= rotq;
d.BodySetAngularVel(Body, error.X, error.Y, error.Z);
}
else
{
d.BodySetAngularVel(Body, 0.0f, 0.0f, 0.0f);
m_APIDdamper = 2.0f;
}
}
else
{
// this is a llRotLookAt()
rtarget = m_APIDTarget;
Quaternion rot_diff = Quaternion.Inverse(rotq) * rtarget; // difference to desired rot
rot_diff.GetAxisAngle(out diff_axis, out diff_angle); // convert to axis to point at & error angle
//if(frcount == 0) Console.WriteLine("axis {0} angle {1}",diff_axis * 57.3f, diff_angle);
// diff_axis.Normalize(); it already is!
if (diff_angle > 0.01f * m_APIDdamper) // diff_angle is always +ve // if there is enough error
{
m_APIDdamper = 1.0f;
Vector3 rotforce = new Vector3(diff_axis.X, diff_axis.Y, diff_axis.Z);
rotforce = rotforce * rotq;
if (diff_angle > limit) diff_angle = limit; // cap the rotate rate
RLAservo = timestep / m_APIDStrength * lscaler;
rotforce = rotforce * RLAservo * diff_angle;
d.BodySetAngularVel(Body, rotforce.X, rotforce.Y, rotforce.Z);
//Console.WriteLine("axis= " + diff_axis + " angle= " + diff_angle + "servo= " + RLAservo);
}
else
{ // close enough
d.BodySetAngularVel(Body, 0.0f, 0.0f, 0.0f);
m_APIDdamper = 2.0f;
}
} // end llLookAt/llRotLookAt
//if(frcount == 0) Console.WriteLine("mass= " + m_mass + " servo= " + RLAservo + " angle= " + diff_angle);
} // end m_useAPID
} // end root prims
} // end Move()
} // end class
}