/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. * */ /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: * ODEPrim.cs contains methods dealing with Prim editing, Prim * characteristics and Kinetic motion. * ODEDynamics.cs contains methods dealing with Prim Physical motion * (dynamics) and the associated settings. Old Linear and angular * motors for dynamic motion have been replace with MoveLinear() * and MoveAngular(); 'Physical' is used only to switch ODE dynamic * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_ is to * switch between 'VEHICLE' parameter use and general dynamics * settings use. */ using System; using System.Collections.Generic; using System.Reflection; using System.Runtime.InteropServices; using log4net; using OpenMetaverse; using Ode.NET; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; namespace OpenSim.Region.Physics.OdePlugin { public class ODEDynamics { public Vehicle Type { get { return m_type; } } public IntPtr Body { get { return m_body; } } private int frcount = 0; // Used to limit dynamics debug output to // every 100th frame // private OdeScene m_parentScene = null; private IntPtr m_body = IntPtr.Zero; // private IntPtr m_jointGroup = IntPtr.Zero; // private IntPtr m_aMotor = IntPtr.Zero; // Vehicle properties private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: // HOVER_TERRAIN_ONLY // HOVER_GLOBAL_HEIGHT // NO_DEFLECTION_UP // HOVER_WATER_ONLY // HOVER_UP_ONLY // LIMIT_MOTOR_UP // LIMIT_ROLL_ONLY // Linear properties private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity //requested by LSL private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity //Angular properties private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor private int m_angularMotorApply = 0; // application frame counter private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body //Deflection properties // private float m_angularDeflectionEfficiency = 0; // private float m_angularDeflectionTimescale = 0; // private float m_linearDeflectionEfficiency = 0; // private float m_linearDeflectionTimescale = 0; //Banking properties // private float m_bankingEfficiency = 0; // private float m_bankingMix = 0; // private float m_bankingTimescale = 0; //Hover and Buoyancy properties private float m_VhoverHeight = 0f; // private float m_VhoverEfficiency = 0f; private float m_VhoverTimescale = 0f; private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle. // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. //Attractor properties private float m_verticalAttractionEfficiency = 1.0f; // damped private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) { switch (pParam) { case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_angularDeflectionEfficiency = pValue; break; case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_angularDeflectionTimescale = pValue; break; case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_angularMotorDecayTimescale = pValue; break; case Vehicle.ANGULAR_MOTOR_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_angularMotorTimescale = pValue; break; case Vehicle.BANKING_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_bankingEfficiency = pValue; break; case Vehicle.BANKING_MIX: if (pValue < 0.01f) pValue = 0.01f; // m_bankingMix = pValue; break; case Vehicle.BANKING_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_bankingTimescale = pValue; break; case Vehicle.BUOYANCY: if (pValue < -1f) pValue = -1f; if (pValue > 1f) pValue = 1f; m_VehicleBuoyancy = pValue; break; // case Vehicle.HOVER_EFFICIENCY: // if (pValue < 0f) pValue = 0f; // if (pValue > 1f) pValue = 1f; // m_VhoverEfficiency = pValue; // break; case Vehicle.HOVER_HEIGHT: m_VhoverHeight = pValue; break; case Vehicle.HOVER_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_VhoverTimescale = pValue; break; case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: if (pValue < 0.01f) pValue = 0.01f; // m_linearDeflectionEfficiency = pValue; break; case Vehicle.LINEAR_DEFLECTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; // m_linearDeflectionTimescale = pValue; break; case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_linearMotorDecayTimescale = pValue; break; case Vehicle.LINEAR_MOTOR_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_linearMotorTimescale = pValue; break; case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable if (pValue > 1.0f) pValue = 1.0f; m_verticalAttractionEfficiency = pValue; break; case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: if (pValue < 0.01f) pValue = 0.01f; m_verticalAttractionTimescale = pValue; break; // These are vector properties but the engine lets you use a single float value to // set all of the components to the same value case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue, pValue, pValue); m_angularMotorApply = 10; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue, pValue, pValue); UpdateLinDecay(); break; case Vehicle.LINEAR_MOTOR_OFFSET: // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); break; } }//end ProcessFloatVehicleParam internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) { switch (pParam) { case Vehicle.ANGULAR_FRICTION_TIMESCALE: m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.ANGULAR_MOTOR_DIRECTION: m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // Limit requested angular speed to 2 rps= 4 pi rads/sec if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; m_angularMotorApply = 10; break; case Vehicle.LINEAR_FRICTION_TIMESCALE: m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); break; case Vehicle.LINEAR_MOTOR_DIRECTION: m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting UpdateLinDecay(); break; case Vehicle.LINEAR_MOTOR_OFFSET: // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); break; } }//end ProcessVectorVehicleParam internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) { switch (pParam) { case Vehicle.REFERENCE_FRAME: // m_referenceFrame = pValue; break; } }//end ProcessRotationVehicleParam internal void ProcessFlagsVehicleSet(int flags) { m_flags |= (VehicleFlag)flags; } internal void ProcessFlagsVehicleRemove(int flags) { m_flags &= ~((VehicleFlag)flags); } internal void ProcessTypeChange(Vehicle pType) { // Set Defaults For Type m_type = pType; switch (pType) { case Vehicle.TYPE_SLED: m_linearFrictionTimescale = new Vector3(30, 1, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // m_lLinMotorVel = Vector3.Zero; m_linearMotorTimescale = 1000; m_linearMotorDecayTimescale = 120; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1000; m_angularMotorDecayTimescale = 120; m_VhoverHeight = 0; // m_VhoverEfficiency = 1; m_VhoverTimescale = 10; m_VehicleBuoyancy = 0; // m_linearDeflectionEfficiency = 1; // m_linearDeflectionTimescale = 1; // m_angularDeflectionEfficiency = 1; // m_angularDeflectionTimescale = 1000; // m_bankingEfficiency = 0; // m_bankingMix = 1; // m_bankingTimescale = 10; // m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); break; case Vehicle.TYPE_CAR: m_linearFrictionTimescale = new Vector3(100, 2, 1000); m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // m_lLinMotorVel = Vector3.Zero; m_linearMotorTimescale = 1; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 1; m_angularMotorDecayTimescale = 0.8f; m_VhoverHeight = 0; // m_VhoverEfficiency = 0; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; // // m_linearDeflectionEfficiency = 1; // // m_linearDeflectionTimescale = 2; // // m_angularDeflectionEfficiency = 0; // m_angularDeflectionTimescale = 10; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 10f; // m_bankingEfficiency = -0.2f; // m_bankingMix = 1; // m_bankingTimescale = 1; // m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); break; case Vehicle.TYPE_BOAT: m_linearFrictionTimescale = new Vector3(10, 3, 2); m_angularFrictionTimescale = new Vector3(10,10,10); // m_lLinMotorVel = Vector3.Zero; m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_VhoverHeight = 0; // m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 2; m_VehicleBuoyancy = 1; // m_linearDeflectionEfficiency = 0.5f; // m_linearDeflectionTimescale = 3; // m_angularDeflectionEfficiency = 0.5f; // m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 0.5f; m_verticalAttractionTimescale = 5f; // m_bankingEfficiency = -0.3f; // m_bankingMix = 0.8f; // m_bankingTimescale = 1; // m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.LIMIT_MOTOR_UP); break; case Vehicle.TYPE_AIRPLANE: m_linearFrictionTimescale = new Vector3(200, 10, 5); m_angularFrictionTimescale = new Vector3(20, 20, 20); // m_lLinMotorVel = Vector3.Zero; m_linearMotorTimescale = 2; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 4; m_angularMotorDecayTimescale = 4; m_VhoverHeight = 0; // m_VhoverEfficiency = 0.5f; m_VhoverTimescale = 1000; m_VehicleBuoyancy = 0; // m_linearDeflectionEfficiency = 0.5f; // m_linearDeflectionTimescale = 3; // m_angularDeflectionEfficiency = 1; // m_angularDeflectionTimescale = 2; m_verticalAttractionEfficiency = 0.9f; m_verticalAttractionTimescale = 2f; // m_bankingEfficiency = 1; // m_bankingMix = 0.7f; // m_bankingTimescale = 2; // m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); break; case Vehicle.TYPE_BALLOON: m_linearFrictionTimescale = new Vector3(5, 5, 5); m_angularFrictionTimescale = new Vector3(10, 10, 10); m_linearMotorTimescale = 5; m_linearMotorDecayTimescale = 60; m_angularMotorDirection = Vector3.Zero; m_angularMotorTimescale = 6; m_angularMotorDecayTimescale = 10; m_VhoverHeight = 5; // m_VhoverEfficiency = 0.8f; m_VhoverTimescale = 10; m_VehicleBuoyancy = 1; // m_linearDeflectionEfficiency = 0; // m_linearDeflectionTimescale = 5; // m_angularDeflectionEfficiency = 0; // m_angularDeflectionTimescale = 5; m_verticalAttractionEfficiency = 1f; m_verticalAttractionTimescale = 100f; // m_bankingEfficiency = 0; // m_bankingMix = 0.7f; // m_bankingTimescale = 5; // m_referenceFrame = Quaternion.Identity; m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); break; } }//end SetDefaultsForType internal void Enable(IntPtr pBody, OdeScene pParentScene) { if (m_type == Vehicle.TYPE_NONE) return; m_body = pBody; } internal void Step(float pTimestep, OdeScene pParentScene) { if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE) return; frcount++; // used to limit debug comment output if (frcount > 24) frcount = 0; MoveLinear(pTimestep, pParentScene); MoveAngular(pTimestep); }// end Step internal void Halt() { // Kill all motions, when non-physical m_linearMotorDirection = Vector3.Zero; m_lLinMotorDVel = Vector3.Zero; m_lLinObjectVel = Vector3.Zero; m_wLinObjectVel = Vector3.Zero; m_angularMotorDirection = Vector3.Zero; m_angularMotorVelocity = Vector3.Zero; m_lastAngularVelocity = Vector3.Zero; } private void UpdateLinDecay() { if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X; if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y; if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z; } // else let the motor decay on its own private void MoveLinear(float pTimestep, OdeScene _pParentScene) { Vector3 acceleration = new Vector3(0f, 0f, 0f); d.Quaternion rot = d.BodyGetQuaternion(Body); Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object Quaternion irotq = Quaternion.Inverse(rotq); d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z); acceleration = vel_now - m_wLinObjectVel; m_lLinObjectVel = vel_now * irotq; if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate { if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f) { float decayfactor = m_linearMotorDecayTimescale/pTimestep; Vector3 decayAmount = (m_lLinMotorDVel/decayfactor); m_lLinMotorDVel -= decayAmount; } else { float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale))); Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep; m_lLinMotorDVel -= decel; } if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) { m_lLinMotorDVel = Vector3.Zero; } else { if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X; if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y; if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z; } } if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) { if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); if (m_linearMotorTimescale < 300.0f) { Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel; float linfactor = m_linearMotorTimescale/pTimestep; Vector3 attackAmount = (attack_error/linfactor) * 1.3f; m_lLinObjectVel += attackAmount; } if (m_linearFrictionTimescale.X < 300.0f) { float fricfactor = m_linearFrictionTimescale.X / pTimestep; float fricX = m_lLinObjectVel.X / fricfactor; m_lLinObjectVel.X -= fricX; } if (m_linearFrictionTimescale.Y < 300.0f) { float fricfactor = m_linearFrictionTimescale.Y / pTimestep; float fricY = m_lLinObjectVel.Y / fricfactor; m_lLinObjectVel.Y -= fricY; } if (m_linearFrictionTimescale.Z < 300.0f) { float fricfactor = m_linearFrictionTimescale.Z / pTimestep; float fricZ = m_lLinObjectVel.Z / fricfactor; m_lLinObjectVel.Z -= fricZ; } } m_wLinObjectVel = m_lLinObjectVel * rotq; // Add Gravity and Buoyancy Vector3 grav = Vector3.Zero; if(m_VehicleBuoyancy < 1.0f) { // There is some gravity, make a gravity force vector // that is applied after object velocity. d.Mass objMass; d.BodyGetMass(Body, out objMass); // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force } // else its 1.0, no gravity. // Check if hovering if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) { // We should hover, get the target height d.Vector3 pos = d.BodyGetPosition(Body); if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) { m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; } else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) { m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; } else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) { m_VhoverTargetHeight = m_VhoverHeight; } if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) { // If body is aready heigher, use its height as target height if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; } // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped // m_VhoverTimescale = 0f; // time to acheive height // pTimestep is time since last frame,in secs float herr0 = pos.Z - m_VhoverTargetHeight; // Replace Vertical speed with correction figure if significant if(Math.Abs(herr0) > 0.01f ) { d.Mass objMass; d.BodyGetMass(Body, out objMass); m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale); //KF: m_VhoverEfficiency is not yet implemented } else { m_wLinObjectVel.Z = 0f; } } else { // not hovering, Gravity rules m_wLinObjectVel.Z = vel_now.Z; //if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z); } // Apply velocity d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z); // apply gravity force d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); //if(frcount == 0) Console.WriteLine("Grav {0}", grav); } // end MoveLinear() private void MoveAngular(float pTimestep) { /* private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor private int m_angularMotorApply = 0; // application frame counter private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down) private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body */ //if(frcount == 0) Console.WriteLine("MoveAngular "); // Get what the body is doing, this includes 'external' influences d.Vector3 angularVelocity = d.BodyGetAngularVel(Body); // Vector3 angularVelocity = Vector3.Zero; if (m_angularMotorApply > 0) { // ramp up to new value // current velocity += error / ( time to get there / step interval ) // requested speed - last motor speed m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected // velocity may still be acheived. } else { // no motor recently applied, keep the body velocity /* m_angularMotorVelocity.X = angularVelocity.X; m_angularMotorVelocity.Y = angularVelocity.Y; m_angularMotorVelocity.Z = angularVelocity.Z; */ // and decay the velocity m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); } // end motor section // Vertical attractor section Vector3 vertattr = Vector3.Zero; if(m_verticalAttractionTimescale < 300) { float VAservo = 0.0167f / (m_verticalAttractionTimescale * pTimestep); // get present body rotation d.Quaternion rot = d.BodyGetQuaternion(Body); Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // make a vector pointing up Vector3 verterr = Vector3.Zero; verterr.Z = 1.0f; // rotate it to Body Angle verterr = verterr * rotq; // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. if (verterr.Z < 0.0f) { verterr.X = 2.0f - verterr.X; verterr.Y = 2.0f - verterr.Y; } // Error is 0 (no error) to +/- 2 (max error) // scale it by VAservo verterr = verterr * VAservo; //if(frcount == 0) Console.WriteLine("VAerr=" + verterr); // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. vertattr.X = verterr.Y; vertattr.Y = - verterr.X; vertattr.Z = 0f; // scaling appears better usingsquare-law float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); vertattr.X += bounce * angularVelocity.X; vertattr.Y += bounce * angularVelocity.Y; } // else vertical attractor is off // m_lastVertAttractor = vertattr; // Bank section tba // Deflection section tba // Sum velocities m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // tba: + bank + deflection if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) { if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); } else { m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. } // apply friction Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep); m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; // Apply to the body d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); } //end MoveAngular } }