/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Reflection; using System.Collections.Generic; using System.Xml; using log4net; using OMV = OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenSim.Region.Physics.ConvexDecompositionDotNet; namespace OpenSim.Region.Physics.BulletSPlugin { [Serializable] public sealed class BSPrim : PhysicsActor { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static readonly string LogHeader = "[BULLETS PRIM]"; private IMesh _mesh; private PrimitiveBaseShape _pbs; private ShapeData.PhysicsShapeType _shapeType; private ulong _meshKey; private ulong _hullKey; private List<ConvexResult> _hulls; private BSScene _scene; private String _avName; private uint _localID = 0; // _size is what the user passed. _scale is what we pass to the physics engine with the mesh. // Often _scale is unity because the meshmerizer will apply _size when creating the mesh. private OMV.Vector3 _size; // the multiplier for each mesh dimension as passed by the user private OMV.Vector3 _scale; // the multiplier for each mesh dimension for the mesh as created by the meshmerizer private bool _stopped; private bool _grabbed; private bool _isSelected; private bool _isVolumeDetect; private OMV.Vector3 _position; private float _mass; private float _density; private OMV.Vector3 _force; private OMV.Vector3 _velocity; private OMV.Vector3 _torque; private float _collisionScore; private OMV.Vector3 _acceleration; private OMV.Quaternion _orientation; private int _physicsActorType; private bool _isPhysical; private bool _flying; private float _friction; private float _restitution; private bool _setAlwaysRun; private bool _throttleUpdates; private bool _isColliding; private bool _collidingGround; private bool _collidingObj; private bool _floatOnWater; private OMV.Vector3 _rotationalVelocity; private bool _kinematic; private float _buoyancy; private OMV.Vector3 _angularVelocity; private List<BSPrim> _childrenPrims; private BSPrim _parentPrim; private int _subscribedEventsMs = 0; private int _lastCollisionTime = 0; long _collidingStep; long _collidingGroundStep; private BSDynamics _vehicle; private OMV.Vector3 _PIDTarget; private bool _usePID; private float _PIDTau; private bool _useHoverPID; private float _PIDHoverHeight; private PIDHoverType _PIDHoverType; private float _PIDHoverTao; public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size, OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical) { // m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID); _localID = localID; _avName = primName; _scene = parent_scene; _position = pos; _size = size; _scale = new OMV.Vector3(1f, 1f, 1f); // the scale will be set by CreateGeom depending on object type _orientation = rotation; _buoyancy = 1f; _velocity = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; _angularVelocity = OMV.Vector3.Zero; _hullKey = 0; _meshKey = 0; _pbs = pbs; _isPhysical = pisPhysical; _isVolumeDetect = false; _subscribedEventsMs = 0; _friction = _scene.Params.defaultFriction; // TODO: compute based on object material _density = _scene.Params.defaultDensity; // TODO: compute based on object material _restitution = _scene.Params.defaultRestitution; _parentPrim = null; // not a child or a parent _vehicle = new BSDynamics(this); // add vehicleness _childrenPrims = new List<BSPrim>(); if (_isPhysical) _mass = CalculateMass(); else _mass = 0f; // do the actual object creation at taint time _scene.TaintedObject(delegate() { RecreateGeomAndObject(); }); } // called when this prim is being destroyed and we should free all the resources public void Destroy() { // m_log.DebugFormat("{0}: Destroy", LogHeader); // Undo any vehicle properties _vehicle.ProcessTypeChange(Vehicle.TYPE_NONE); _scene.RemoveVehiclePrim(this); // just to make sure _scene.TaintedObject(delegate() { // everything in the C# world will get garbage collected. Tell the C++ world to free stuff. BulletSimAPI.DestroyObject(_scene.WorldID, _localID); }); } public override bool Stopped { get { return _stopped; } } public override OMV.Vector3 Size { get { return _size; } set { _size = value; _scene.TaintedObject(delegate() { if (_isPhysical) _mass = CalculateMass(); // changing size changes the mass BulletSimAPI.SetObjectScaleMass(_scene.WorldID, _localID, _scale, _mass, _isPhysical); RecreateGeomAndObject(); }); } } public override PrimitiveBaseShape Shape { set { _pbs = value; _scene.TaintedObject(delegate() { if (_isPhysical) _mass = CalculateMass(); // changing the shape changes the mass RecreateGeomAndObject(); }); } } public override uint LocalID { set { _localID = value; } get { return _localID; } } public override bool Grabbed { set { _grabbed = value; } } public override bool Selected { set { _isSelected = value; _scene.TaintedObject(delegate() { SetObjectDynamic(); }); } } public override void CrossingFailure() { return; } // link me to the specified parent public override void link(PhysicsActor obj) { BSPrim parent = (BSPrim)obj; // m_log.DebugFormat("{0}: link {1}/{2} to {3}", LogHeader, _avName, _localID, obj.LocalID); // TODO: decide if this parent checking needs to happen at taint time if (_parentPrim == null) { if (parent != null) { // I don't have a parent so I am joining a linkset parent.AddChildToLinkset(this); } } else { // I already have a parent, is parenting changing? if (parent != _parentPrim) { if (parent == null) { // we are being removed from a linkset _parentPrim.RemoveChildFromLinkset(this); } else { // asking to reparent a prim should not happen m_log.ErrorFormat("{0}: Reparenting a prim. ", LogHeader); } } } return; } // delink me from my linkset public override void delink() { // TODO: decide if this parent checking needs to happen at taint time // Race condition here: if link() and delink() in same simulation tick, the delink will not happen // m_log.DebugFormat("{0}: delink {1}/{2}", LogHeader, _avName, _localID); if (_parentPrim != null) { _parentPrim.RemoveChildFromLinkset(this); } return; } // I am the root of a linkset and a new child is being added public void AddChildToLinkset(BSPrim pchild) { BSPrim child = pchild; _scene.TaintedObject(delegate() { if (!_childrenPrims.Contains(child)) { _childrenPrims.Add(child); child.ParentPrim = this; // the child has gained a parent RecreateGeomAndObject(); // rebuild my shape with the new child added } }); return; } // I am the root of a linkset and one of my children is being removed. // Safe to call even if the child is not really in my linkset. public void RemoveChildFromLinkset(BSPrim pchild) { BSPrim child = pchild; _scene.TaintedObject(delegate() { if (_childrenPrims.Contains(child)) { BulletSimAPI.RemoveConstraint(_scene.WorldID, child.LocalID, this.LocalID); _childrenPrims.Remove(child); child.ParentPrim = null; // the child has lost its parent RecreateGeomAndObject(); // rebuild my shape with the child removed } else { m_log.ErrorFormat("{0}: Asked to remove child from linkset that was not in linkset"); } }); return; } public BSPrim ParentPrim { set { _parentPrim = value; } } // return true if we are the root of a linkset (there are children to manage) public bool IsRootOfLinkset { get { return (_parentPrim == null && _childrenPrims.Count != 0); } } // Set motion values to zero. // Do it to the properties so the values get set in the physics engine. // Push the setting of the values to the viewer. private void ZeroMotion() { Velocity = OMV.Vector3.Zero; _acceleration = OMV.Vector3.Zero; RotationalVelocity = OMV.Vector3.Zero; base.RequestPhysicsterseUpdate(); } public override void LockAngularMotion(OMV.Vector3 axis) { return; } public override OMV.Vector3 Position { get { // don't do the following GetObjectPosition because this function is called a zillion times // _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID); return _position; } set { _position = value; _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectTranslation(_scene.WorldID, _localID, _position, _orientation); // m_log.DebugFormat("{0}: setPosition: id={1}, position={2}", LogHeader, _localID, _position); }); } } public override float Mass { get { return _mass; } } public override OMV.Vector3 Force { get { return _force; } set { _force = value; _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectForce(_scene.WorldID, _localID, _force); }); } } public override int VehicleType { get { return (int)_vehicle.Type; // if we are a vehicle, return that type } set { Vehicle type = (Vehicle)value; _vehicle.ProcessTypeChange(type); _scene.TaintedObject(delegate() { if (type == Vehicle.TYPE_NONE) { _scene.RemoveVehiclePrim(this); } else { // make it so the scene will call us each tick to do vehicle things _scene.AddVehiclePrim(this); } return; }); } } public override void VehicleFloatParam(int param, float value) { _vehicle.ProcessFloatVehicleParam((Vehicle)param, value); } public override void VehicleVectorParam(int param, OMV.Vector3 value) { _vehicle.ProcessVectorVehicleParam((Vehicle)param, value); } public override void VehicleRotationParam(int param, OMV.Quaternion rotation) { _vehicle.ProcessRotationVehicleParam((Vehicle)param, rotation); } public override void VehicleFlags(int param, bool remove) { _vehicle.ProcessVehicleFlags(param, remove); } // Called each simulation step to advance vehicle characteristics public void StepVehicle(float timeStep) { _vehicle.Step(timeStep, _scene); } // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more public override void SetVolumeDetect(int param) { bool newValue = (param != 0); if (_isVolumeDetect != newValue) { _isVolumeDetect = newValue; _scene.TaintedObject(delegate() { SetObjectDynamic(); }); } return; } public override OMV.Vector3 GeometricCenter { get { return OMV.Vector3.Zero; } } public override OMV.Vector3 CenterOfMass { get { return OMV.Vector3.Zero; } } public override OMV.Vector3 Velocity { get { return _velocity; } set { _velocity = value; _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectVelocity(_scene.WorldID, LocalID, _velocity); }); } } public override OMV.Vector3 Torque { get { return _torque; } set { _torque = value; } } public override float CollisionScore { get { return _collisionScore; } set { _collisionScore = value; } } public override OMV.Vector3 Acceleration { get { return _acceleration; } } public override OMV.Quaternion Orientation { get { return _orientation; } set { _orientation = value; // m_log.DebugFormat("{0}: set orientation: id={1}, ori={2}", LogHeader, LocalID, _orientation); _scene.TaintedObject(delegate() { // _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID); BulletSimAPI.SetObjectTranslation(_scene.WorldID, _localID, _position, _orientation); }); } } public override int PhysicsActorType { get { return _physicsActorType; } set { _physicsActorType = value; } } public override bool IsPhysical { get { return _isPhysical; } set { _isPhysical = value; _scene.TaintedObject(delegate() { SetObjectDynamic(); }); } } // An object is static (does not move) if selected or not physical private bool IsStatic { get { return _isSelected || !IsPhysical; } } // An object is solid if it's not phantom and if it's not doing VolumeDetect private bool IsSolid { get { return !IsPhantom && !_isVolumeDetect; } } // make gravity work if the object is physical and not selected // no locking here because only called when it is safe private void SetObjectDynamic() { // m_log.DebugFormat("{0}: ID={1}, SetObjectDynamic: IsStatic={2}, IsSolid={3}", LogHeader, _localID, IsStatic, IsSolid); // non-physical things work best with a mass of zero if (IsStatic) { _mass = 0f; } else { _mass = CalculateMass(); // If it's dynamic, make sure the hull has been created for it // This shouldn't do much work if the object had previously been built RecreateGeomAndObject(); } BulletSimAPI.SetObjectProperties(_scene.WorldID, LocalID, IsStatic, IsSolid, SubscribedEvents(), _mass); } // prims don't fly public override bool Flying { get { return _flying; } set { _flying = value; } } public override bool SetAlwaysRun { get { return _setAlwaysRun; } set { _setAlwaysRun = value; } } public override bool ThrottleUpdates { get { return _throttleUpdates; } set { _throttleUpdates = value; } } public override bool IsColliding { get { return (_collidingStep == _scene.SimulationStep); } set { _isColliding = value; } } public override bool CollidingGround { get { return (_collidingGroundStep == _scene.SimulationStep); } set { _collidingGround = value; } } public override bool CollidingObj { get { return _collidingObj; } set { _collidingObj = value; } } public bool IsPhantom { get { // SceneObjectPart removes phantom objects from the physics scene // so, although we could implement touching and such, we never // are invoked as a phantom object return false; } } public override bool FloatOnWater { set { _floatOnWater = value; } } public override OMV.Vector3 RotationalVelocity { get { return _rotationalVelocity; } set { _rotationalVelocity = value; // m_log.DebugFormat("{0}: RotationalVelocity={1}", LogHeader, _rotationalVelocity); _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectAngularVelocity(_scene.WorldID, LocalID, _rotationalVelocity); }); } } public OMV.Vector3 AngularVelocity { get { return _angularVelocity; } set { _angularVelocity = value; } } public override bool Kinematic { get { return _kinematic; } set { _kinematic = value; // m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic); } } public override float Buoyancy { get { return _buoyancy; } set { _buoyancy = value; _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectBuoyancy(_scene.WorldID, _localID, _buoyancy); }); } } // Used for MoveTo public override OMV.Vector3 PIDTarget { set { _PIDTarget = value; } } public override bool PIDActive { set { _usePID = value; } } public override float PIDTau { set { _PIDTau = value; } } // Used for llSetHoverHeight and maybe vehicle height // Hover Height will override MoveTo target's Z public override bool PIDHoverActive { set { _useHoverPID = value; } } public override float PIDHoverHeight { set { _PIDHoverHeight = value; } } public override PIDHoverType PIDHoverType { set { _PIDHoverType = value; } } public override float PIDHoverTau { set { _PIDHoverTao = value; } } // For RotLookAt public override OMV.Quaternion APIDTarget { set { return; } } public override bool APIDActive { set { return; } } public override float APIDStrength { set { return; } } public override float APIDDamping { set { return; } } public override void AddForce(OMV.Vector3 force, bool pushforce) { if (force.IsFinite()) { _force.X += force.X; _force.Y += force.Y; _force.Z += force.Z; } else { m_log.WarnFormat("{0}: Got a NaN force applied to a Character", LogHeader); } _scene.TaintedObject(delegate() { BulletSimAPI.SetObjectForce(_scene.WorldID, _localID, _force); }); } public override void AddAngularForce(OMV.Vector3 force, bool pushforce) { // m_log.DebugFormat("{0}: AddAngularForce. f={1}, push={2}", LogHeader, force, pushforce); } public override void SetMomentum(OMV.Vector3 momentum) { } public override void SubscribeEvents(int ms) { _subscribedEventsMs = ms; _lastCollisionTime = Util.EnvironmentTickCount() - _subscribedEventsMs; // make first collision happen } public override void UnSubscribeEvents() { _subscribedEventsMs = 0; } public override bool SubscribedEvents() { return (_subscribedEventsMs > 0); } #region Mass Calculation private float CalculateMass() { float volume = _size.X * _size.Y * _size.Z; // default float tmp; float returnMass = 0; float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f; float hollowVolume = hollowAmount * hollowAmount; switch (_pbs.ProfileShape) { case ProfileShape.Square: // default box if (_pbs.PathCurve == (byte)Extrusion.Straight) { if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= (0.5f * .5f); break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { //a tube volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX); tmp= 1.0f -2.0e-2f * (float)(200 - _pbs.PathScaleY); volume -= volume*tmp*tmp; if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f;; break; case HollowShape.Triangle: hollowVolume *= 0.5f * 0.5f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.Circle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.78539816339f; // elipse base if (hollowAmount > 0.0) { switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.HalfCircle: if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.52359877559829887307710723054658f; } break; case ProfileShape.EquilateralTriangle: if (_pbs.PathCurve == (byte)Extrusion.Straight) { volume *= 0.32475953f; if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (_pbs.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.32475953f; volume *= 0.01f * (float)(200 - _pbs.PathScaleX); tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (_pbs.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; default: break; } float taperX1; float taperY1; float taperX; float taperY; float pathBegin; float pathEnd; float profileBegin; float profileEnd; if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible) { taperX1 = _pbs.PathScaleX * 0.01f; if (taperX1 > 1.0f) taperX1 = 2.0f - taperX1; taperX = 1.0f - taperX1; taperY1 = _pbs.PathScaleY * 0.01f; if (taperY1 > 1.0f) taperY1 = 2.0f - taperY1; taperY = 1.0f - taperY1; } else { taperX = _pbs.PathTaperX * 0.01f; if (taperX < 0.0f) taperX = -taperX; taperX1 = 1.0f - taperX; taperY = _pbs.PathTaperY * 0.01f; if (taperY < 0.0f) taperY = -taperY; taperY1 = 1.0f - taperY; } volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY); pathBegin = (float)_pbs.PathBegin * 2.0e-5f; pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f; volume *= (pathEnd - pathBegin); // this is crude aproximation profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f; profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f; volume *= (profileEnd - profileBegin); returnMass = _density * volume; if (IsRootOfLinkset) { foreach (BSPrim prim in _childrenPrims) { returnMass += prim.CalculateMass(); } } if (returnMass <= 0) returnMass = 0.0001f; if (returnMass > _scene.MaximumObjectMass) returnMass = _scene.MaximumObjectMass; return returnMass; }// end CalculateMass #endregion Mass Calculation // Create the geometry information in Bullet for later use // The objects needs a hull if it's physical otherwise a mesh is enough // No locking here because this is done when we know physics is not simulating // if 'forceRebuild' is true, the geometry is rebuilt. Otherwise a previously built version is used private void CreateGeom(bool forceRebuild) { // the mesher thought this was too simple to mesh. Use a native Bullet collision shape. if (!_scene.NeedsMeshing(_pbs)) { if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1) { if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z) { // m_log.DebugFormat("{0}: CreateGeom: Defaulting to sphere of size {1}", LogHeader, _size); _shapeType = ShapeData.PhysicsShapeType.SHAPE_SPHERE; // Bullet native objects are scaled by the Bullet engine so pass the size in _scale = _size; } } else { // m_log.DebugFormat("{0}: CreateGeom: Defaulting to box. lid={1}, size={2}", LogHeader, LocalID, _size); _shapeType = ShapeData.PhysicsShapeType.SHAPE_BOX; _scale = _size; } } else { if (IsPhysical) { if (forceRebuild || _hullKey == 0) { // physical objects require a hull for interaction. // This will create the mesh if it doesn't already exist CreateGeomHull(); } } else { if (forceRebuild || _meshKey == 0) { // Static (non-physical) objects only need a mesh for bumping into CreateGeomMesh(); } } } } // No locking here because this is done when we know physics is not simulating private void CreateGeomMesh() { float lod = _pbs.SculptEntry ? _scene.SculptLOD : _scene.MeshLOD; ulong newMeshKey = (ulong)_pbs.GetMeshKey(_size, lod); // m_log.DebugFormat("{0}: CreateGeomMesh: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _meshKey, newMeshKey); // if this new shape is the same as last time, don't recreate the mesh if (_meshKey == newMeshKey) return; // Since we're recreating new, get rid of any previously generated shape if (_meshKey != 0) { // m_log.DebugFormat("{0}: CreateGeom: deleting old mesh. lID={1}, Key={2}", LogHeader, _localID, _meshKey); BulletSimAPI.DestroyMesh(_scene.WorldID, _meshKey); _mesh = null; _meshKey = 0; } _meshKey = newMeshKey; // always pass false for physicalness as this creates some sort of bounding box which we don't need _mesh = _scene.mesher.CreateMesh(_avName, _pbs, _size, lod, false); int[] indices = _mesh.getIndexListAsInt(); List<OMV.Vector3> vertices = _mesh.getVertexList(); float[] verticesAsFloats = new float[vertices.Count * 3]; int vi = 0; foreach (OMV.Vector3 vv in vertices) { // m_log.DebugFormat("{0}: {1}: <{2:0.00}, {3:0.00}, {4:0.00}>", LogHeader, vi / 3, vv.X, vv.Y, vv.Z); verticesAsFloats[vi++] = vv.X; verticesAsFloats[vi++] = vv.Y; verticesAsFloats[vi++] = vv.Z; } // m_log.DebugFormat("{0}: CreateGeomMesh: calling CreateMesh. lid={1}, key={2}, indices={3}, vertices={4}", // LogHeader, _localID, _meshKey, indices.Length, vertices.Count); BulletSimAPI.CreateMesh(_scene.WorldID, _meshKey, indices.GetLength(0), indices, vertices.Count, verticesAsFloats); _shapeType = ShapeData.PhysicsShapeType.SHAPE_MESH; // meshes are already scaled by the meshmerizer _scale = new OMV.Vector3(1f, 1f, 1f); return; } // No locking here because this is done when we know physics is not simulating private void CreateGeomHull() { float lod = _pbs.SculptEntry ? _scene.SculptLOD : _scene.MeshLOD; ulong newHullKey = (ulong)_pbs.GetMeshKey(_size, lod); // m_log.DebugFormat("{0}: CreateGeomHull: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _hullKey, newHullKey); // if the hull hasn't changed, don't rebuild it if (newHullKey == _hullKey) return; // Since we're recreating new, get rid of any previously generated shape if (_hullKey != 0) { // m_log.DebugFormat("{0}: CreateGeom: deleting old hull. Key={1}", LogHeader, _hullKey); BulletSimAPI.DestroyHull(_scene.WorldID, _hullKey); _hullKey = 0; _hulls.Clear(); BulletSimAPI.DestroyMesh(_scene.WorldID, _meshKey); _mesh = null; // the mesh cannot match either _meshKey = 0; } _hullKey = newHullKey; if (_meshKey != _hullKey) { // if the underlying mesh has changed, rebuild it CreateGeomMesh(); } int[] indices = _mesh.getIndexListAsInt(); List<OMV.Vector3> vertices = _mesh.getVertexList(); //format conversion from IMesh format to DecompDesc format List<int> convIndices = new List<int>(); List<float3> convVertices = new List<float3>(); for (int ii = 0; ii < indices.GetLength(0); ii++) { convIndices.Add(indices[ii]); } foreach (OMV.Vector3 vv in vertices) { convVertices.Add(new float3(vv.X, vv.Y, vv.Z)); } // setup and do convex hull conversion _hulls = new List<ConvexResult>(); DecompDesc dcomp = new DecompDesc(); dcomp.mIndices = convIndices; dcomp.mVertices = convVertices; ConvexBuilder convexBuilder = new ConvexBuilder(HullReturn); // create the hull into the _hulls variable convexBuilder.process(dcomp); // Convert the vertices and indices for passing to unmanaged // The hull information is passed as a large floating point array. // The format is: // convHulls[0] = number of hulls // convHulls[1] = number of vertices in first hull // convHulls[2] = hull centroid X coordinate // convHulls[3] = hull centroid Y coordinate // convHulls[4] = hull centroid Z coordinate // convHulls[5] = first hull vertex X // convHulls[6] = first hull vertex Y // convHulls[7] = first hull vertex Z // convHulls[8] = second hull vertex X // ... // convHulls[n] = number of vertices in second hull // convHulls[n+1] = second hull centroid X coordinate // ... // // TODO: is is very inefficient. Someday change the convex hull generator to return // data structures that do not need to be converted in order to pass to Bullet. // And maybe put the values directly into pinned memory rather than marshaling. int hullCount = _hulls.Count; int totalVertices = 1; // include one for the count of the hulls foreach (ConvexResult cr in _hulls) { totalVertices += 4; // add four for the vertex count and centroid totalVertices += cr.HullIndices.Count * 3; // we pass just triangles } float[] convHulls = new float[totalVertices]; convHulls[0] = (float)hullCount; int jj = 1; foreach (ConvexResult cr in _hulls) { // copy vertices for index access float3[] verts = new float3[cr.HullVertices.Count]; int kk = 0; foreach (float3 ff in cr.HullVertices) { verts[kk++] = ff; } // add to the array one hull's worth of data convHulls[jj++] = cr.HullIndices.Count; convHulls[jj++] = 0f; // centroid x,y,z convHulls[jj++] = 0f; convHulls[jj++] = 0f; foreach (int ind in cr.HullIndices) { convHulls[jj++] = verts[ind].x; convHulls[jj++] = verts[ind].y; convHulls[jj++] = verts[ind].z; } } // create the hull definition in Bullet // m_log.DebugFormat("{0}: CreateGeom: calling CreateHull. lid={1}, key={2}, hulls={3}", LogHeader, _localID, _hullKey, hullCount); BulletSimAPI.CreateHull(_scene.WorldID, _hullKey, hullCount, convHulls); _shapeType = ShapeData.PhysicsShapeType.SHAPE_HULL; // meshes are already scaled by the meshmerizer _scale = new OMV.Vector3(1f, 1f, 1f); return; } // Callback from convex hull creater with a newly created hull. // Just add it to the collection of hulls for this shape. private void HullReturn(ConvexResult result) { _hulls.Add(result); return; } // Create an object in Bullet // No locking here because this is done when the physics engine is not simulating private void CreateObject() { if (IsRootOfLinkset) { // Create a linkset around this object // CreateLinksetWithCompoundHull(); CreateLinksetWithConstraints(); } else { // simple object // the mesh or hull must have already been created in Bullet ShapeData shape; FillShapeInfo(out shape); // m_log.DebugFormat("{0}: CreateObject: lID={1}, shape={2}", LogHeader, _localID, shape.Type); BulletSimAPI.CreateObject(_scene.WorldID, shape); } } // Create a linkset by creating a compound hull at the root prim that consists of all // the children. // NOTE: This does not allow proper collisions with the children prims so it is not a workable solution void CreateLinksetWithCompoundHull() { // If I am the root prim of a linkset, replace my physical shape with all the // pieces of the children. // All of the children should have called CreateGeom so they have a hull // in the physics engine already. Here we pull together all of those hulls // into one shape. int totalPrimsInLinkset = _childrenPrims.Count + 1; // m_log.DebugFormat("{0}: CreateLinkset. Root prim={1}, prims={2}", LogHeader, LocalID, totalPrimsInLinkset); ShapeData[] shapes = new ShapeData[totalPrimsInLinkset]; FillShapeInfo(out shapes[0]); int ii = 1; foreach (BSPrim prim in _childrenPrims) { // m_log.DebugFormat("{0}: CreateLinkset: adding prim {1}", LogHeader, prim.LocalID); prim.FillShapeInfo(out shapes[ii]); ii++; } BulletSimAPI.CreateLinkset(_scene.WorldID, totalPrimsInLinkset, shapes); } // Copy prim's info into the BulletSim shape description structure public void FillShapeInfo(out ShapeData shape) { shape.ID = _localID; shape.Type = _shapeType; shape.Position = _position; shape.Rotation = _orientation; shape.Velocity = _velocity; shape.Scale = _scale; shape.Mass = _isPhysical ? _mass : 0f; shape.Buoyancy = _buoyancy; shape.HullKey = _hullKey; shape.MeshKey = _meshKey; shape.Friction = _friction; shape.Restitution = _restitution; shape.Collidable = (!IsPhantom) ? ShapeData.numericTrue : ShapeData.numericFalse; shape.Static = _isPhysical ? ShapeData.numericFalse : ShapeData.numericTrue; } // Create the linkset by putting constraints between the objects of the set so they cannot move // relative to each other. // TODO: make this more effeicient: a large linkset gets rebuilt over and over and prims are added void CreateLinksetWithConstraints() { // m_log.DebugFormat("{0}: CreateLinkset. Root prim={1}, prims={2}", LogHeader, LocalID, _childrenPrims.Count+1); // remove any constraints that might be in place foreach (BSPrim prim in _childrenPrims) { // m_log.DebugFormat("{0}: CreateLinkset: RemoveConstraint between root prim {1} and child prim {2}", LogHeader, LocalID, prim.LocalID); BulletSimAPI.RemoveConstraint(_scene.WorldID, LocalID, prim.LocalID); } // create constraints between the root prim and each of the children foreach (BSPrim prim in _childrenPrims) { // m_log.DebugFormat("{0}: CreateLinkset: AddConstraint between root prim {1} and child prim {2}", LogHeader, LocalID, prim.LocalID); // Zero motion for children so they don't interpolate prim.ZeroMotion(); // relative position normalized to the root prim OMV.Vector3 childRelativePosition = (prim._position - this._position) * OMV.Quaternion.Inverse(this._orientation); // relative rotation of the child to the parent OMV.Quaternion relativeRotation = OMV.Quaternion.Inverse(prim._orientation) * this._orientation; // this is a constraint that allows no freedom of movement between the two objects // http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=4818 BulletSimAPI.AddConstraint(_scene.WorldID, LocalID, prim.LocalID, childRelativePosition, relativeRotation, OMV.Vector3.Zero, OMV.Quaternion.Identity, OMV.Vector3.Zero, OMV.Vector3.Zero, OMV.Vector3.Zero, OMV.Vector3.Zero); } } // Rebuild the geometry and object. // This is called when the shape changes so we need to recreate the mesh/hull. // No locking here because this is done when the physics engine is not simulating private void RecreateGeomAndObject() { // m_log.DebugFormat("{0}: RecreateGeomAndObject. lID={1}", LogHeader, _localID); CreateGeom(true); CreateObject(); return; } // The physics engine says that properties have updated. Update same and inform // the world that things have changed. // TODO: do we really need to check for changed? Maybe just copy values and call RequestPhysicsterseUpdate() enum UpdatedProperties { Position = 1 << 0, Rotation = 1 << 1, Velocity = 1 << 2, Acceleration = 1 << 3, RotationalVel = 1 << 4 } const float ROTATION_TOLERANCE = 0.01f; const float VELOCITY_TOLERANCE = 0.001f; const float POSITION_TOLERANCE = 0.05f; const float ACCELERATION_TOLERANCE = 0.01f; const float ROTATIONAL_VELOCITY_TOLERANCE = 0.01f; const bool SHOULD_DAMP_UPDATES = false; public void UpdateProperties(EntityProperties entprop) { UpdatedProperties changed = 0; if (SHOULD_DAMP_UPDATES) { // assign to the local variables so the normal set action does not happen // if (_position != entprop.Position) if (!_position.ApproxEquals(entprop.Position, POSITION_TOLERANCE)) { _position = entprop.Position; // m_log.DebugFormat("{0}: UpdateProperties: id={1}, pos = {2}", LogHeader, LocalID, _position); changed |= UpdatedProperties.Position; } // if (_orientation != entprop.Rotation) if (!_orientation.ApproxEquals(entprop.Rotation, ROTATION_TOLERANCE)) { _orientation = entprop.Rotation; // m_log.DebugFormat("{0}: UpdateProperties: id={1}, rot = {2}", LogHeader, LocalID, _orientation); changed |= UpdatedProperties.Rotation; } // if (_velocity != entprop.Velocity) if (!_velocity.ApproxEquals(entprop.Velocity, VELOCITY_TOLERANCE)) { _velocity = entprop.Velocity; // m_log.DebugFormat("{0}: UpdateProperties: velocity = {1}", LogHeader, _velocity); changed |= UpdatedProperties.Velocity; } // if (_acceleration != entprop.Acceleration) if (!_acceleration.ApproxEquals(entprop.Acceleration, ACCELERATION_TOLERANCE)) { _acceleration = entprop.Acceleration; // m_log.DebugFormat("{0}: UpdateProperties: acceleration = {1}", LogHeader, _acceleration); changed |= UpdatedProperties.Acceleration; } // if (_rotationalVelocity != entprop.RotationalVelocity) if (!_rotationalVelocity.ApproxEquals(entprop.RotationalVelocity, ROTATIONAL_VELOCITY_TOLERANCE)) { _rotationalVelocity = entprop.RotationalVelocity; // m_log.DebugFormat("{0}: UpdateProperties: rotationalVelocity = {1}", LogHeader, _rotationalVelocity); changed |= UpdatedProperties.RotationalVel; } if (changed != 0) { // m_log.DebugFormat("{0}: UpdateProperties: id={1}, c={2}, pos={3}, rot={4}", LogHeader, LocalID, changed, _position, _orientation); // Only update the position of single objects and linkset roots if (this._parentPrim == null) { // m_log.DebugFormat("{0}: RequestTerseUpdate. id={1}, ch={2}, pos={3}, rot={4}", LogHeader, LocalID, changed, _position, _orientation); base.RequestPhysicsterseUpdate(); } } } else { // Don't check for damping here -- it's done in BulletSim and SceneObjectPart. // Only updates only for individual prims and for the root object of a linkset. if (this._parentPrim == null) { // Assign to the local variables so the normal set action does not happen _position = entprop.Position; _orientation = entprop.Rotation; _velocity = entprop.Velocity; _acceleration = entprop.Acceleration; _rotationalVelocity = entprop.RotationalVelocity; // m_log.DebugFormat("{0}: RequestTerseUpdate. id={1}, ch={2}, pos={3}, rot={4}", LogHeader, LocalID, changed, _position, _orientation); base.RequestPhysicsterseUpdate(); } } } // I've collided with something public void Collide(uint collidingWith, ActorTypes type, OMV.Vector3 contactPoint, OMV.Vector3 contactNormal, float pentrationDepth) { // m_log.DebugFormat("{0}: Collide: ms={1}, id={2}, with={3}", LogHeader, _subscribedEventsMs, LocalID, collidingWith); // The following lines make IsColliding() and IsCollidingGround() work _collidingStep = _scene.SimulationStep; if (collidingWith == BSScene.TERRAIN_ID || collidingWith == BSScene.GROUNDPLANE_ID) { _collidingGroundStep = _scene.SimulationStep; } if (_subscribedEventsMs == 0) return; // nothing in the object is waiting for collision events // throttle the collisions to the number of milliseconds specified in the subscription int nowTime = _scene.SimulationNowTime; if (nowTime < (_lastCollisionTime + _subscribedEventsMs)) return; _lastCollisionTime = nowTime; // create the event for the collision Dictionary<uint, ContactPoint> contactPoints = new Dictionary<uint, ContactPoint>(); contactPoints.Add(collidingWith, new ContactPoint(contactPoint, contactNormal, pentrationDepth)); CollisionEventUpdate args = new CollisionEventUpdate(LocalID, (int)type, 1, contactPoints); base.SendCollisionUpdate(args); } } }